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This document contains short answers, which indicate how the exercises can be answered.
In most of the cases more details are needed to give a sufficiently clear answer.

1. (a) Yes
Note that the following inequality is valid:

‖u‖2 =

√√√√ n∑
i=1

(ui)2 ≤
√
n max

1≤i≤n
|ui|2 =

√
n‖u‖∞.

(b) Yes. Note that D is SPD. Check the properties of the innerproduct.

• Symmetry

(x,y)D = xTDy = (DTx)Ty = yT (DTx) = yTDx = (y,x)D

• Linear

(ax + by, z)D = axTDz + byTDz = a(x, z)D + b(y, z)D

• positivity

(x,x)D = xTDx =
n∑
i=1

i

n
x2i

This implies that (x,x)D > 0 if x is not the zero vector and if (x,x)D = 0
x is the zero vector.

(c) Yes. Since Q is an orthogonal matrix we know that QQT = QTQ = I. Suppose
λ ∈ σ(A).

Av = λv

QTAv = λQTv

QTAQQTv = λQTv

suppose w = QTv
QTAQw = λw

so λ ∈ σ(QTAQ).
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(d) Yes. If ρ(A) < 1, then I − A has eigenvalues bounded away from zero, and is
therefore non-singular. We furthermore have the equality

(I − Ak+1) = (I − A)(I + A+ A2 + . . .+ Ak) , (1)

or equivalently

(I − A)−1(I − Ak+1) = (I + A+ A2 + . . .+ Ak) . (2)

Taking the limit as k → ∞ and taking into account that since ρ(A) < 1 it
follows that limk→∞ ‖Ak‖2 = 0 yields the desired result.

(e) Yes, Bi-CGSTAB is a short recurrcence method. So the number of vector up-
dates and inner products per iteration are independent of the iteration number.

2. No point deductions for treatment of the RHS function as it said (x, y) on the
exam rather than g(x, y) being some function of only the coordinates.

The ellipticity is analyzed by considering the coefficients of the highest order
derivatives. Specifically, we use:

L(u) = a11
∂2u

∂x2
+ 2a12

∂2u

∂x∂y
+ a22

∂2u

∂y2
+ b1

∂u

∂x
+ b2

∂u

∂y
+ cu(x, y).

We classify these equation based on the sign of the determinant

D =

∣∣∣∣a11 a12
a12 a22

∣∣∣∣ = a11a22 − a212.

The coefficients in our equation are a11 = −1, a12 = 0, a22 = −1. The determi-
nant is given by:

(−1)(−1)− 02 = 1 > 0

Hence, the equation is classified as elliptic.

(a)(b) For the discretization, we use the Finite Difference Method on the given grid.
Using nearest neighbors, we have for the internal nodes that

∂2u

∂x2
(xij, yij) =

ui−1,j − 2ui,j + ui+1,j

h2
+O(h2) for 2 ≤ i, j ≤ m

(and similar for the y-derivative). Using Taylor polynomials, the claim that the
error is O(h2) should be shown. The approximation to the partial differential
equation discretized on internal points of the grid can be written as

−ui,j−1 − 2ui,j + ui,j+1

h2
−ui−1,j − 2ui,j + ui+1,j

h2
+kui,j = kg(xi, yj) for 2 ≤ i, j ≤ m.
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(c) The stencil on the internal nodes is given by:

1

h2

 0 −1 0
−1 4 + kh2 −1
0 −1 0


The stencil in the lower left corner is:

1

h2

0 −1 0
0 4 + kh2 −1
0 0 0


(d) The matrix A has the following structure:

1

h2


Th −I 0 · · · 0
−I Th −I · · · 0
0 −I Th · · · 0
...

...
...

. . .
...

0 0 0 · · · Th


where Th is given by

4 + kh2 −1 0 · · · 0
−1 4 + kh2 −1 · · · 0
0 −1 4 + kh2 · · · −1
...

...
...

. . .
...

0 0 −1 · · · 4 + kh2


Finally, the bandwidth is equal to m.

