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This document contains short answers, which indicate how the exercises can be answered.
In most of the cases more details are needed to give a sufficiently clear answer.

1. (a) True. Since Q is an orthogonal matrix we know that QQT = QTQ = I. Fur-
thermore ‖A‖2 =

√
λmax(ATA). This implies:

‖QTA‖2 =
√
λmax(ATQQTA) =

√
λmax(ATA) = ‖A‖2

which proves the equality.

(b) True. For the proof we use the definition of the spectral radius: ρ(A) is the
in absolute value largest eigenvalue of A. We know that |λ|‖u‖ = ‖Au‖ for
any eigenpair λ,u . From the definition of a multiplicative norm ‖.‖ it follows
that |λ|‖u‖ = ‖Au‖ ≤ ‖A‖‖u‖. Division by ‖u‖ shows that |λ| ≤ ‖A‖ for any
eigenvalue λ of A. So it also holds for the in absolute value largest eigenvalue
of A which proves the result.

(c) False. From r = α1v1 + α2v2 it follows that Akr = λk1r. So all powers of A
multiplied with r are element of the span of r. This implies that the dimension
of K5(A, r) is equal to 1.

(d) True. The symmetry of Ak easily follows from the symmetry of A. Since matrix
A is SPD we know that vTAv > 0 for all v 6= 0. Take w ∈ Rk an arbitrary
vector such that w 6= 0. Define v ∈ Rn such that v(1) = w(1), ....,v(k) = w(k)
and v(k+ 1) = .... = v(n) = 0. It now follows that wTAkw = vTAv > 0 which
shows that the statement is true.

(e) True. The condition number is defined as follows: Kp(A) = ‖A‖p‖A−1‖p. The
inverse of I is equal to I. From the definition of the p-norm it follows that

‖I‖p = max
‖u‖p=1

‖Iu‖p = 1

Combination of these expressions shows that Kp(I) = 1.

2. (a) The finite difference stencil is given by

1

h2
[−1 2− 10h2 − 1]
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In order to show that the method is second order accurate, a Taylor expansion
in the points xi−1 and xi+1 should be given around the point xi where the
remainder term is O(h4). It then follows that

−u′′i =
−ui−1 + 2ui − ui+1

h2
+O(h2)

This leads to the stencil as given above.

(b) Use the goniometric formula’s to show that

λk = −10 +
2

h2
[1− cos(πhk)] = −10 +

4

h2
sin2(

πhk

2
)

(c) Since the boundary conditions are eliminated, the matrix is symmetric. Note
that Gerschgorin’s theorem does not imply that all eigenvalues are positive.
Using the expression given in (b) with N = 10 and k = 1 shows that λ1 =
−0.1314. So eigenvalue λ1 is negative with implies that for eigenvector v1 we
have:

vT
1Av1 = λ1‖v1‖22 < 0

This implies that the matrix is not SPD.

(d) We have the following ordering:

4 9 5

7 3 8

1 6 2

This leads to the following non-zero pattern:

* 0 0 0 0 * * 0 0

0 * 0 0 0 * 0 * 0

0 0 * 0 0 * * * *

0 0 0 * 0 0 * 0 *

0 0 0 0 * 0 0 * *

* * * 0 0 * 0 0 0

* 0 * * 0 0 * 0 0

0 * * 0 * 0 0 * 0

0 0 * * * 0 0 0 *

3. (a) Let Au = f , and A = M −N where M is non singular. Derive a formula for uk

and rk.

i.

uk+1 = M−1Nuk +M−1f

= M−1(M − A)uk +M−1f

= uk +M−1(f − Auk)

= uk +M−1rk

(1)
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ii.

rk+1 = f − Auk+1

= f − A(uk +M−1rk)

= f − Auk − AM−1rk

= rk − AM−1rk

= (I − AM−1)rk

(2)

(b) Give the iteration matrix and a sufficient condition for convergence

i. The iteration matrix is given by B = I −M−1A.

ii. There are three possible answers

A. ρ(B) < 1

B. ‖B‖ < 1

C. limk→∞ ‖Bk‖2 = 0

(c) Assume A is upper triangular, show Jacobi converges.
Now we have M = D, where D is the matrix containing only the diagonal
elements of A.
Then B = I −D−1A = I − (I +U) = U where U is an upper triangular matrix
with zeros on the diagonal. So B is an upper triangular matrix with only zeros
on the diagonal.
It then follows that Bn−1 = 0matrix so the Jacobi method converges.

(d) Assume A is upper triangular, which Gauss Seidel variant is optimal for this
matrix?
Solution: There are two Gauss Seidel variants: M is equal to the lower triangular
part of A or M is equal to the upper triangular part of A. For this matrix the
final choice is optimal. The motivation is as follows. Note that in this case
M = A and therefore

B = I −M−1A = I − A−1A = 0matrix. (3)

Then, ‖B‖ < 1 and therefore this variant of GS converges. Furthermore e1 =
Be0 = 0vector, so the method converges after 1 iteration.

