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This document contains short answers, which indicate how the exercises can be answered.
In most of the cases more details are needed to give a sufficiently clear answer.

1.

2.

(a)

(a)

True. Since Q is an orthogonal matrix we know that QQ7 = QTQ = I. Fur-

thermore [|A|l2 = \/Amaz(ATA). This implies:

“QTAH2 = \/Amax<ATQQTA) = \/)‘max(ATA> = ”AHZ

which proves the equality.

True. For the proof we use the definition of the spectral radius: p(A) is the
in absolute value largest eigenvalue of A. We know that |A|||u]| = ||Au]| for
any eigenpair A\, u . From the definition of a multiplicative norm ||.|| it follows
that |A|||ul] = [|Aul|| < ||A]|||ul]|. Division by ||ul|| shows that |A| < ||A]| for any
eigenvalue \ of A. So it also holds for the in absolute value largest eigenvalue
of A which proves the result.

False. From r = a;vy + aovy it follows that Afr = )\’fr. So all powers of A
multiplied with r are element of the span of r. This implies that the dimension
of K°(A,r) is equal to 1.

True. The symmetry of Ay easily follows from the symmetry of A. Since matrix
A is SPD we know that vIAv > 0 for all v # 0. Take w € R* an arbitrary
vector such that w # 0. Define v € R" such that v(1) = w(1),....,v(k) = w(k)
and v(k +1) = .... = v(n) = 0. It now follows that w? Ayw = v Av > 0 which
shows that the statement is true.

True. The condition number is defined as follows: K,(A) = [|Al|,||A7*|,. The
inverse of I is equal to I. From the definition of the p-norm it follows that

1], = max |[Tul}, =1
Jullp=1

Combination of these expressions shows that K,(I) = 1.

The finite difference stencil is given by

1
ﬁ[—l 2 —10n* —1]



In order to show that the method is second order accurate, a Taylor expansion
in the points x; 1 and x;,; should be given around the point z; where the
remainder term is O(h*). Tt then follows that

—Ui—1 + 2u; — U,
= u 1+h2u u+1+0(h2)

This leads to the stencil as given above.

Use the goniometric formula’s to show that

A = —10 + %[1 — cos(mhk)] = —10 + %smﬂ(%hk)
Since the boundary conditions are eliminated, the matrix is symmetric. Note
that Gerschgorin’s theorem does not imply that all eigenvalues are positive.
Using the expression given in (b) with N = 10 and k& = 1 shows that A\, =
—0.1314. So eigenvalue A; is negative with implies that for eigenvector v, we
have:

viAv = M|vi3 <0
This implies that the matrix is not SPD.
We have the following ordering:

495
738
162

This leads to the following non-zero pattern:

* 000000
0*x000=*x0=x*x0
00 %00 % % % %
000=*00=x0 *
0000 %00 % x*
* x x 00000
* 0 x00=x*x00
Ox*x0*x00=*0
00x*x* %000 *

Let Au=f, and A = M — N where M is non singular. Derive a formula for u*
and r.

1.
u = MTINut + M
=M Y M - Au* + M
=uf + MI(f - AuP)
— uk _i_Mflrk



4.

(b)

()

ii.
rk—i—l —f— Auk—i—l

=f— A(u* + M~'r*)

=f— Au® — AM'r* (2)
=rF — AM'r*
= (I —AMY)rk

Give the iteration matrix and a sufficient condition for convergence
i. The iteration matrix is given by B = I — M~ 'A.
ii. There are three possible answers
A p(B)<1
B. ||B|| <1
C. limk_,oo ||Bk||2 =0
Assume A is upper triangular, show Jacobi converges.
Now we have M = D, where D is the matrix containing only the diagonal
elements of A.
Then B=1—D"'A=1—(I+U)="U where U is an upper triangular matrix
with zeros on the diagonal. So B is an upper triangular matrix with only zeros

on the diagonal.
It then follows that B! = 0,444z S0 the Jacobi method converges.

Assume A is upper triangular, which Gauss Seidel variant is optimal for this
matrix?