(e) Gershgorin’s theorem is given by:

If λ ∈ σ(A), then λ is located in one of the n closed disks in the complex
plane that has center aii and radius

ρi =
n∑

j=1,j 6=i

|aij|,

i.e.,
λ ∈ σ(A) =⇒ |aii − λ| ≤ ρi.

Now with our uniform grid and zero Dirichlet conditions we get

−∂
2u

∂x2
− ∂2u

∂y2
+ 2u = 2g(x, y)
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Substituting the second order central difference approximations, we get at grid
point (i, j):

−ui+1,j − ui−1,j − ui,j+1 − ui,j−1 +
(

4
h2

+ 2
)
ui,j

h2
= kg(xi, yj).

The matrix A representing this system has elements:

aii =
4

h2
+ 2, ai,i±1 = ai,i±N = − 1

h2
(for interior points).

Applying Gershgorin using aii = 4
h2

+ 2 gives:

• Interior Nodes: Each eigenvalue λ of A is within:

Radius ρi =
4

h2
, Interval:

[
2, 2 +

8

h2

]
.

• Edge Nodes (not corners): They have three neighbors contributing, thus:

Radius ρi =
3

h2
, Interval:

[
2 +

1

h2
, 2 +

7

h2

]
.

• Corner Nodes: With two neighbors, their bounds are:

Radius ρi =
2

h2
, Interval:

[
2 +

2

h2
, 2 +

6

h2

]
.

The eigenvalues lie in the union of these circles in the complex plane, hence we
get:

2 ≤ λ ≤ 8

h2
+ 2

(f) Similarly, we now get for center aii = 4
h2
− 2

• Interior Nodes:

Radius ρi =
4

h2
, Interval:

[
−2,

8

h2
− 2

]
.

• Edge Nodes (not corners):

Radius ρi =
3

h2
, Interval:

[
1

h2
− 2,

7

h2
− 2

]
.

• Corner Nodes:

Radius ρi =
2

h2
, Interval:

[
2

h2
− 2,

6

h2
− 2

]
.

4



The eigenvalues lie in the union of these circles in the complex plane, hence we
get:

−2 ≤ λ ≤ 8

h2
− 2

(g) The analysis shows that for k = −2 all eigenvalues are real, yet some are non-
positive, indicating that the matrix is indefinite. This affects the choice of
numerical methods for solving the linear system, with methods like Conjugate
Gradient likely being inappropriate due to the presence of negative and poten-
tially zero eigenvalues. Both indefiniteness and possible singularity require a
method like GMRES.

3. (a) We have

A1 =

1 1 1
2 3 5
4 6 8

 ,
To eliminate the first column below the diagonal, we calculate the Gauss vector
α(1) as:

α(1) =

 0
a21
a11
a31
a11

 =

0
2
1
4
1

 =

0
2
4

 .
Using this Gauss vector, the matrix after one step of elimination becomes:

L1A1 =

 1 0 0
−2 1 0
−4 0 1

1 1 1
2 3 5
4 6 8

 =

1 1 1
0 1 3
0 2 4

 .
To eliminate the second column below the diagonal, we calculate the next Gauss
vector α(2) as:

α(2) =

 0
0
a
(1)
32

a
(1)
22

 =

0
0
2
1

 =

0
0
2

 .
Using this Gauss vector, the matrix after the second elimination step becomes:

L2(L1A1) =

1 0 0
0 1 0
0 −2 1

1 1 1
0 1 3
0 2 4

 =

1 1 1
0 1 3
0 0 −2

 .
From the elimination process, the upper triangular matrix is:

U =

1 1 1
0 1 3
0 0 −2

 .
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The lower triangular matrix L is obtained by combining the Gauss vectors:

L =

 1 0 0

α
(1)
2 1 0

α
(1)
3 α

(2)
3 1

 =

1 0 0
2 1 0
4 2 1

 .
Finally, A1 = LU :

