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Today

• Chapter 5:
• Jacobi method
• Gauss-Seidel (GS) method
• Convergence
• Block Jacobi/GS method
• damped Jacobi/SOR
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Recap: Basic Iterative Methods
Notation: uk is the k-th iteration.
• Error: ek = u − uk

• Residual: rk = f − Auk

• Residual equation: Aek = Au − Auk = f − Auk = rk

Splitting method: A = M − N.
Au = f ⇒ Muk+1 = f + Nuk

uk+1 = M−1f + M−1Nuk

Substituting N = M − A we get:

uk+1 = M−1f + M−1(M − A)uk

= uk + M−1(f − Auk)
= uk + M−1(rk)
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Recap: Convergence

Does this iterative scheme converge? I.e. uk+1 → u as k goes to
infinity?

uk+1 = uk + M−1
(
f − Auk

)
u − uk+1 = u − uk −M−1

(
Au − Auk

)
ek+1 = ek −M−1Aek ⇒ ek+1 =

(
I −M−1A

)
ek

We define the iteration matrix B = I −M−1A such that:

ek+1 = Bke0

For convergence: limk→∞
∥∥∥Bk

∥∥∥
2

= 0, which using theorem 2.7.2 is
equivalent to:

lim
k→∞

∥∥∥Bk
∥∥∥

2
= 0⇔ ρ(B) < 1
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§ 5.3: Prototypes
Different notation:

A = D − E − F ∈ Rn×n

where D,−E and −F denote the diagonal, the strictly lower and the
strictly upper triangular part of A.

Using this, we can write:
Ê = D−1E and F̂ = D−1F .
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§ 5.3.1: Jacobi

Example with 1D Poisson (BC eliminated)
A ∈ R3×3 with

A = 1
h2

 2 −1 0
−1 2 −1
0 −1 2

 , f =

1
1
1

 , u =

u1
u2
u3


such that Au = f

This is equivalent to:

2u1 − u2 = 1
−u1 + 2u2 − u3 = 1

−u2 + 2u3 = 1

But also to:

2u1 = 1 + u2

2u2 = 1 + u1 + u3

2u3 = 1 + u2

In an iterative scheme we can update using previous information!
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§ 5.3.1: Jacobi

Jacobi method is taking M = diag(A) = D

Using iteration k:

2u1
k+1 = 1 + u2

k

2u2
k+1 = 1 + u1

k + u3
k

2u3
k+1 = 1 + u2

k
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§ 5.3.1: Jacobi

= 1
h2

 2 −1 0
−1 2 −1
0 −1 2



Or equivalently: M = D and N = E + F , in Muk+1 = f + Nuk

M = 1
h2

 2 0 0
0 2 0
0 0 2

 ,N = 1
h2

 0 1 0
1 0 1
0 1 0
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§ 5.3.1: Gauss-Seidel

Example with 1D Poisson (BC eliminated)
A ∈ R3×3 with

A = 1
h2

 2 −1 0
−1 2 −1
0 −1 2

 , f =

1
1
1

 , u =

u1
u2
u3


such that Au = f

Jacobi:

2u1
k+1 = 1 + u2

k

2u2
k+1 = 1 + u1

k + u3
k

2u3
k+1 = 1 + u2

k

Gauss-Seidel:

2u1
k+1 = 1 + u2

k

−u1
k+1 + 2u2

k+1 = 1 + u3
k

−u2
k+1 + 2u3

k+1 = 1
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§ 5.3.1: Jacobi and GS

Jacobi:

uk+1 = D−1
[
(E + F )uk + f

]
Component wise update:

uk+1
i =

fi −
n∑

j=1,j 6=i
aijuk

j

 /aii

GS:

uk+1 = Êuk+1 + F̂ uk + D−1f

Component wise update:

uk+1
i =

fi −
i−1∑
j=1

aijuk+1
j −

n∑
j=i+1

aijuk
j

 /aii

13 / 25



§ 5.3.1: Faster Convergence (Block methods)

Recall: x-line lexicographic ordering (2D)

Update in blocks or ’aggregates’ of u to accelerate convergence!
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§ 5.3.1: Faster Convergence (Block methods)

Û1 =

u1
u2
u3



Û2 =

u4
u5
u6

 Û3 =

u7
u8
u9
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§ 5.3.1: Faster Convergence (Block methods)
Then Au = f can be written as: A11 A12 A13

A21 A22 A23
A31 A32 A33


Û1

Û2
Û3

 =

F̂1
F̂2
F̂3

.

