Hardware-Oriented Numerics for PDEs Solving Compressible Flow Problems by Isogeometric Analysis

Matthias Möller (m.moller@tudelft.nl)
Delft Institute of Applied Mathematics, Delft University of Technology, Netherlands
Talk in Scientific Computing Seminar at TU Kaiserslautern, November 10, 2016

Acknowledgements

Core team

J. Hinz, A. Jaeschke (Lodz), F. Khatami, R. van Nieuwpoort, D. Pouw

Collaborators

N. Gauger \& M. Sagebaum (CoDiPack), B. Jüttler \& A. Mantzaflaris (G+Smo), C. Sand (Armadillo), K. Iglberger (Blaze), P. Gottschling (MTL4), D. Demidov (VexCL), K. Rupp (ViennaCL), C. Strydis (EMC Rotterdam), G. Gaydadjiev (Maxeler) and many others

Financial support by EC

Overview

(1) From Numerical Analysis to Hardware-Oriented Numerics
(2) Computational Building Blocks: Smart Fast Expression Templates
(3) Application: Compressible flow solver
(4) Isogeometric Analysis
(5) Applications: Flow Problems, Meshing, and Optimization

Numerical Analysis: Past, Present, and Future(?)

Given a problem $p \in \mathcal{P}$:
(1) Find a method $m \in \mathcal{M}$ that solves problem p
(2) Find an algorithm $a \in \mathcal{A}$ that realizes method m

Qol: errors, rate of convergence, FLOP, stability, monotonicity, ...

Numerical Analysis: Past, Present, and Future(?)

Given a problem $p \in \mathcal{P}$:
(1) Find a method $m \in \mathcal{M}$ that solves problem p
(2) Find an algorithm $a \in \mathcal{A}$ that realizes method m

Qol: errors, rate of convergence, FLOP, stability, monotonicity, ...
Given a hardware $h \in \mathcal{H}$:
(3) Find an implementation $i \in \mathcal{I}$ that realizes algorithm a

Qol: FLOPS, memory bandwidth, parallel speed-up, ...

Numerical Analysis: Past, Present, and Future(?)

Given a problem $p \in \mathcal{P}: \quad-\Delta u=f+b c$'s
(1) Find a method $m \in \mathcal{M}$ that solves problem p continuous Galerkin P_{1}-FEM
(2) Find an algorithm $a \in \mathcal{A}$ that realizes method m matrix-free CG solver with element-wise Gaussian quadrature
Qol: errors, rate of convergence, FLOP, stability, monotonicity, ...
Given a hardware $h \in \mathcal{H}$:
(3) Find an implementation $i \in \mathcal{I}$ that realizes algorithm a OpenMP parallelized SHMEM C ++ code using Eigen library
Qol: FLOPS, memory bandwidth, parallel speed-up, ...

Numerical Analysis: Past, Present, and Future(?)

Given a problem $p \in \mathcal{P}$:
(1) Find a method $m \in \mathcal{M}$ that solves problem p continuous Galerkin P_{1}-FEM
(2) Find an algorithm $a \in \mathcal{A}$ that realizes method m matrix-free CG solver with element-wise Gaussian quadrature

Given a hardware $h \in \mathcal{H}$:
(3) Find an implementation $i \in \mathcal{I}$ that realizes algorithm a OpenMP parallelized SHMEM C ++ code using Eigen library

THE metric that matters: time to solution for prescribed accuracy

Hardware-Oriented Numerics

State of the art

Given a problem $p \in \mathcal{P}$ and a target hardware $h \in \mathcal{H}$:
(1) Find an optimal combination $(m, a, i)_{p, h} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solves problem p on hardware h in shortest time with prescribed accuracy

Hardware-Oriented Numerics

State of the art

Given a problem $p \in \mathcal{P}$ and a set of target hardware $\left\{h_{1}, h_{2}, \ldots\right\} \subset \mathcal{H}$:
(1) Find optimal combinations $(m, a, i)_{p, h_{k}} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solve problem p on hardware h_{k} in shortest time with prescribed accuracy

