Hardware-Oriented Numerics for PDEs Solving Compressible Flow Problems by Isogeometric Analysis

Matthias Möller (m.moller@tudelft.nl)

Delft Institute of Applied Mathematics, Delft University of Technology, Netherlands

Talk in Scientific Computing Seminar at TU Kaiserslautern, November 10, 2016

Acknowledgements

Core team

J. Hinz, A. Jaeschke (Lodz), F. Khatami, R. van Nieuwpoort, D. Pouw

Collaborators

N. Gauger & M. Sagebaum (CoDiPack), B. Jüttler & A. Mantzaflaris (G+Smo), C. Sand (Armadillo), K. Iglberger (Blaze), P. Gottschling (MTL4), D. Demidov (VexCL), K. Rupp (ViennaCL), C. Strydis (EMC Rotterdam), G. Gaydadjiev (Maxeler) and many others

Financial support by EC

Overview

1 From Numerical Analysis to Hardware-Oriented Numerics

2 Computational Building Blocks: Smart Fast Expression Templates

3 Application: Compressible flow solver

4 Isogeometric Analysis

5 Applications: Flow Problems, Meshing, and Optimization

Given a problem $p \in \mathcal{P}$:

- **1** Find a *method* $m \in \mathcal{M}$ that solves problem p
- 2 Find an *algorithm* $a \in A$ that realizes method m

Qol: errors, rate of convergence, FLOP, stability, monotonicity,

Given a problem $p \in \mathcal{P}$:

1 Find a *method* $m \in \mathcal{M}$ that solves problem p

2 Find an *algorithm* $a \in A$ that realizes method m

Qol: errors, rate of convergence, FLOP, stability, monotonicity, ...

Given a *hardware* $h \in \mathcal{H}$:

3 Find an *implementation* $i \in \mathcal{I}$ that realizes algorithm *a*

Qol: FLOPS, memory bandwidth, parallel speed-up,

Given a problem $p \in \mathcal{P}$: $-\Delta u = f + bc's$

• Find a method $m \in M$ that solves problem p continuous Galerkin P_1 -FEM

② Find an algorithm a ∈ A that realizes method m matrix-free CG solver with element-wise Gaussian quadrature

Qol: errors, rate of convergence, FLOP, stability, monotonicity, ...

Given a *hardware* $h \in \mathcal{H}$:

S Find an *implementation i* ∈ I that realizes algorithm a OpenMP parallelized SHMEM C++ code using Eigen library

Qol: FLOPS, memory bandwidth, parallel speed-up, ...

Given a problem $p \in \mathcal{P}$:

● Find a method $m \in M$ that solves problem p continuous Galerkin P_1 -FEM

② Find an algorithm a ∈ A that realizes method m matrix-free CG solver with element-wise Gaussian quadrature

Given a *hardware* $h \in \mathcal{H}$:

3 Find an *implementation* i ∈ I that realizes algorithm a OpenMP parallelized SHMEM C++ code using Eigen library

THE metric that matters: time to solution for prescribed accuracy

State of the art

Given a problem $p \in \mathcal{P}$ and a target hardware $h \in \mathcal{H}$:

1 Find an *optimal combination* $(m, a, i)_{p,h} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solves problem p on hardware h in shortest time with prescribed accuracy

State of the art

Given a problem $p \in \mathcal{P}$ and a set of target hardware $\{h_1, h_2, \dots\} \subset \mathcal{H}$:

1 Find optimal combinations $(m, a, i)_{p,h_k} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solve problem p on hardware h_k in shortest time with prescribed accuracy

State of the art

Given a problem $p \in \mathcal{P}$ and a set of target hardware $\{h_1, h_2, \dots\} \subset \mathcal{H}$:

1 Find optimal combinations $(m, a, i)_{p,h_k} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solve problem p on hardware h_k in shortest time with prescribed accuracy

Next step

2 Develop a strategy that automatically inspects the available hardware and chooses the optimal combinations (m, a, i)_{p,hk}

State of the art

Given a problem $p \in \mathcal{P}$ and a set of target hardware $\{h_1, h_2, \dots\} \subset \mathcal{H}$:

1 Find optimal combinations $(m, a, i)_{p,h_k} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solve problem p on hardware h_k in shortest time with prescribed accuracy