Solution: There are two Gauss Seidel variants: M is equal to the lower triangular
part of A or M is equal to the upper triangular part of A. For this matrix the
final choice is optimal. The motivation is as follows. Note that in this case
M = A and therefore

B=1- M_IA =1— A_lA = Omatri:c- (3)

Then, ||B|| < 1 and therefore this variant of GS converges. Furthermore ¢! =
Be® = 0yector, 50 the method converges after 1 iteration.

(e) Below 3 different stopping criteria and their properties are given.

i. ||7*|| < e, this criterion is not scaling invariant.
It |
71l
Ir* |

171

ii. < €, depends on the quality of the initial guess.

iii.

< ¢, this is a good stopping criterion.

(a) We take u! = ar’ where a is a constant which has to be chosen such that

|u — u'||2 is minimal. This leads to

lu—u'|? = (u—ar®)"(u—ar’) = u"u - 20(r")"u + *(x") 71" .



The norm given above is minimized if o = %
Note that u is needed in the definition of « as given in part (a). If one uses
the A-norm, the following expression should be minimal: ||u —u'||4. Using the
same steps as in part (a) it appears that now « is given by:

(9T Au (r)Tf

o (r0)T Ar0 - (r9)T Ar0’

which is easy to compute.

The optimality property of CG implies that the approximation u* coming from
CG satisfies:

k .
u—u = min u—
[ ula= min -yl

If the method terminates before we reach k = n we know that we have a 'lucky’

breakdown so u* = u. If not we know that the dimension of K™ is equal to n,
thus K™ = R" and thus u” = u.

The convergence of CG depends on the condition number. For SPD matrices
the condition number is defined as

An

Ko(4) = T

For a smaller condition number the convergence of CG is faster. Since K5(A;) =
10 and K3(As) = 200, it is clear that we expect that the convergence for A; is
much faster than for A,.

The three properties are:

1. The matrix M should be SPD.

ii. the eigenvalues of M 1A should be clustered around 1, or the condition
number of M 1A is (much) smaller than the condition number of A.

iii. it should be possible to obtain M~y at low cost.
If we do the multiplication:
(I —a®el)(I + a®el)
we obtain the following:
I — a(k)e;f + a(’“)ef + a(k)e;‘ga(k)ez =
I+ a(k)ega(k)ez

Due to the zero structure of e, and a® the product efoz(k) is equal to zero, so
the last term is equal to zero, so

(I —a®el I+ aWel) =T

which proves the claim that M, -1+ a(’“)ef.

4



(b)

The perturbed solution u + Au solves the system

A(u+ Au) =f + Af. (4)
Due to linearity, the perturbation Au then solves the system
AAu = Af | (5)

from which Au = A7'Af and therefore ||Aul| < ||A7Y |Af]. Tt follows form
the multiplicative property that ||f|| < ||Al [[u|| and therefore
1 1

— <Al = (6)

[l [1£]]
Combining these inequalities we arrive at the following bound on the norm of
the perturbed solution
[Aul|

[[ull

where k(A) denotes the condition number of A measured in the norm || - ||.

B Af Af
< A 1A % _ “(A)H < 5(A)., )

The LU decomposition determines an upper triangular matrix U and a lower
triangular matrix L, with [; = 1, where A = LU. The procedure to obtain
this decomposition is using Gauss transformations, such that column k is trans-
formed in a such a way that all element £+ 1, ..., n of this column become equal
to zero. Since the non-zero pattern of L and U is the same as that of A, the
number of computations per row are: one division to compute the multiplier
followed by a multiplication and addition/subtraction to compute the diagonal
element of U. This leads to 3n flops for the decomposition.

In order to find solution u from Au = f, we substitute the decomposition into
Au = f, so LUu = f. If we define y = Uu we can first solve Ly = f and
then Uu = y. Since these systems are both triangular this is easy to solve.
The work for the first system is one multiplication and addition/subtraction to
compute one component of y, so in total 2n flops for the first system. For the
second system one needs a multiplication and addition/subtraction followed by
a division to compute one component of u, so in total 3n flops for the second
system. In total 8n flops are needed to solve a system with a tri-diagonal matrix

A.

After 1 step of the Gaussian elimination process we obtain the following matrix:

4 -1 0 0 -1
0 3 -1 0 -1
-1 4 -1 0
0 -1 4 -1
0 -1 33

o O O

1
4

Note that the fill in less than i in absolute value.