Hardware-Oriented Numerics

State of the art

Given a problem $p \in \mathcal{P}$ and a set of target hardware $\left\{h_{1}, h_{2}, \ldots\right\} \subset \mathcal{H}$:
(1) Find optimal combinations $(m, a, i)_{p, h_{k}} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solve problem p on hardware h_{k} in shortest time with prescribed accuracy

Next step

(2) Develop a strategy that automatically inspects the available hardware and chooses the optimal combinations $(m, a, i)_{p, h_{k}}$

Hardware-Oriented Numerics

State of the art

Given a problem $p \in \mathcal{P}$ and a set of target hardware $\left\{h_{1}, h_{2}, \ldots\right\} \subset \mathcal{H}$:
(1) Find optimal combinations $(m, a, i)_{p, h_{k}} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ that solve problem p on hardware h_{k} in shortest time with prescribed accuracy

Next step

(2) Develop a strategy that automatically inspects the available hardware and chooses the optimal combinations $(m, a, i)_{p, h_{k}}$

Future vision

(3) Automatically determine and schedule optimal combinations ($m, a, i)_{p_{j}, h_{k}} \in \mathcal{M} \times \mathcal{A} \times \mathcal{I}$ for multi-physics problems $\left\{p_{1}, p_{2}, \ldots\right\} \subset \mathcal{P}$ and target hardware $\left\{h_{1}, h_{2}, \ldots\right\} \subset \mathcal{H}$

HPC hardware

Current and (most probably) future HPC hardware is diversified:

HPC hardware

Current and (most probably) future HPC hardware is diversified:

There are good reasons (performance-per-watt, low-latency) to believe that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators

HPC hardware

Current and (most probably) future HPC hardware is diversified:

There are good reasons (performance-per-watt, low-latency) to believe that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators Stand-alone Xeon Phi

HPC hardware

Current and (most probably) future HPC hardware is diversified:

There are good reasons (performance-per-watt, low-latency) to believe that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators

Stand-alone Xeon Phi

Broadwell + Arria 10 GX MCP
Hybrid CPU/FPGA

HPC hardware and beyond

Quantum Computing

Strong effort in the Netherlands to establish quantum computers and algorithms as key technology in future scientific computing
(T)uSoft ©

Application in PDE-constrained optimization

- \exists QA to estimate $x^{\top} M x$ s.t. $A x=b$ in poly $(\log N, \log (1 / \epsilon))$
- best classical algorithm requires $\mathcal{O}(N \sqrt{\kappa})$

Broadwell + Arria 10 GX MCP
CPUs + accelerators Stand-alone Xeon Phi Hvbrid CPU/FPGA

Question 1

Can we come up with a unified programming approach to exploit the performance of the different hardware architectures automatically with minimal effort for code development and maintenance?

Computational building blocks

- Highly optimized dense and sparse linear algebra libraries

$$
y \leftarrow \alpha * x+y, \quad y \leftarrow A^{-1} * x
$$

BLAS/LAPACK implementation of $y \leftarrow A^{-1}(x-y)$

```
call xSCAL(n, -1.0, y, 1)
call xAXPY(n, 1.0, x, 1, y, 1)
call xGESV(n, 1, A, n, IPIV, y, 1, INFO)
```

Here: 3 function calls, $5 \times$ fetching data, $3 \times$ storing data.
Ideal: no call (inlining!), $3 \times$ fetching data, $1 \times$ storing data.
And it's the memory transfer that is the bottleneck!