Next step

2 Develop a strategy that automatically inspects the available hardware and chooses the optimal combinations (m, a, i)_{p,hk}

Future vision

3 Automatically determine and schedule optimal combinations (m, a, i)_{pj,hk} ∈ M × A × I for multi-physics problems {p₁, p₂,...} ⊂ P and target hardware {h₁, h₂,...} ⊂ H

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs

many-core MICs and GPUs

FPGAs

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs

many-core MICs and GPUs

FPGAs

There are good reasons (performance-per-watt, low-latency) to believe that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs

many-core MICs and GPUs

FPGAs

There are good reasons (performance-per-watt, low-latency) to believe that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators Stand-alone Xeon Phi

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs

many-core MICs and GPUs

FPGAs

There are good reasons (performance-per-watt, low-latency) to believe that the future of HPC lies in heterogeneous and hybrid technologies:

 $\mathsf{CPUs} + \mathsf{accelerators}$

Stand-alone Xeon Phi

Broadwell + Arria 10 GX MCP

Hybrid CPU/FPGA

HPC hardware and beyond

Quantum Computing

Strong effort in the Netherlands to establish quantum computers and algorithms as key technology in future scientific computing

Application in PDE-constrained optimization

- \exists QA to estimate $x^{\top}Mx$ s.t. Ax = b in poly $(\log N, \log(1/\epsilon))$
- best classical algorithm requires $\mathcal{O}(N\sqrt{\kappa})$

CPUs + accelerators Stand-alone Xeon Phi Hybrid CPU/FPGA

Question 1

Can we come up with a **unified programming approach** to exploit the performance of the different hardware architectures automatically with minimal effort for code development and maintenance?

• Highly optimized dense and sparse linear algebra libraries

$$y \leftarrow \alpha * x + y, \quad y \leftarrow A^{-1} * x$$

BLAS/LAPACK implementation of $y \leftarrow A^{-1}(x - y)$

Here: 3 function calls, 5× fetching data, 3× storing data.Ideal: no call (inlining!), 3× fetching data, 1× storing data.And it's the memory transfer that is the bottleneck!

• Highly optimized dense and sparse linear algebra libraries

$$y \leftarrow \alpha * x + y, \quad y \leftarrow A^{-1} * x$$

• Expression template libraries (ETLs)

$$y \leftarrow A * ((m. * m)./(\rho) + p)$$

Note: against common belief, the use of ETLs does not automagically lead to high-performance C++ code

• Highly optimized dense and sparse linear algebra libraries

$$y \leftarrow \alpha * x + y, \quad y \leftarrow A^{-1} * x$$

• Expression template libraries (ETLs)

$$y \leftarrow A \ast ((m. \ast m)./(\rho) + p)$$

• *Smart and fast expression template libraries* which combine classical ETL concepts with vector intrinsics, node-level parallelization, cache-size/architecture optimized compute kernels

• Highly optimized dense and sparse linear algebra libraries

$$y \leftarrow \alpha * x + y, \quad y \leftarrow A^{-1} * x$$

• Expression template libraries (ETLs)

$$y \leftarrow A \ast ((m. \ast m)./(\rho) + p)$$

- *Smart and fast expression template libraries* which combine classical ETL concepts with vector intrinsics, node-level parallelization, cache-size/architecture optimized compute kernels
- Just-in-time compilation ('reconfigurable computing')

SFET concept

Code that you write¹

vex::vector < float > x, y, z; z = x * y;

OpenCL compute kernel generated by VexCL

¹https://github.com/ddemidov/vexcl

SFET concept

Code that you write¹

vex::vector < float > x, y, z; z = x * y;

CUDA compute kernel generated by VexCL

¹https://github.com/ddemidov/vexcl

SFET concept

Code that you write¹

vex::vector < float > x, y, z; z = x * y;


```
class vexcl_kernel extends Kernel {
  public vexcl_kernel (...) {
    DFEVar x = io.input("x", dfeFloat(8, 24));
    DFEVar y = io.input("y", dfeFloat(8, 24));
    DFEVar result = x * y;
    io.output("z", result, dfeFloat(8, 24)); }}
```

¹https://github.com/ddemidov/vexcl

Divergence form

Quasi-linear form

$$\partial_t U + \nabla \cdot \mathbf{F}(U) = 0$$
 $\partial_t U + \mathbf{A}(U) \cdot \nabla U = 0$

