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Recap Last Week

• Model problem
• Uniqueness
• Real-world Applications
• Setting up the Numerical Model (Ch. 3)
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Sources of Errors

• Modelling error
• Error in data

• Discretization
error
• Truncation error
• Round-off error

• Programming
errors
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Sources of Errors - Discretization

Discretization error

Only n values are obtained: gives an approximate solution curve.

4 / 21



§ 3.4: Model Problem (MP) - 2D Poisson
• Continuous Poisson operator: −4u := −∂2u

∂x2 − ∂2u
∂y2 = f

with u(x , y), f (x , y) ∈ R
• Continuous Domain

• Boundary conditions:
• Dirichlet: u(x , y) = b(x , y)
• Neumann: ∂u

∂n = c(x , y)
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§ 3.4: Continuous 1D Poisson MP
Given the domain Ω = (0, 1) with boundary Γ = ∂Ω and outward
normal n, solve for u(x)

−d2u(x)
dx2 = f (x) on Ω

with either Dirichlet BCs

u(x) = b(x) on Γ

or Neumann BCs

∂u(x)
∂n = ∇u(x) · n = c(x) on Γ

Continuous eigenfunction and eigenvalues with homog. Dirichlet

u[k](x) = sin(kπx), λk = k2π2 for k ∈ N, k 6= 0
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§ 3.5: Grid Construction
• 1D Discrete Grid Gh

xi = (i − 1)h, i = 1, . . . ,N + 1 where h = 1
N st x1 = 0, xN+1 = 1

• 2D Discrete Grid Gh
xi = (i − 1)h, yj = (j − 1)h, i , j = 1, 2, . . .N + 1
(x1, y1) = (0, 0), (x1, yN+1) = (0, 1), etc.
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§ 3.5: Finite Differences (FD)
How can we represent continuous differential operators on a discrete
grid? Finite Differences!
• Numerical approximation using FD only defined in the grid points
• Grid functions for all (xi , yj) ∈ Gh:

u(x , y) ≈ u(xi , yj) ≈ uh
i,j , f (x , y) ≈ f (xi , yj) ≈ f h

i,j
b(xi , yj) ≈ bh

i,j , c(xi , yj) ≈ ch
i,j
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§ 3.5: Finite Differences (FD)
We now (recall) several finite difference formulas
Forward difference:

∂u
∂x

∣∣∣∣
i ,j

= ui+1,j − ui ,j
∆x + O(h)

Backward difference:

∂u
∂x

∣∣∣∣
i ,j

= ui ,j − ui−1,j
h + O(h)

Central differences:

∂u
∂x

∣∣∣∣
i ,j

= ui+1,j − ui−1,j
2h + O

[
(h2)

]
∂2u
∂x2

∣∣∣∣∣
i ,j

= ui+1,j − 2ui ,j + ui−1,j
h2 + O

[
(h2)

]
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§ 3.5: Finite Differences (FD)

Similar formulas for ∂u
∂y and ∂2u

∂y2

Forward difference:
∂u
∂y

∣∣∣∣
i ,j
' ui ,j+1 − ui ,j

h

Backward difference:

∂u
∂y

∣∣∣∣
i ,j
' ui ,j − ui ,j−1

h

Central differences:

∂u
∂y

∣∣∣∣
i ,j
' ui ,j+1 − ui ,j−1

2h
∂2u
∂y2

∣∣∣∣∣
i ,j
' ui ,j+1 − 2ui ,j + ui ,j−1

(h)2
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§ 3.5: Finite Differences (FD)

Transformed MP: 2D Poisson (internal nodes)
Grid:
Gh = {(xi , yj) | xi = (i − 1)h, yj = (j − 1)h; 1 ≤ i , j ≤ N + 1},

Continuous MP:
−∂2u

∂x2 − ∂2u
∂y2 = f

Discretization x-direction:
∂2u
∂x2 (xi , yj) = uh

i−1,j −2uh
i,j +uh

i+1,j
h2 +O

(
h2) for 2 ≤ i , j ≤ N, (xi , yj) ∈ Gh

Discretization y-direction:
∂2u
∂y2 (xi , yj) = uh

i,j−1−2uh
i,j +uh

i,j+1
h2 +O

(
h2) for 2 ≤ i , j ≤ N, (xi , yj) ∈ Gh

Transformed MP:
−uh

i,j−1−uh
i−1,j +4uh

i,j −uh
i+1,j −uh

i,j+1
h2 = f h

i ,j for 2 ≤ i , j ≤ N
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§ 3.5: Stencil Notation
On a subset of notes, Transformed MP:
−uh

i,j−1−uh
i−1,j +4uh

i,j −uh
i+1,j −uh

i,j+1
h2 = f h

i ,j for 2 ≤ i , j ≤ N

is represented by a 5-point stencil for each internal (xi , yj) ∈ Gh:

with stencil for the LHS

1
h2

 0 −1 0
−1 4 −1
0 −1 0



with stencil for the RHS

1
h2

 0 0 0
0 1 0
0 0 0
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§ 3.5: Boundary Conditions

