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Recap Last Week

Model problem

¢ Uniqueness

Real-world Applications
Setting up the Numerical Model (Ch. 3)
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Sources of Errors

Setting up a Model (mimick reality
using ODEs/PDEs)

® Modelling error

® Error in data

STEP 2
Numerical treatment (discretization,
translating continous model to discrete
version and design algorithms)

® Discretization
error

® Truncation error

® Round-off error

i 1 P
data structures, distributed/parallel
computing)

® Programming
errors
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Sources of Errors - Discretization

Discretization error

fix)

Only n values are obtained: gives an approximate solution curve.
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§ 3.4: Model Problem (MP) - 2D Poisson
® Continuous Poisson operator: —Au := —gi” — %‘j =f
with u(x,y), f(x,y) € R

e Continuous Domain

y
r=900
1.0
Q
0.0 0 x

® Boundary conditions:
® Dirichlet: u(x,y) = b(x,y)
°* Neumann: 2% = ¢(x,y)
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§ 3.4: Continuous 1D Poisson MP
Given the domain Q = (0, 1) with boundary I' = 9Q and outward

normal n, solve for u(x)

d?u(x)
dx?

= f(x) on Q

with either Dirichlet BCs

or Neumann BCs

du(x)
on

Continuous eigenfunction and eigenvalues with homog. Dirichlet

=Vu(x)-n=c(x)onT

ul(x) = sin(kmx), Ak = k?n? for k € N, k # 0
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§ 3.5: Grid Construction
® 1D Discrete Grid G

x,-:(i—l)h,izl,...,N+1whereh:%stxlzo,xNH:l

0.]_)0 X 1.0
123 i N1N N
® 2D Discrete Grid G
jo= (- Dhy = Dhij=1,2,...N+1
(X17y1) = (an)’ (XlayN-l-l) = (07 1)' etc.
y y
r=8Q W
1.0 h
] | 3
2 (x2,y2) 1(x3y2)
1 Jedyt) (x3.y1)
0.0 1.0 x 004 5 3 ot 0 X
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§ 3.5: Finite Differences (FD)

How can we represent continuous differential operators on a discrete
grid? Finite Differences!
® Numerical approximation using FD only defined in the grid points
* Grid functions for all (x;, y;) € Gp:
U(X’Y) ~ U(Xivyj) ~ uﬁjv f(X7y) ~ f(Xi’YJ') ~ f;Z
b(xi,y;) = bﬁj, c(xi,y;) = c,-’jj

y
"'-111&,‘-\-'4_1“ Wy N+
1.0
SN
“]
ull uly U1
= L
0.0 Tu1a Tuzg Wi 1.0 i

8/21



§ 3.5: Finite Differences (FD)

We now several finite difference formulas
Forward difference:

du Uit1j — Ujj

el Y Al Y} h

aX iJj AX + O( )
Backward difference:

ou Ujj— Uji—1j

200 =2y Himly h

Central differences:

Oou Uiplj — Ui—1j 5

220 Dy el h
d2u Uit1,j — 2u,-J + U1 5
o = - +0[(#)]
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https://textbooks.open.tudelft.nl/textbooks/catalog/book/57

§ 3.5: Finite Differences (FD)

. . 2
Similar formulas for g—; and g—y‘é
Forward difference:

oul Uijy1 — Ui
Backward difference:
Qul ujj— ujj-1
Central differences:
Qu| Uijp1 — Ujj-1
@ L Uij+1 — 2uij+ ujj1
2 2
dy?|,, (h)
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§ 3.5: Finite Differences (FD)




§ 3.5: Stencil Notation

On a subset of notes, Transformed MP:

7Uh h

ij—1" Y1

a4yh —
4“/./ u

h

i1,

is represented by a 5-point stencil for each internal (x;, y;) € Gp:

ul
i1,

fio
®

h2

o
Wi j+1

h
ul}

n
Uit,j

with stencil for the LHS

with stencil for the RHS

1
h

0

h
Ll/'-- -
1L :f,-Z-for2§/,J§N

-1

0 0O

0
0

1
0

0
0

0
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§ 3.5: Boundary Conditions

v ¥y
=00 1.0 Nt

1.0 n

j+2 ":I
Q

+1
]

0.0 10 x 000 e N1 x

1.0

® Set of boundary points in x-direction
h h
° y=0: {ull,u2 11+ '“N+1,1}
h h
¢ y=1: “1 N+1> U2 Nt1o - - UN+1,N+1}
® Set of boundary points in y-direction
—_o-{,p b h
®* x=0: {U1,17 TPV U1,N+1}
_1.{,n h h
¢ x=1: {”N+1,17 UNy125 - “N+1,N+1}
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§ 3.5: Boundary Conditions
No elimination: each boundary node becomes an equation for which
the RHS f,Z is replaced by b;”j

=
o O O
o = O
o O O

With elimination: the known boundary values are directly substituted
and b,b_lJ is added to the RHS

0 -1 0
.")'71 J th u?+1,y= # O 4 - 1
0 -1 0
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§ 3.6: Linear System Formulation

No elimination
® x—line lexicographic ordening of internal and boundary nodes
node (i,/) is assigned global index I =i+ (j — 1)(N + 1) for
1<i,j<N+1

i=6 1=36

(i,4) = (4,5)

(i,5) 5 (3,2)

=

i=1 i=6 i=1 i=6

Figure 3.3: grid ordering using (i, j) Figure 3.4: x-lexicographic using I
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§ 3.6: Linear System Formulation

No elimination
¢ Group known and unknown grid values f,’:, and u,f’d- into column
vectors u” and f" of size (N + 1)2

Given the domain Q = (0, 1) with boundary ' = 9, discretize
P

0x2  0y?

u(x,y) = b(x,y) on T

=fonQ

using second-order FD and write it in the form A"u" = £/ using no
elimination.
Take N = 2 and symmetrize A"
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§ 3.6: Linear System Formulation




§ 3.6: Linear System Formulation

We get system of equations (red: internal node):

h2

O O O oo

0
h2

0

0
—1

o O O O

0
0

0
0

0
0
0
0

0

T, 0 0 0 oo
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§ 3.6: Linear System Formulation

We get system of equations (red: internal node):

R 0 0 0 0 0 0 0 07 un i bi1 1
0 R 0 0 0 0 0 0 0 |un b1
0 0 " 0 0 0 0 0 0 |un b1
0 0 0 R 0O 0 0 0 Of|uo b1o
0 0 0 0 4 0 0 0 0 |ux|=|fo+ zthbhtbs
0 0 0 0 0 H 0 0 O |us bos
0 0 0 0 0 0 A 0 0 |ugs b3
0 0 0 00 0 0 h 0] |uws bo3
(0 0 0 00 0O 0 0 A |usz] | b33 |
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Sources of Errors

Setting up a Model (mimick reality
using ODEs/PDEs)

® Modelling error

® Error in data

STEP 2
Numerical treatment (discretization,
translating continous model to discrete
version and design algorithms)

® Discretization
error

® Truncation error

® Round-off error

i 1 P
data structures, distributed/parallel
computing)

® Programming
errors
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Summary and Next Week

@ Transform continuous model to discrete numerical model
® Transform domain Q into discrete domain/grid Gy, with grid
points, i.e. from (x,y) to (x;, ;)
® Discretize solution function u(x, y) to u(x;, y;) on the grid points

® Discretize derivatives of the PDE at grid points using Finite
Differences

Rewrite system of equations into matrix-vector format
® Analyze matrix properties (this dictates which numerical
algorithm to use (next week))
® Symmetry
Eigenvalues
Positive Definiteness
Conditioning (remember round-off error example last week!)
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