Conservative^a variables, inviscid fluxes, flux-Jacobian matrices

$$U = \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \end{bmatrix}, \qquad \mathbf{F} = \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + \mathcal{I} p \\ \mathbf{v} (\rho E + p) \end{bmatrix}, \qquad \mathbf{A} = \frac{\partial \mathbf{F}}{\partial U}$$

Equation of state (here for an ideal gas)

$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho \| \mathbf{v} \|^2 \right), \quad \gamma = C_{\rho} / C_{v}$$

^aSimilar formulations exist for primitive and entropy variables

Divergence form

Quasi-linear form

$$\partial_t U + \nabla \cdot \mathbf{F}(U) = 0$$
 $\partial_t U + \mathbf{A}(U) \cdot \nabla U = 0$

Conservative^a variables, inviscid fluxes, flux-Jacobian matrices

$$U = \begin{bmatrix} u_1 \\ \vdots \\ u_{d+2} \end{bmatrix}, \qquad \mathbf{F} = \begin{bmatrix} f_1^1 & \cdots & f_1^d \\ \vdots & \ddots & \vdots \\ f_{d+2}^1 & \cdots & f_{d+2}^d \end{bmatrix}, \qquad \mathbf{A} = \frac{\partial \mathbf{F}}{\partial U}$$

Notation

$$\mathbf{f}_{k} = \begin{bmatrix} f_{k}^{1}, \dots, f_{k}^{d} \end{bmatrix}, \qquad \mathbf{f}^{k} = \begin{bmatrix} f_{1}^{k} \\ \vdots \\ f_{d+2}^{k} \end{bmatrix}$$

^aSimilar formulations exist for primitive and entropy variables

Fluid Dynamics Building Blocks²

²https://gitlab.com/mmoelle1/FDBB.git

FDBB at work

Implementation of $\|\mathbf{v}\|^2$

```
// EOS for ideal gas (gamma=1.4)
typedef fdbb::fdbbEOSidealGas<T> eos;
```

```
// Conservative variables in 3d
typedef fdbb::fdbbVariables<eos,3,
        fdbb::EnumVar::conservative> var;
```

```
// VexCL backend
vex::vector<T> u1,u2,u3,u4,u5,v;
```

```
// Generic implementation
v = var::v_mag2(u1,u2,u3,u4,u5);
```


FDBB μ -benchmark

- All tests were run under CentOS Linux 6.7, GCC 5.3.0, nvcc 7.5.17 with thread pinning (likwid-pin -c N:0-15 benchmark)
- CPU benchmarks
 - 2x Intel E5-2670 (16 cores), 2.60GHz, 20MB Cache, 64GB RAM
 - ETL's: Armadillo, Blaze, Blitz++, Eigen, IT++, uBLAS
- GPU benchmarks
 - 1x NVIDIA Tesla K20Xm, ECC off, 6GB (DriVer: 352.93)
 - ETL's: ArrayFire and VexCL with CUDA backend enabled

FDBB μ -benchmark

$$y \leftarrow (m_x \cdot * m_x + m_y \cdot * m_y + m_z \cdot * m_z)./(\rho \cdot * \rho)$$
 7 flop

Armadillo specific	
ArrayFire specific	-
Blaze specific	
fdbb Blitz I I aposifia	•
fdbb	•
Eigen specific fdbb	•
IT++ specific	
uBLAS specific	
fdbb	o
fdbb	

Double precision performance

Problem size [bytes]

FDBB μ -benchmark

$$y \leftarrow (m_x \cdot \ast m_x + m_y \cdot \ast m_y + m_z \cdot \ast m_z)./(\rho \cdot \ast \rho)$$
 7 flop

Armadillo specific	
fdbb ArravFire specific	
fdbb	٠
fdbb	
Blitz++ specific	
Eigen specific	
fdbb IT++ specific	•
fdbb	•
uBLAS specific	0
VexCL specific	
fdbb	

ŤUDelft

14 / 45

Question 2

Given we have a highly tuned SFET library (and FDBB), how can we design a **compressible flow solver** based on SpMV and at the same time flexible enough for practical applications?