For the 2D poisson problem with elim. (lecture 3, slide 7), we get:

A11 = A22 = A33 = 1
h2

 4 −1 0
−1 4 −1
0 −1 4


A12 = A21 = A23 = A32 = 1

h2

 −1 0 0
0 −1 0
0 0 −1


,

A13 = A31 =

 0 0 0
0 0 0
0 0 0
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Û2
Û3
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§ 5.3.1: Faster Convergence (Block-Jacobi)

Block-Jacobi: M = [A11,A22,A33] (block-diagonal of A).

At iteration k:

A11Ûk+1
1 = F̂1 − A12Ûk

2

A22Ûk+1
2 = F̂2 − A21Ûk

1 − A23Ûk
3

A33Ûk+1
3 = F̂3 − A32Ûk

2

Block wise update:

Ûk+1
i = A−1

i ,i

Fi −
q∑

j=1,j 6=i
Ai ,j Ûk

j

 ∀i = 1, . . . , q
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1 − A23Ûk
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§ 5.3.1: Error Propagation

For the iteration matrices BJAC = I −MJAC
−1A and

BGS = I −MGS
−1A, we get1

BJAC = I − D−1(D − E − F )
= I − I + D−1E + D−1F
= Ê + F̂ ,

BGS = I − (D − E )−1(D − E − F )
= I − I + (D − E )−1F
= (D − E )−1DD−1F
= (I − E )−1F̂

1Note: A = D − E − F
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§ 5.4.1: Convergence (General)

Theorem 5.4.1
ρ(B) = ρ

(
I −M−1A

)
< 1⇔

{
uk
}∞

k=1
converges.

Recall: iteration matrix B = I −M−1A defines error propagation:

ek+1 = Bke0

For convergence: limk→∞
∥∥∥Bk

∥∥∥
2

= 0, which using theorem 2.7.2 is
equivalent to:

lim
k→∞

∥∥∥Bk
∥∥∥

2
= 0⇔ ρ(B) < 1
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§ 5.4.4: Convergence (Jacobi)
Diagonal Dominance

Theorem 5.4.2
Theorem 5.4.2 Assume A ∈ Rn×n to be strongly row diagonally
dominant. Then the Jacobi and GaussSeidel method applied to A
converge, i.e.,

n∑
j=1,j 6=i

|aij | < |aii | ∀i = 1, . . . , n⇒ ‖BGS‖∞ ≤ ‖BJAC‖∞ < 1

‖BJAC‖∞ = ‖Ê + F̂‖∞ = max1≤i≤n
∑n

j=1,j 6=i
|aij |
|aii | < 1 [row sum

criterion]
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§ 5.4.4: Convergence (GS)

Lemma 5.3.1 (Elementwise bound on the Gauss-Seidel)
Assume A ∈ Rn×n and assume BGS to be the Gauss-Seidel iteration
matrix defined by (5.19). Then

|BGS | ≤ (I − |Ê |)−1|F̂ |
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§ 5.3.2: Richardson and damped Jacobi

• Richardson: MRICH = I or M = τ I
• Damped Jacobi: MJAC(ω) = 1

ω D

One can show equivalence of the methods with τ = ω−1 applied to
D−1Au = D−1f

22 / 25



§ 5.3.3: Successive overrelaxation (SOR)

• SOR: MSOR = 1
ω D − E

Note that this is GS with damping!
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Summary (Part I of this course)

• Lecture 1-3 (step 1,2): elliptic problems, from PDE to Au = f
(discretization) and properties of the continuous/discrete problem

• Lecture 4 (step 6): metrics to perform validation steps (rounding
errors, floating points, conditioning)
• Lecture 5-7 (step 2): design of algorithms to solve Au = f

• Direct solvers (LU decomposition)
• Basic iterative solvers (Jacobi, GS, Richardson)
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Part II of this course

• Multigrid
• Krylov methods
• Power methods

MSc. projects in our group (graduation)

• Machine learning, computational finance, discretization methods
and iterative solvers.
• Projects with me: computational and sustainable finance, plasma

fusion simulation, electromagnetics simulation

25 / 25
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