A1 =

1 0 0
2 1 0
4 2 1

1 1 1
0 1 3
0 0 −2

 =

1 1 1
2 3 5
4 6 8

 .
(b) In this case we have

L̂Û =

1 1 1
2 2 + ε 5
4 6 4

 6= A2

If we use L̂ and Û to solve for x using Ly = b and Ux = y, then

x̂ =

11
2
− 2

3
ε

−2
2
3
ε− 2

3

 ≈
 11

2

−2
−2

3


Thus we get

‖x− x̂‖ ≈ 4.069

(c) We now have

A3 =

1 1 1
2 2 5
4 6 8

 .
We use partial pivoting. The largest element in the first column is 4 (in row 3).
Thus, we swap row 1 with row 3. The updated matrix is:

PA3 =

4 6 8
2 2 5
1 1 1

 .
The permutation matrix P is:

P =

0 0 1
0 1 0
1 0 0

 .
To eliminate the first column below the diagonal, we compute the first Gauss
vector α(1):

α(1) =

 0
a21
a11
a31
a11

 =

0
2
4
1
4

 =

 0
0.5
0.25

 .
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Using α(1), we perform the first elimination step:

L1PA3 =

4 6 8
0 −1 1
0 −0.5 −1

 .
To eliminate the second column below the diagonal, we compute the second
Gauss vector α(2):

α(2) =

 0
0
a
(1)
32

a
(1)
22

 =

 0
0
−0.5
−1

 =

 0
0

0.5

 .
Using α(2), we perform the second elimination step:

L2(L1PA3) =

4 6 8
0 −1 1
0 0 −1.5

 .
The matrices L, U , and P from the factorization are:

U =

4 6 8
0 −1 1
0 0 −1.5

 .
The entries in L are constructed using the Gauss vectors:

L =

 1 0 0
0.5 1 0
0.25 0.5 1

 .

P =

0 0 1
0 1 0
1 0 0

 .
Finally, PA3 = LU .

PA3 =

4 6 8
2 2 5
1 1 1

 ,
and

LU =

 1 0 0
0.5 1 0
0.25 0.5 1

4 6 8
0 −1 1
0 0 −1.5

 =

4 6 8
2 2 5
1 1 1

 .
4. (a) If A is SPD show that ||u||A =

√
uTAu is a norm.
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i.) ||u||A ≥ 0 with equality only for u = 0

||u||A =
√
uTAu

≥ 0 (this follows from A is SPD)

Since A is SPD, equality can only occur if u = 0

ii.) ||cu|| = |c|||u||

||cu|| =
√
cuTAcu

=
√
c2uTAu

= |c|
√
uTAu

= |c|||u||A

iii.) ||u + v||A ≤ ||u||A + ||v||A

||u + v||A =
√

(u + v)TA(u + v)

=
√

uTAu + 2uTAv + vTAv

=
√
||u||2A + 2uTAv + ||v||2A

≤
√
||u||2A + 2||u||A||v||A + ||v||2A

=
√

(||u||A + ||v||A)2

= ||u||A + ||v||A

(b) We assume that u1 = α0r
0. Determine α0 such that ‖u− u1‖A is minimal.

‖u− u1‖2A = (u− u1)TA(u− u1)

= ‖u‖A − 2α0(r
0)TAu + α2

0‖r0‖A

d

dα0

‖u− u1‖2A = −2(r0)TAu + 2α0‖r0‖A (3)

Then we impose that (3) be equal zero to obtain:

α0 =
(r0)TAu

‖r0‖A
=

(r0)T f

‖r0‖A

(c) The matrix A corresponds to a shifted discretized Poisson operator. The eigen-
values are given by

λk,l = 5− 2cos
πk

61
− 2cos

πl

61
, 1 ≤ k, l ≤ 60.
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Determine the linear rate of convergence for the Conjugate Gradient method.
The matrix A is SPD, hence we can use:

κ2(A) =
λmax(A)

λmin(A)

to obtain:

κ2(A) =
λ60,60(A)

λ1,1(A)
=

8.994

1.005
= 8.9492

So in terms of Theorem 7.1.3 of the lecture notes, the linear rate of convergence
is: √

κ2(A)− 1√
κ2(A) + 1

= 0.4989

(d) Based on the first paragraph of Section 7.2 of the lecture notes, a preconditioner
matrix M should satisfy the following:

• M is SPD,

• the eigenvalues of M−1A are clustered around 1,

• M−1y is obtainable at low cost.