Galerkin ansatz ("find solution U s.t. for all W")

$$\int_{\Omega} W \partial_t U - \nabla W \cdot \mathbf{F}(U) \, \mathrm{d}\Omega + \int_{\Gamma} W F^b(U, \cdot) \, \mathrm{d}s = 0$$

with boundary fluxes

$$F^{b} = \begin{cases} [0, pn_{1}, pn_{2}, pn_{3}, 0]^{\top} & \text{at solid walls} \\ \frac{1}{2}(F_{n}(U_{-}) + F_{n}(U_{+})) - \frac{1}{2}|A_{n}(\operatorname{Roe}(U_{-}, U_{+}))| & \text{otherwise} \end{cases}$$

³C.A.J. Fletcher, CMAME 37 (1983) 225–244.

Galerkin ansatz ("find solution U s.t. for all W")

$$\int_{\Omega} W \partial_t U - \nabla W \cdot \mathbf{F}(U) \, \mathrm{d}\Omega + \int_{\Gamma} W F^b(U, \cdot) \, \mathrm{d}s = 0$$

with boundary fluxes

$$F^{b} = \begin{cases} [0, pn_{1}, pn_{2}, pn_{3}, 0]^{\top} & \text{at solid walls} \\ \frac{1}{2}(F_{n}(U_{-}) + F_{n}(U_{+})) - \frac{1}{2}|A_{n}(\operatorname{Roe}(U_{-}, U_{+}))| & \text{otherwise} \end{cases}$$

Fletcher's group formulation³

$$U_h = \sum_A (\mathcal{I} \otimes \varphi_A(\mathbf{x})) U_A(t), \quad \mathbf{F}_h = \sum_A (\mathcal{I} \otimes \varphi_A(\mathbf{x})) \mathbf{F}_A(t), \quad \mathbf{F}_A = \mathbf{F}(U_A)$$

³C.A.J. Fletcher, CMAME 37 (1983) 225–244.

Semi-discretized problem

$$\begin{bmatrix} M & & \\ & \ddots & \\ & & M \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \vdots \\ \dot{u}_{d+2} \end{bmatrix} + \begin{bmatrix} \mathbf{C} & & \\ & \ddots & \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{f}_1^T \\ \vdots \\ \mathbf{f}_{d+2}^T \end{bmatrix} + \begin{bmatrix} \mathbf{S} & & \\ & \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{f}_1^{b^T} \\ \vdots \\ \mathbf{f}_{d+2}^{b^T} \end{bmatrix} = 0$$

Read the above as

$$\mathbf{C}\mathbf{f}_{k}^{\mathsf{T}} = \begin{bmatrix} C^{1}, \dots, C^{d} \end{bmatrix} \begin{bmatrix} f_{k}^{1} \\ \vdots \\ f_{k}^{d} \end{bmatrix} = \sum_{l=1}^{d} C^{k} f_{k}^{l} \quad \text{for } k = 1, \dots, d+2$$

and the same for $\mathbf{Sf}_k^{b^{\mathsf{T}}}$

Semi-discretized problem

$$\begin{bmatrix} M & & \\ & \ddots & \\ & & M \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \vdots \\ \dot{u}_{d+2} \end{bmatrix} + \begin{bmatrix} \mathbf{C} & & \\ & \ddots & \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{f}_1^\top \\ \vdots \\ \mathbf{f}_{d+2}^\top \end{bmatrix} + \begin{bmatrix} \mathbf{S} & & \\ & \ddots & \\ & \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{f}_1^{b^\top} \\ \vdots \\ \mathbf{f}_{d+2}^{b^\top} \end{bmatrix} = 0$$

Constant coefficient matrices

$$M = \left[\int_{\Omega} \varphi_{A} \varphi_{B} \, \mathrm{d}\Omega \right] \quad \mathbf{C} = \left[-\int_{\Omega} \nabla \varphi_{A} \varphi_{B} \, \mathrm{d}\Omega \right] \quad \mathbf{S} = \left[\int_{\Gamma} \varphi_{A} \varphi_{B} \mathbf{n} \, \mathrm{d}s \right]$$

Compressible Euler equations

$$\begin{bmatrix} M & & \\ & \ddots & \\ & & M \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \vdots \\ \dot{u}_{d+2} \end{bmatrix} + \begin{bmatrix} \mathbf{C} & & \\ & \ddots & \\ \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{f}_1^T \\ \vdots \\ \mathbf{f}_{d+2}^T \end{bmatrix} + \begin{bmatrix} \mathbf{S} & & \\ & \ddots & \\ & \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{f}_1^{b^T} \\ \vdots \\ \mathbf{f}_{d+2}^{b^T} \end{bmatrix} = 0$$