Computational building blocks

- Highly optimized dense and sparse linear algebra libraries

$$
y \leftarrow \alpha * x+y, \quad y \leftarrow A^{-1} * x
$$

- Expression template libraries (ETLs)

$$
y \leftarrow A *((m . * m) \cdot /(\rho)+p)
$$

Note: against common belief, the use of ETLs does not automagically lead to high-performance C++ code

Computational building blocks

- Highly optimized dense and sparse linear algebra libraries

$$
y \leftarrow \alpha * x+y, \quad y \leftarrow A^{-1} * x
$$

- Expression template libraries (ETLs)

$$
y \leftarrow A *((m . * m) \cdot /(\rho)+p)
$$

- Smart and fast expression template libraries which combine classical ETL concepts with vector intrinsics, node-level parallelization, cache-size/architecture optimized compute kernels

Computational building blocks

- Highly optimized dense and sparse linear algebra libraries

$$
y \leftarrow \alpha * x+y, \quad y \leftarrow A^{-1} * x
$$

- Expression template libraries (ETLs)

$$
y \leftarrow A *((m . * m) \cdot /(\rho)+p)
$$

- Smart and fast expression template libraries which combine classical ETL concepts with vector intrinsics, node-level parallelization, cache-size/architecture optimized compute kernels
- Just-in-time compilation ('reconfigurable computing')

SFET concept

Code that you write ${ }^{1}$

$$
\text { vex:: vector<float }>x, y, z ; \quad z=x * y ;
$$

OpenCL compute kernel generated by VexCL

kernel void vexcl_kernel (...) \{

$$
\begin{aligned}
& \text { for (size_t } \text { idx }=\text { get_global_id }(0) ; \\
& i d x<n ; \\
&i d x+=\text { get_global_size }(0))\{ \\
&\text { prm_1[idx] } \left.\left.=\text { prm_2[idx] } * \operatorname{prm}_{-}[i d x] ;\right\}\right\}
\end{aligned}
$$

[^0]
SFET concept

Code that you write ${ }^{1}$

$$
\text { vex:: vector<float> } x, y, z ; \quad z=x * y ;
$$

CUDA compute kernel generated by VexCL

extern "C" _-global__ void vexcl_kernel (...) \{

$$
\text { for (size_t idx }=\text { blockDim.x } * \text { blockldx.x }
$$

$$
+ \text { threadldx.x }
$$

$$
\text { grid_size }=\text { blockDim.x } * \text { gridDim. } x
$$

$$
\mathrm{idx}<\mathrm{n}
$$

$$
i d x+=\text { grid_size) }\{
$$

$$
\left.\left.\operatorname{prm}_{-} 1[i d x]=\operatorname{prm}_{-} 2[i d x] * \operatorname{prm}_{-} 3[i d x] ;\right\}\right\}
$$

${ }^{1}$ https://github.com/ddemidov/vexcl

SFET concept

Code that you write ${ }^{1}$

```
vex:: vector<float> x,y,z; z = x * y;
```


MaxJ compute kernel to be generated by VexCL (D.Pouw)

class vexcl_kernel extends Kernel \{
public vexcl_kernel (...) \{
DFEVar $x=$ io.input("x", dfeFloat (8, 24)); DFEVar y $=$ io.input ("y", dfeFloat (8, 24));

DFEVar result $=x * y$; io.output ("z", result, dfeFloat (8, 24)); \}\}

[^1]
Compressible Euler equations

Divergence form

$$
\partial_{t} U+\nabla \cdot \mathbf{F}(U)=0 \quad \partial_{t} U+\mathbf{A}(U) \cdot \nabla U=0
$$

Conservative ${ }^{a}$ variables, inviscid fluxes, flux-Jacobian matrices

$$
U=\left[\begin{array}{c}
\rho \\
\rho \mathbf{v} \\
\rho E
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{c}
\rho \mathbf{v} \\
\rho \mathbf{v} \otimes \mathbf{v}+\mathcal{I} p \\
\mathbf{v}(\rho E+p)
\end{array}\right], \quad \mathbf{A}=\frac{\partial \mathbf{F}}{\partial U}
$$

Equation of state (here for an ideal gas)

$$
p=(\gamma-1)\left(\rho E-\frac{1}{2} \rho\|\mathbf{v}\|^{2}\right), \quad \gamma=C_{p} / C_{v}
$$