(e) Below 3 different stopping criteria and their properties are given.

i. ‖rk‖ ≤ ε, this criterion is not scaling invariant.

ii. ‖r
k‖
‖r0‖ ≤ ε, depends on the quality of the initial guess.

iii. ‖r
k‖
‖f‖ ≤ ε, this is a good stopping criterion.

4. (a) We take u1 = αr0 where α is a constant which has to be chosen such that
‖u− u1‖2 is minimal. This leads to

‖u− u1‖22 = (u− αr0)T (u− αr0) = uTu− 2α(r0)Tu + α2(r0)T r0 .
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The norm given above is minimized if α = (r0)Tu
(r0)T r0

.

(b) Note that u is needed in the definition of α as given in part (a). If one uses
the A-norm, the following expression should be minimal: ‖u− u1‖A. Using the
same steps as in part (a) it appears that now α is given by:

α =
(r0)TAu

(r0)TAr0
=

(r0)T f

(r0)TAr0
,

which is easy to compute.

(c) The optimality property of CG implies that the approximation uk coming from
CG satisfies:

‖u− uk‖A = min
y∈Kk(A;r0)

‖u− y‖A

If the method terminates before we reach k = n we know that we have a ’lucky’
breakdown so uk = u. If not we know that the dimension of Kn is equal to n,
thus Kn = Rn and thus un = u.

(d) The convergence of CG depends on the condition number. For SPD matrices
the condition number is defined as

K2(A) =
λn
λ1
.

For a smaller condition number the convergence of CG is faster. Since K2(A1) =
10 and K2(A2) = 200, it is clear that we expect that the convergence for A1 is
much faster than for A2.

(e) The three properties are:

i. The matrix M should be SPD.

ii. the eigenvalues of M−1A should be clustered around 1, or the condition
number of M−1A is (much) smaller than the condition number of A.

iii. it should be possible to obtain M−1y at low cost.

5. (a) If we do the multiplication:

(I − α(k)eTk )(I + α(k)eTk )

we obtain the following:

I − α(k)eTk + α(k)eTk + α(k)eTkα
(k)eTk =

I + α(k)eTkα
(k)eTk

Due to the zero structure of ek and α(k) the product eTkα
(k) is equal to zero, so

the last term is equal to zero, so

(I − α(k)eTk )(I + α(k)eTk ) = I

which proves the claim that M−1
k = I + α(k)eTk .
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(b) The perturbed solution u + ∆u solves the system

A(u + ∆u) = f + ∆f . (4)

Due to linearity, the perturbation ∆u then solves the system

A∆u = ∆f , (5)

from which ∆u = A−1∆f and therefore ‖∆u‖ ≤ ‖A−1‖ ‖∆f‖. It follows form
the multiplicative property that ‖f‖ ≤ ‖A‖ ‖u‖ and therefore

1

‖u‖
≤ ‖A‖ 1

‖f‖
(6)

Combining these inequalities we arrive at the following bound on the norm of
the perturbed solution

‖∆u‖
‖u‖

≤ ‖A−1‖ ‖A‖ ‖∆f‖
‖f‖

= κ(A)
‖∆f‖
‖f‖

≤ δ κ(A) , (7)

where κ(A) denotes the condition number of A measured in the norm ‖ · ‖.
(c) The LU decomposition determines an upper triangular matrix U and a lower

triangular matrix L, with lii = 1, where A = LU . The procedure to obtain
this decomposition is using Gauss transformations, such that column k is trans-
formed in a such a way that all element k+ 1, ..., n of this column become equal
to zero. Since the non-zero pattern of L and U is the same as that of A, the
number of computations per row are: one division to compute the multiplier
followed by a multiplication and addition/subtraction to compute the diagonal
element of U . This leads to 3n flops for the decomposition.

In order to find solution u from Au = f , we substitute the decomposition into
Au = f , so LUu = f . If we define y = Uu we can first solve Ly = f and
then Uu = y. Since these systems are both triangular this is easy to solve.
The work for the first system is one multiplication and addition/subtraction to
compute one component of y, so in total 2n flops for the first system. For the
second system one needs a multiplication and addition/subtraction followed by
a division to compute one component of u, so in total 3n flops for the second
system. In total 8n flops are needed to solve a system with a tri-diagonal matrix
A.

(d) After 1 step of the Gaussian elimination process we obtain the following matrix:
4 −1 0 0 −1
0 33

4
−1 0 −1

4

0 −1 4 −1 0
0 0 −1 4 −1
0 −1

4
0 −1 33

4


Note that the fill in less than 1

4
in absolute value.
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