The PCG method is obtained, given a suitable preconditioner M = PP T , by
applying the CG method to a preconditioned linear system Ãũ = ỹ, where
Ã = P−1AP−T , u = P−T ũ and ỹ = P−1y , and P is a nonsingular matrix. This
can also be rewritten such that CG is applied to the system M−1Au = M−1f .

(e) The eigenvalues of the matrix A are:

λ1 = 1, λ2 = 80, λ3 = 82

A is symmetric and all its eigenvalues are positive, then A is SPD.

κ2(A) =
λmax(A)

λmin(A)
= 82

√
κ2(A)− 1√
κ2(A) + 1

= 0.8011

We give an estimate of convergence in terms of the number of iterations k needed
to obtain:

‖u− uk‖A
‖u− u0‖A

≤ 2(0.8011)k = 10−12 (4)

thus k is at most:

k =
log
(

10−12

2

)
log(0.8011)

= 127.71 (5)
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We consider a preconditioner where P is a diagonal matrix whose diagonal
elements pi,i =

√
ai,i:

P =

1 0 0
0 9 0
0 0 9


in order to estimate the convergence of the CG method we look at the eigenvalues
of the matrix:

Ã = P−1AP−T =

1 0 0
0 1 − 1

81

0 − 1
81

1

 (6)

these eigenvalues are λ1 = 1, λ2 = 80
81
, λ3 = 82

81

κ2(Ã) =
λmax(Ã)

λmin(Ã)
=

82

80√
κ2(Ã)− 1√
κ2(Ã) + 1

= 0.006

‖u− uk‖Ã
‖u− u0‖Ã

≤ 2(0.006)k = 10−12

thus k is at most:

k =
log
(

10−12

2

)
log(0.006)

= 5.33

5. (a) We assume that qk−1 = v1+w with ‖w‖2 = O

(∣∣∣λ2λ1 ∣∣∣k). From the algorithm we

know that λ(k) = qTk−1zk, which is equal to λ(k) = q̄Tk−1Aq
T
k−1 = (v1 +w)T (v1 +

w) = λ1v
T
1 v1+O

(∣∣∣λ2λ1 ∣∣∣k) In order to prove the result we have to show that vT1 v1

is close to 1. This can be shown as follows: vT1 v1 = (qk−1 −w)T (qk−1 −w) =

1 +O

(∣∣∣λ2λ1 ∣∣∣k) This proves the result.

(b) For the shifted power method we apply the power method to the matrix A− cI.
To obtain the original eigenvalue the result of this power method approximation
should be shifted back by adding the value c. We know that for the shifted

power method the convergence is determined by the ratio
∣∣∣λ2−cλ1−c

∣∣∣ if we assume

that |λ1 − c| > |λ2 − c| ≥ |λn − c|. We obtain fast convergence if the ratio∣∣∣λ2−cλ1−c

∣∣∣ is as small as possible. This implies that |λ2 − c| = |λn − c|. This leads

to c = λ2+λn
2

.
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(c) Two options are possible or based on the linear converging result, or based on
the residual. For the first stopping criterion we can use:

estimate r from r̃ =
|λ(k+1) − λ(k)|
|λ(k) − λ(k−1)|

,

and stop if r̃
1−r̃

|λ(k+1)−λ(k)|
|λ(k+1)| ≤ ε . Or the residual is small

‖λ(k)qk − Aqk‖2
|λ(k)|

< ε

(d) To approximate the smallest eigenvalue where λn−1 = 1.1 and λn = 1 the
inverse power method is the method of choice. This means that the power
method is applied to A−1. If the shifted power method is used the convergence
will be very slow 1001

1001.1
= 0.9999, whereas if the inverse power method is used

the convergence is given by 1
1.1

= 0.9091. This is much faster.
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