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Course Structure and Planning

Course Website

• Weekly 2-hour lecture (schedule on Brightspace)
• G1: Take-home exam (theoretical and/or practical)

• Deadline: 15-11-2024
• G2: Take-home exam (mostly practical)

• Deadline: 10-01-2025
• Group of 2 students - PhD TA’s
• Check-in with supervisor in December

• G3: Final written exam
• Exam on 22-01-2025

• Final grade: (G1 + G2 + 2G3)/4, with the condition that all
grades must be ≥ 5
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https://diamhomes.ewi.tudelft.nl/~kvuik/wi4201/wi4201.html


Prerequisite Knowledge

We assume you are familiar with material from the courses:
• Linear Algebra
• Calculus or Analysis
• Differential Equations
• Numerical Methods I (Book used)
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https://textbooks.open.tudelft.nl/textbooks/catalog/book/57


Compututational Science and Engineering
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Six Steps of a Simulation Process
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Example: Turbulence
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Algorithms, Methods, Code
Scientific Computing focuses on developing algorithms, defined as:

A set of instructions to carry out certain mathematical, arithmetical
and logical operations (or already known algorithms) for solving a
prescribed problem.

Finite vs.infinite algorithms: solution is obtained after a finite or
infinite number of steps

Example: Babylonian Root Extraction

√
a (a > 0) : x0 > 0 arbitrary

n = 1, 2, 3, . . . xn = 1
2

(
xn−1 + a

xn−1

)
Stopping criterion: |xn − xn−1| ≤ ε
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Babylonian Root - Derivation

Desired: zeros of g(x) = x2 − a = 0
Derivation via Newton-Raphson algorithm:

xn = xn−1 −
g (xn−1)
g ′ (xn−1)

xn = xn−1 −
x2

n−1 − a
2xn−1

= xn−1 −
1
2xn−1 + 1

2
a

xn−1

xn = 1
2

(
xn−1 + a

xn−1

)

Infinite algorithm + stopping criterion = finite algorithm
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Babylonian Root - Results

We take a = 0.64,
√

a = 0.8
n xn xn −

√
a (xn −

√
a) /
√

a EB (3)
0 0.76 0.04 0.05 0.05
1 0.801052631 0.001052631 0.001316 . . . 0.001316
2 0.800000691 0.000000691 0.000000864 0.000658
3 0.800000000 . . . < 10−10 < 1.2510−10 0.000329

Improved Error Bound

xn −
√

a√
a = 1

2

(
xn−1 −

√
a√

a

)2 √a
xn−1

If x0 ≥
√

a : xn −
√

a√
a ≤ 1

22n−1

(
x0 −

√
a√

a

)2n
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Errors in Scientific Computing

‘“If mathematical theories refer to reality, then they are not
certain. If they are certain, then they do not refer to reality.’

Albert Einstein

An important aspect of numerical math is understanding the errors
made in computing solutions.

Error Measures: for x , x̂ ∈ R:

|x − x̂ | ≤ ε Estimate of absolute error
|x − x̂ |
|x | ≤ ε Estimate of relative error
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Sources of Errors

• Modelling error
• Error in data

• Discretization
error
• Truncation error
• Round-off error

• Programming
errors
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Sources of Errors - Discretization

Discretization error

Only n values are obtained: gives an approximate solution curve.
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Sources of Errors - Round-off

Numbers can only be stored with finite number of bits/digits
Generally round-off error small
Problematic when used with unstable algorithm
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Sources of Errors - Round-off

Ill-conditioned linear system(
1 1
1 1− ε

)
x =

(
4

4− ε

)
Ax = b

x∗ =
(

3
1

)

(
1 1
1 1− ε

)
x̃ =

(
4+ε

4−2ε

)
Ax̃ = b̃

x̃∗ =
(

1 + ε

3

)

Also: ‖b − b̃‖∞ = ε, but ‖x − x̃‖ = max{|2− ε|, 2} = 2
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Sources of Errors - Round-off