[^2]Divergence form

$$
\partial_{t} U+\nabla \cdot \mathbf{F}(U)=0
$$

$$
\partial_{t} U+\mathbf{A}(U) \cdot \nabla U=0
$$

Conservative ${ }^{a}$ variables, inviscid fluxes, flux-Jacobian matrices

$$
U=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{d+2}
\end{array}\right], \quad \mathbf{F}=\left[\begin{array}{ccc}
f_{1}^{1} & \cdots & f_{1}^{d} \\
\vdots & \ddots & \vdots \\
f_{d+2}^{1} & \cdots & f_{d+2}^{d}
\end{array}\right], \quad \mathbf{A}=\frac{\partial \mathbf{F}}{\partial U}
$$

Notation

$$
\mathbf{f}_{k}=\left[f_{k}^{1}, \ldots, f_{k}^{d}\right], \quad \mathbf{f}^{k}=\left[\begin{array}{c}
f_{1}^{k} \\
\vdots \\
f_{d+2}^{k}
\end{array}\right]
$$

${ }^{2}$ Similar formulations exist for primitive and entropy variables

Fluid Dynamics Building Blocks²

Unified wrapper function API to core functionality of ETL's: make_temp, tag, tie, +, -, *, /, abs, sqrt, ...										
		$\begin{aligned} & \stackrel{N}{N} \\ & \frac{\mathbb{O}}{\infty} \end{aligned}$	$\begin{aligned} & + \\ & + \\ & \stackrel{N}{=} \end{aligned}$		+ \pm \pm	$\stackrel{\searrow}{\stackrel{\rightharpoonup}{\Sigma}}$	$\stackrel{\sim}{ \pm}$	U \times 㐅 $>$	U c ¢ U	\vdots

[^3]
FDBB at work

Implementation of $\|\mathbf{v}\|^{2}$

// EOS for ideal gas (gamma=1.4) typedef fdbb::fdbbEOSidealGas $<\mathbf{T}\rangle$ eos;
// Conservative variables in 3d
typedef fdbb::fdbbVariables<eos,3,
fdbb::EnumVar::conservative> var;
// VexCL backend
vex:: vector<T> u1,u2,u3,u4,u5,v;
// Generic implementation
v = var:: v_mag2(u1,u2,u3,u4,u5);

FDBB μ-benchmark

- All tests were run under CentOS Linux 6.7, GCC 5.3.0, nvcc 7.5.17 with thread pinning (likwid-pin -c N:0-15 benchmark)
- CPU benchmarks
- $2 x$ Intel E5-2670 (16 cores), $2.60 \mathrm{GHz}, 20 \mathrm{MB}$ Cache, 64 GB RAM
- ETL's: Armadillo, Blaze, Blitz++, Eigen, IT++, uBLAS
- GPU benchmarks
- 1x NVIDIA Tesla K20Xm, ECC off, 6GB (DriVer: 352.93)
- ETL's: ArrayFire and VexCL with CUDA backend enabled

FDBB μ-benchmark

$$
y \leftarrow\left(m_{x} . * m_{x}+m_{y} . * m_{y}+m_{z} * m_{z}\right) \cdot /(\rho . * \rho)
$$

Double precision performance

Problem size [bytes]

FDBB μ-benchmark

$$
y \leftarrow\left(m_{x} . * m_{x}+m_{y} . * m_{y}+m_{z} * m_{z}\right) \cdot /(\rho . * \rho)
$$

Double precision performance

Problem size [bytes]

Question 2

Given we have a highly tuned SFET library (and FDBB), how can we design a compressible flow solver based on SpMV and at the same time flexible enough for practical applications?

Compressible Euler equations

Galerkin ansatz (" find solution U s.t. for all $W^{\prime \prime}$)

$$
\int_{\Omega} W \partial_{t} U-\nabla W \cdot \mathbf{F}(U) \mathrm{d} \Omega+\int_{\Gamma} W F^{b}(U, \cdot) \mathrm{d} s=0
$$

with boundary fluxes

$$
F^{b}= \begin{cases}{\left[0, p n_{1}, p n_{2}, p n_{3}, 0\right]^{\top}} & \text { at solid walls } \\ \frac{1}{2}\left(F_{n}\left(U_{-}\right)+F_{n}\left(U_{+}\right)\right)-\frac{1}{2}\left|A_{n}\left(\operatorname{Roe}\left(U_{-}, U_{+}\right)\right)\right| & \text {otherwise }\end{cases}
$$

${ }^{3}$ C.A.J. Fletcher, CMAME 37 (1983) 225-244.