Constant coefficient matrices

$$\boldsymbol{M} = \begin{bmatrix} \int_{\Omega} \varphi_{A} \varphi_{B} \, \mathrm{d}\Omega \end{bmatrix} \quad \mathbf{C} = \begin{bmatrix} -\int_{\Omega} \nabla \varphi_{A} \varphi_{B} \, \mathrm{d}\Omega \end{bmatrix} \quad \mathbf{S} = \begin{bmatrix} \int_{\Gamma} \varphi_{A} \varphi_{B} \mathbf{n} \, \mathrm{d}s \end{bmatrix}$$

whereby

$$-\int_{\Omega} \nabla \varphi_{A} \varphi_{B} \, \mathrm{d}\Omega = \int_{\Omega} \varphi_{A} \nabla \varphi_{B} \, \mathrm{d}\Omega + \int_{\Gamma} \varphi_{A} \varphi_{B} \mathbf{n} \, \mathrm{d}s \quad \Rightarrow \quad \mathbf{C} + \mathbf{C}^{\mathsf{T}} = \mathbf{S}$$

Stabilization by algebraic flux correction

$$(\mathcal{I} \otimes m_A)\dot{U}_A + \sum_B \left(\mathbf{c}_{AB} \cdot \mathbf{F}_B + \mathbf{s}_{AB} \cdot \mathbf{F}_B^b\right) \\ + \sum_{B \in \mathcal{J}_A} D_{AB}(U_B - U_A) = \sum_{B \in \mathcal{J}_A} \alpha_{AB} \mathcal{F}_{AB}$$

- 1 Perform row-sum mass lumping to decouple the degrees of freedom
- 2 Add discrete artificial dissipation to prevent spurious oscillations
- 3 Decompose anti-diffusion into fluxes and apply a limited correction

Details:

• Kuzmin, M., Gurris, AFC II. Compressible Flow Problems. In: Flux-Corrected Transport, Springer, 2012

Stabilization by algebraic flux correction

$$(\mathcal{I} \otimes m_A)\dot{U}_A + \sum_B \left(\mathbf{c}_{AB} \cdot \mathbf{F}_B + \mathbf{s}_{AB} \cdot \mathbf{F}_B^b\right) + \sum_{B \in \mathcal{J}_A} D_{AB}(U_B - U_A) = \sum_{B \in \mathcal{J}_A} \alpha_{AB} \mathcal{F}_{AB}$$

Compute kernels

- block-VV and block-SpMV
- edge-loops over non-zero entries of sparsity graph

 $\mathcal{I}_{A} := \{B : \operatorname{supp} \varphi_{A} \cap \operatorname{supp} \varphi_{B} \neq \emptyset\}, \quad \mathcal{J}_{A} := \mathcal{I}_{A} \setminus \{A\}$

- symmetric operators D_{AB} and α_{AB}
- skew-symmetric fluxes $U_B U_A$ and \mathcal{F}_{AB}
- \Rightarrow can be expressed as block-SpMV

Illustration of Zalesak's flux limiter⁴

• Mass-lumped low-order predictor yields nodal bounds \tilde{u}_A^{\min}

• AFC-corrected solution is allowed to vary within the bounds

⁴S. Zalesak, JCP 1979, 31(3), 335–362

max

Double Mach reflection⁵

Test: Roe-linearization + FCT, structured mesh, Q_1 finite elements T = 0.2, Crank Nicolson time stepping ($\theta = 0.5$)

⁵P.R. Woodward, P. Colella, JCP 54, 115 (1984), 115–173.

Double Mach reflection

TUDelft

Double Mach reflection

TUDelft

Question 3

The presented approach is applicable to unstructured meshes and general FE spaces except for AFC which is limited to P_1 and Q_1 !

It there a way to extend AFC to higher-order approximations?