Problem: Computation of

xn :=
∫ 1

0

tn

t + 10dt for larger n

> 0 clearly

x0 =
∫ 1

0

1
t + 10dt = ln(10 + t)|10 = ln 11

10 = ln 1.1 ≈ 0.0953

xn :=
∫ 1

0

tn

t + 10dt =
∫ 1

0

tn−1(t + 10)− 10tn−1

t + 10 dt

=
∫ 1

0
tn−1dt − 10xn−1 = 1

n − 10xn−1

Recursion: xn = 1
n − 10xn−1
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Sources of Errors - Round-off

Practically: computation with 3 decimals gives the approximations x̃n

x̃0 = 0.0953
x̃1 = 1− 0.953 = 0.047 (x1 = 0.0469..)
x̃2 = 0.5− 0.470 = 0.030 (x2 = 0.0310..)
x̃3 = 0.333− 0.300 = 0.033 (x3 = 0.0232..)
x̃4 = 0.250− 0.330 = −0.08 < 0! (x4 = 0.0185..)

Reason: xn = 1
n − 10xn−1, xn−1 contains error ε

⇒ xn contains error approx. 10ε
⇒ xn+1 contains error approx. 100 . ”Unstable recursion”
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Sources of Errors - Round-off
Fix it: reverse procedure, start with xn

xn−1 = 1
10n −

1
10xn = 1

10

(
1
n − xn

)

How to pick xn?

xn =
∫ 1

0
tn

t+10dt ≤
∫ 1

0
1
10 tndt = 1

10(n+1) → 0 (n→∞)

Employ recursion with yn = 0, yn−1 = 1
10

(
1
n − yn

)

y8 = 0
ỹ7 = 0.0125
ỹ6 = 0.0143− 0.00125 = 0.0131
ỹ5 = 0.0167− 0.00131 = 0.0154
ỹ4 = 0.0200− 0.00154 = 0.0185

ỹ4 is 3 digits accurate

17 / 23



Sources of Errors - Round-off
Fix it: reverse procedure, start with xn

xn−1 = 1
10n −

1
10xn = 1

10

(
1
n − xn

)
How to pick xn?

xn =
∫ 1

0
tn

t+10dt ≤
∫ 1

0
1
10 tndt = 1

10(n+1) → 0 (n→∞)

Employ recursion with yn = 0, yn−1 = 1
10

(
1
n − yn

)

y8 = 0
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Example: Turbulence

Fluid mechanics: laminar (Euler equations) - turbulent flow
(Navier-Stokes equation)
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Example: Turbulence

Reynolds Number represents balance between friction and
non-friction
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Example: Turbulence - Mathematical Model

Flow mathematically modelled by the Navier-Stokes equation:
∂u
∂t︸︷︷︸

acceleration

+ u∂u
∂x︸ ︷︷ ︸

convection

+ v ∂u
∂y + w ∂u

∂z︸ ︷︷ ︸+ ∂p
∂x︸︷︷︸

pressuregradient

=

1
Re

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
︸ ︷︷ ︸

friction

Incompressible flow, also continuity equation:
∂u
∂x + ∂v

∂y + ∂w
∂z = 0

• Re = ŪL/ν is the Reynolds number
• System of non-linear PDEs. No analytical solution exists (only

for simple geometries/BCs).
• Solve using DNS (Direct Numerical Simulation)
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Example: Turbulence - Reynolds Number

Re = ŪL/ν is the Reynolds number

• Spoon stirring in a cup coffee (Re ∼ 104)
• Airflow around a car (Re ∼ 3× 106)
• Water flow in a river (Re ∼ 107)
• Air flow around an aircraft (Re ∼ 3× 108)
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Example: Turbulence - DNS

How many computing operations to simulate a channel flow with
Re = 105?

Have number of grid points in all ’Eddies’
Smallest length-scale: η ≈ L/1000, i.e. 1000 gridpoints in every
coordinate direction.
In 3D this gives 109 number of unknowns (nou).

Computer storage > 10× nou = 1010

Computing operations ∼ 500× nou per timestep = 5× 1011

Number of timesteps ∼ 104

Total number of operations: 5× 1015
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Example: Turbulence
Leonardo vs. DNS (Re = 22000)
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