• Set of boundary points in x-direction
• y = 0 :

{
uh

1,1, uh
2,1, . . . uh

N+1,1

}
• y = 1 :

{
uh

1,N+1, uh
2,N+1, . . . uh

N+1,N+1

}
• Set of boundary points in y-direction

• x = 0 :
{

uh
1,1, uh

1,2, . . . uh
1,N+1

}
• x = 1 :

{
uh

N+1,1, uh
N+1,2, . . . uh

N+1,N+1

}
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§ 3.5: Boundary Conditions
No elimination: each boundary node becomes an equation for which
the RHS f h

i ,j is replaced by bh
i ,j

 0 0 0
0 1 0
0 0 0



With elimination: the known boundary values are directly substituted
and bh

i−1,j is added to the RHS

1
h2

 0 −1 0
0 4 −1
0 −1 0
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§ 3.6: Linear System Formulation

No elimination
• x−line lexicographic ordening of internal and boundary nodes

node (i , j) is assigned global index I = i + (j − 1)(N + 1) for
1 ≤ i , j ≤ N + 1
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§ 3.6: Linear System Formulation
No elimination
• Group known and unknown grid values f h

i ,j and uh
i ,j into column

vectors uh and fh of size (N + 1)2

Example: 2D Poisson + Dirichlet BCs
Given the domain Ω = (0, 1) with boundary Γ = ∂Ω, discretize

− ∂2u
∂x2 −

∂2u
∂y2 = f on Ω

u(x , y) = b(x , y) on Γ

using second-order FD and write it in the form Ahuh = f h using no
elimination.
Take N = 2 and symmetrize Ah.
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§ 3.6: Linear System Formulation

Example: 2D Poisson + Dirichlet BCs
We get system of equations (red: internal node):

u11 = b11

u21 = b21

u31 = b31

u12 = b12
−u12 − u21 − 4u22 − u23 − u32

h2 = f22

u23 = b23

u13 = b13

u23 = b23

u33 = b33
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§ 3.6: Linear System Formulation

Example: 2D Poisson + Dirichlet BCs
We get system of equations (red: internal node):

h2 0 0 0 0 0 0 0 0
0 h2 0 0 0 0 0 0 0
0 0 h2 0 0 0 0 0 0
0 0 0 h2 0 0 0 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 0 0 0 h2 0 0 0
0 0 0 0 0 0 h2 0 0
0 0 0 0 0 0 0 h2 0
0 0 0 0 0 0 0 0 h2


︸ ︷︷ ︸

Ah



u11
u21
u31
u12
u22
u23
u13
u23
u33


︸ ︷︷ ︸

uh

=



b11
b21
b31
b12
f22
b23
b13
b23
b33


︸ ︷︷ ︸

f h
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§ 3.6: Linear System Formulation

Example: 2D Poisson + Dirichlet BCs
We get system of equations (red: internal node):

h2 0 0 0 0 0 0 0 0
0 h2 0 0 0 0 0 0 0
0 0 h2 0 0 0 0 0 0
0 0 0 h2 0 0 0 0 0
0 0 0 0 4 0 0 0 0
0 0 0 0 0 h2 0 0 0
0 0 0 0 0 0 h2 0 0
0 0 0 0 0 0 0 h2 0
0 0 0 0 0 0 0 0 h2


︸ ︷︷ ︸

Ah



u11
u21
u31
u12
u22
u23
u13
u23
u33


︸ ︷︷ ︸

uh

=



b11
b21
b31
b12

f22 + b21+b12+b23+b32
h2

b23
b13
b23
b33


︸ ︷︷ ︸

f h
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Sources of Errors

• Modelling error
• Error in data

• Discretization
error
• Truncation error
• Round-off error

• Programming
errors

20 / 21



Summary and Next Week

1 Transform continuous model to discrete numerical model
• Transform domain Ω into discrete domain/grid Gh with grid

points, i.e. from (x , y) to (xi , yj)
• Discretize solution function u(x , y) to u(xi , yj) on the grid points
• Discretize derivatives of the PDE at grid points using Finite

Differences
• Rewrite system of equations into matrix-vector format

2 Analyze matrix properties (this dictates which numerical
algorithm to use (next week))
• Symmetry
• Eigenvalues
• Positive Definiteness
• Conditioning (remember round-off error example last week!)
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