Polynomial spaces

Definition

The space of polynomials of degree p over the interval [a, b] is

$$\Pi^{p}([a,b]) \coloneqq \{q(x) \in \mathcal{C}^{\infty}([a,b]) : q(x) = \sum_{i=0}^{p} c_{i} x^{i}, c_{i} \in \mathbb{R}\}$$

Example: $\Pi^2([0,1])$

Canonical basis

$$\mathcal{B} = \{1, x, x^2\}$$

Polynomials

$$q(x) = c_0 + c_1 x + c_2 x^2$$

Spline space

Definition

Let $\mathcal{P} = \{a = x_1 < \cdots < x_{p+1} = b\}$ be a partition of the interval Ω_0 and $\mathcal{M} = \{1 \le m_i \le p+1\}$ a set of positive integers. The polynomial spline of degree p is defined as $s : \Omega_0 \mapsto \mathbb{R}$ if

$$s|_{[x_i,x_{i+1}]} \in \Pi^p([x_i,x_{i+1}]), \quad i=1,\ldots,k$$

$$\frac{d^j}{dx^j}s_{i-1}(x_i) = \frac{d^j}{dx^j}s_i(x_i), \qquad \begin{array}{l} i=2,\ldots,k,\\ j=0,\ldots,p-m_i \end{array}$$

Polynomial splines of degree p form the spline space $\mathcal{S}(\Omega_0, p, \mathcal{M}, \mathcal{P})$.

Knot vectors

Definition

A knot vector is a sequence of non-decreasing values $\xi_i \in [a, b] \subset \mathbb{R}$ in the parameter space $\Omega_0 = [a, b]$

$$\Xi = (\xi_1, \xi_2, \dots, \xi_{n+p+1})$$

where

- p is the polynomial order of the B-splines
- *n* is the number of B-spline functions
- ξ_i is the *i*-th knot with knot index *i*

Knots ξ_i can have multiplicity $1 \le m_i \le p + 1$. The knot vector is called open if the first and last knot have multiplicity p + 1.

Compact support

supp
$$N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, ..., n$$

- System matrices are sparse like in the standard FEM
- Support grows with the polynomial order so that system matrices have a slightly broader stencil due to the coupling of degrees of freedom over multiple element layers (good for HPC)

Compact support

supp
$$N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, ..., n$$

Strict positiveness

$$N_{i,p}(\xi) > 0$$
 for $\xi \in (\xi_i, \xi_{i+p+1}), i = 1, ..., n$

- Consistent mass matrix has no negative off-diagonal entries
- Lumped mass matrix is not singular (no zero diagonal entries)

Compact support supp $N_{i,p}(\xi) = [\xi_i, \xi_{i+p+1}), \quad i = 1, ..., n$

Strict positiveness

$$N_{i,p}(\xi) > 0$$
 for $\xi \in (\xi_i, \xi_{i+p+1})$, $i = 1, \dots, n$

Partition of unity

$$\sum_{i=1}^{n} N_{i,p}(\xi) = 1 \quad \text{for all } \xi \in [a,b]$$

Derivatives

Derivative is a B-spline of order p-1

$$\frac{d}{d\xi}N_{i,p}(\xi) = \frac{p}{\xi_{i+p} - \xi_i}N_{i,p-1}(\xi) - \frac{p}{\xi_{i+p+1} - \xi_{i+1}}N_{i+1,p-1}(\xi)$$

Expression for k^{th} derivative

$$\frac{d^k}{d^k\xi}N_{i,p}(\xi) = \frac{p!}{(p-k)!}\sum_{j=0}^k \alpha_{k,j}N_{i+j,p-k}(\xi)$$

with recursively defined coefficients $\alpha_{k,j}^{a}$

^aL. Piegl, W. Tiller. The NURBS book (1997).

Spline curves

Geometric mapping $\mathbf{G}: \Omega_0 \mapsto \Omega_h \simeq \Omega$

 $\mathbf{G}(\xi) = \sum_{i=1}^{n} N_{i,p}(\xi) \mathbf{B}_{i} \qquad \text{set of control points } \mathbf{B}_{i} \in \mathbb{R}^{d}, d \ge 1$

- C^{p-m_i} continuous curve (m_i is the multiplicity of knot ξ_i)
- Convex hull property
- Variation diminishing property
- Knot insertion (h-adaptivity), order elevation (p-adaptivity) preserve shape of geometry

Spline surfaces

Geometric mapping $\mathbf{G}: \Omega_0 \mapsto \Omega_h \simeq \Omega$

$$\mathbf{G}(\xi,\eta) = \sum_{i=1}^{n} \sum_{j=1}^{m} N_{i,p}(\xi) N_{j,q}(\eta) \mathbf{B}_{i,j} \qquad \mathbf{B}_{i,j} \in \mathbb{R}^{d}, d \ge 2$$