Compressible Euler equations

Galerkin ansatz (" find solution U s.t. for all $W^{\prime \prime}$)

$$
\int_{\Omega} W \partial_{t} U-\nabla W \cdot \mathbf{F}(U) \mathrm{d} \Omega+\int_{\Gamma} W F^{b}(U, \cdot) \mathrm{d} s=0
$$

with boundary fluxes

$$
F^{b}= \begin{cases}{\left[0, p n_{1}, p n_{2}, p n_{3}, 0\right]^{\top}} & \text { at solid walls } \\ \frac{1}{2}\left(F_{n}\left(U_{-}\right)+F_{n}\left(U_{+}\right)\right)-\frac{1}{2}\left|A_{n}\left(\operatorname{Roe}\left(U_{-}, U_{+}\right)\right)\right| & \text {otherwise }\end{cases}
$$

Fletcher's group formulation ${ }^{3}$

$$
U_{h}=\sum_{A}\left(\mathcal{I} \otimes \varphi_{A}(\mathbf{x})\right) U_{A}(t), \quad \mathbf{F}_{h}=\sum_{A}\left(\mathcal{I} \otimes \varphi_{A}(\mathbf{x})\right) \mathbf{F}_{A}(t), \quad \mathbf{F}_{A}=\mathbf{F}\left(U_{A}\right)
$$

${ }^{3}$ C.A.J. Fletcher, CMAME 37 (1983) 225-244.

Compressible Euler equations

Semi-discretized problem

$$
\left[\begin{array}{ccc}
M & & \\
& \ddots & \\
& & M
\end{array}\right]\left[\begin{array}{c}
\dot{u}_{1} \\
\vdots \\
\dot{u}_{d+2}
\end{array}\right]+\left[\begin{array}{lll}
\mathbf{C} & & \\
& \ddots & \\
& & \mathbf{C}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{1}^{\top} \\
\vdots \\
\mathbf{f}_{d+2}^{\top}
\end{array}\right]+\left[\begin{array}{lll}
\mathbf{S} & & \\
& \ddots & \\
& & \mathbf{S}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{1}^{b^{\top}} \\
\vdots \\
\mathbf{f}_{d+2}^{\boldsymbol{b}^{\top}}
\end{array}\right]=0
$$

Read the above as

$$
\mathbf{C f}_{k}^{\top}=\left[C^{1}, \ldots, C^{d}\right]\left[\begin{array}{c}
f_{k}^{1} \\
\vdots \\
f_{k}^{d}
\end{array}\right]=\sum_{l=1}^{d} C^{k} f_{k}^{\prime} \quad \text { for } k=1, \ldots, d+2
$$

and the same for $\mathbf{S f}_{k}^{b^{\top}}$

Compressible Euler equations

Semi-discretized problem

$$
\left[\begin{array}{ccc}
M & & \\
& \ddots & \\
& & M
\end{array}\right]\left[\begin{array}{c}
\dot{u}_{1} \\
\vdots \\
\dot{u}_{d+2}
\end{array}\right]+\left[\begin{array}{lll}
\mathbf{C} & & \\
& \ddots & \\
& & \mathbf{C}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{1}^{\top} \\
\vdots \\
\mathbf{f}_{d+2}^{\top}
\end{array}\right]+\left[\begin{array}{lll}
\mathbf{S} & & \\
& \ddots & \\
& & \mathbf{S}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{1}^{b^{\top}} \\
\vdots \\
\mathbf{f}_{d+2}^{b^{\top}}
\end{array}\right]=0
$$