Spline surfaces

Geometric mapping $\mathbf{G}: \Omega_0 \mapsto \Omega_h \simeq \Omega$

 $\mathbf{G}(\boldsymbol{\xi}) = \sum_{\mathbf{A}} \hat{\varphi}_{\mathbf{A}}(\boldsymbol{\xi}) \mathbf{B}_{\mathbf{A}} \qquad \mathbf{B}_{\mathbf{A}} \in \mathbb{R}^{d}, d \geq 2, \text{ multi-index } \mathbf{A}$

• Computational 'mesh' is a multi-variate parameterization of Ω_h . It can be canonically generated from the geometry by knot insertion and/or order elevation ($\hat{\varphi}_A, B_A$) \rightarrow ($\tilde{\varphi}_A, \tilde{B}_A$)

Marriage of geometry and discretization

Geometric mapping

$$\mathbf{G}(\boldsymbol{\xi}) = \sum_{\mathbf{A}} \hat{\varphi}_{\mathbf{A}}(\boldsymbol{\xi}) \mathbf{B}_{\mathbf{A}} \quad \text{'push-forward' } \mathbf{G} : \Omega_0 \mapsto \Omega_h$$

Ansatz space

$$V_h = \text{span}\{\varphi_A(\mathbf{x}) = \tilde{\varphi}_A \circ \mathbf{G}^{-1}(\mathbf{x})\}$$
 'pull-back' $\mathbf{G}^{-1} : \Omega_h \mapsto \Omega_0$

Question 4

Bézier extraction is commonly promoted as 'the' way to integrate isogeometric analysis into classical finite element codes. But doesn't this contradict the concept of hardware-oriented numerics?

Our research is based on genuine IgA tools:

- C++ library <u>G*SMO</u>, developed at JKU/RICAM, Linz
- Python library
 Nutils
 Numerical Values
 by Evalf Computing, Delft

Application: Convection-diffusion equation

Quadratic bi-variate B-spline basis functions.

Application: Convection-diffusion equation

Quadratic bi-variate B-spline basis functions.

Application: Convection-diffusion equation

Quadratic bi-variate B-spline basis functions.

Application: Compressible Euler equations

Quadratic bi-variate B-spline basis functions.

⁶H-C. Yee, N. Sandham, M. Djomehri, JCP 150 (1999) 199-238.

Application: Compressible Euler equations

Quadratic bi-variate B-spline basis functions.

⁷G.A. Sod, JCP 27 (1978) 1–31.

Gray-Scott reaction-diffusion model

$$u_t + u(\ln \sqrt{g_t})_t - d_1 \Delta u = F(1 - u) - uv^2$$
$$v_t + v(\ln \sqrt{g_t})_t - d_2 \Delta v = -(F + H)v + uv^2$$
$$\mathbf{s} = Kv\mathbf{n}$$

MSc-thesis project by J. Hinz

J. Lefèvre, J-F. Mangin, PLoS Comput. Biol. 6(4) e1000749.

Phenomenological human brain development model

- multi-patch geometry $\Omega_h \simeq \Omega$ approximated by quadratic (hierarchical) B-spline basis functions
- *C*^{*p*-1} continuity along patch boundaries due to periodic basis functions
- *C*⁰ continuity in the vicinity of the triple points

Phenomenological human brain development model

- multi-patch geometry $\Omega_h \simeq \Omega$ approximated by quadratic (hierarchical) B-spline basis functions
- C^{p-1} continuity along patch boundaries due to periodic basis functions
- *C*⁰ continuity in the vicinity of the triple points

Phenomenological human brain development model

Create a valid mapping (= diffeomorphism, e.g., det J > 0 on Ω_0)

$$\mathbf{G}: \Omega_0 \mapsto \Omega_h \simeq \Omega$$

starting from the boundary parameterization $\bigcup_i \gamma_i$ of Ω by solving

$$\begin{cases} \Delta x(\xi,\eta) = 0\\ \Delta y(\xi,\eta) = 0 \end{cases} \quad \text{s.t. } \mathbf{S}|_{\partial\Omega_i} = \gamma_i.$$

Theory: Ω_h must be convex for **G** to be a diffeomorphism.

Create a valid mapping (= diffeomorphism, e.g., det J > 0 on Ω_0)

 $\mathbf{G}: \Omega_0 \mapsto \Omega_h \simeq \Omega$

starting from the boundary parameterization $\bigcup_i \gamma_i$ of Ω by solving

$$\begin{cases} \Delta \xi(x,y) = 0\\ \Delta \eta(x,y) = 0 \end{cases} \quad \text{s.t. } \mathbf{S}^{-1}|_{\gamma_i} = \partial \Omega_i \end{cases}$$

for the inverse mapping $\mathbf{G}^{-1}: \Omega_h \mapsto \Omega_0$. Inversion yields

$$\begin{cases} g_{22}x_{\xi\xi} - 2g_{12}x_{\xi\eta} + g_{11}x_{\eta\eta} = 0\\ g_{22}y_{\xi\xi} - 2g_{12}y_{\xi\eta} + g_{11}y_{\eta\eta} = 0 \end{cases} \text{ s.t. } \mathbf{G}|_{\partial\Omega_i} = \gamma_i,$$

where $g_{11} = x_{\xi}^2 + y_{\xi}^2$, $g_{12} = x_{\xi}x_{\eta} + y_{\xi}y_{\eta}$ and $g_{22} = x_{\eta}^2 + y_{\eta}^2$.

⁸PhD project by J. Hinz

TUDelft

⁹PhD project by J. Hinz

- 1 Boundary reparameterization
- 2 Defect detection, e.g., where det J(ξ*) < 0 or using the dual-weighted residual approach by Becker and Rannacher and refine the parameterization locally (THB-splines by Giannelli *et al.*)

- 1 Boundary reparameterization
- 2 Defect detection, e.g., where det J(ξ*) < 0 or using the dual-weighted residual approach by Becker and Rannacher and refine the parameterization locally (THB-splines by Giannelli *et al.*)
- 3 Possible extensions:
 - optimization of 'mesh properties'
 - multi-patch segmentation
 - 4th order PDE-problem

⁹PhD project by J. Hinz

Application: Adjoint-based optimization¹⁰

Proof-of-concept: AD of G+Smo using CoDiPack

$$-\Delta u + \nabla \cdot (\mathbf{v}u) = f$$
 in Ω_h , $u \equiv 1$ on $\partial \Omega_h$

with exact solution $u \equiv 1$.

Goal: Maximize area $A = ||u_h||_{L^2(\Omega_h)}$ of geometry Ω_h while preserving the circumference $C = ||u_h||_{L^2(\Gamma_h)}$ of the initial geometry $\Omega_0 = [0, 1]^2$.

Gradient based optimization using IpOpt with cost functional

$$L = -A + \eta |C_0 - C|$$

¹⁰PhD project by A. Jaeschke (Lodz)

Conclusion and outlook

Open-source Fluid Dynamic Building Blocks library https://gitlab.com/mmoelle1/FDBB.git

- 2 IgA-based solver for compressible flows
- Isogeometric 'mesh generation'
- Proof-of-concept AD of G+Smo code

Ongoing and future work:

- Distributed JIT compilation of multi-patch geometries
- Embedding of linear algebra SFETs into CoDiPack
- Extension towards FPGAs (reconfigurable computing)

Appendix

Further applications of the AFC framework

Idealized Z-pinch implosion model¹¹

• Generalized Euler system coupled with scalar tracer equation

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \rho E \\ \rho \lambda \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho \mathbf{v} \\ \rho \mathbf{v} \otimes \mathbf{v} + \rho \mathcal{I} \\ \rho E \mathbf{v} + \rho \mathbf{v} \\ \rho \lambda \mathbf{v} \end{bmatrix} = \begin{bmatrix} 0 \\ \mathbf{f} \\ \mathbf{f} \cdot \mathbf{v} \\ 0 \end{bmatrix}$$

Equation of state

$$p = (\gamma - 1)\rho(E - 0.5|\mathbf{v}|^2)$$

• Non-dimensional Lorentz force $\mathbf{f} = \left(\rho\lambda\right) \left(\frac{I(t)}{I_{\max}}\right)^2 \frac{\hat{\mathbf{e}}_r}{r_{\text{eff}}}, \quad 0 \le \lambda \le 1$

¹¹J.W. Banks, J.N. Shadid, IJNMF 2009, 61(7), 725–751