Constant coefficient matrices

$$
M=\left[\int_{\Omega} \varphi_{A} \varphi_{B} \mathrm{~d} \Omega\right] \quad \mathbf{C}=\left[-\int_{\Omega} \nabla \varphi_{A} \varphi_{B} \mathrm{~d} \Omega\right] \quad \mathbf{S}=\left[\int_{\Gamma} \varphi_{A} \varphi_{B} \mathbf{n} \mathrm{~d} s\right]
$$

Compressible Euler equations

Semi-discretized problem

$$
\left[\begin{array}{ccc}
M & & \\
& \ddots & \\
& & M
\end{array}\right]\left[\begin{array}{c}
\dot{u}_{1} \\
\vdots \\
\dot{u}_{d+2}
\end{array}\right]+\left[\begin{array}{lll}
\mathbf{C} & & \\
& \ddots & \\
& & \mathbf{C}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{1}^{\top} \\
\vdots \\
\mathbf{f}_{d+2}^{\top}
\end{array}\right]+\left[\begin{array}{lll}
\mathbf{S} & & \\
& \ddots & \\
& & \mathbf{S}
\end{array}\right]\left[\begin{array}{c}
\mathbf{f}_{1}^{b^{\top}} \\
\vdots \\
\mathbf{f}_{d+2}^{b^{\top}}
\end{array}\right]=0
$$

Constant coefficient matrices

$$
M=\left[\int_{\Omega} \varphi_{A} \varphi_{B} \mathrm{~d} \Omega\right] \quad \mathbf{C}=\left[-\int_{\Omega} \nabla \varphi_{A} \varphi_{B} \mathrm{~d} \Omega\right] \quad \mathbf{S}=\left[\int_{\Gamma} \varphi_{A} \varphi_{B} \mathbf{n} \mathrm{~d} s\right]
$$

whereby

$$
-\int_{\Omega} \nabla \varphi_{A} \varphi_{B} \mathrm{~d} \Omega=\int_{\Omega} \varphi_{A} \nabla \varphi_{B} \mathrm{~d} \Omega+\int_{\Gamma} \varphi_{A} \varphi_{B} \mathbf{n} \mathrm{~d} s \Rightarrow \mathbf{C}+\mathbf{C}^{\top}=\mathbf{S}
$$

Stabilization by algebraic flux correction

$$
\begin{aligned}
\left(\mathcal{I} \otimes m_{A}\right) \dot{U}_{A}+\sum_{B} & \left(\mathbf{c}_{A B} \cdot \mathbf{F}_{B}+\mathbf{s}_{A B} \cdot \mathbf{F}_{B}^{b}\right) \\
& +\sum_{B \in \mathcal{J}_{A}} D_{A B}\left(U_{B}-U_{A}\right)=\sum_{B \in \mathcal{J}_{A}} \alpha_{A B} \mathcal{F}_{A B}
\end{aligned}
$$

(1) Perform row-sum mass lumping to decouple the degrees of freedom
(2) Add discrete artificial dissipation to prevent spurious oscillations
(3) Decompose anti-diffusion into fluxes and apply a limited correction

Details:

- Kuzmin, M., Gurris, AFC II. Compressible Flow Problems. In: Flux-Corrected Transport, Springer, 2012

Stabilization by algebraic flux correction

$$
\begin{aligned}
\left(\mathcal{I} \otimes m_{A}\right) \dot{U}_{A}+\sum_{B} & \left(\mathbf{c}_{A B} \cdot \mathbf{F}_{B}+\mathbf{s}_{A B} \cdot \mathbf{F}_{B}^{b}\right) \\
& +\sum_{B \in \mathcal{J}_{A}} D_{A B}\left(U_{B}-U_{A}\right)=\sum_{B \in \mathcal{J}_{A}} \alpha_{A B} \mathcal{F}_{A B}
\end{aligned}
$$

Compute kernels

- block-VV and block-SpMV
- edge-loops over non-zero entries of sparsity graph

$$
\mathcal{I}_{A}:=\left\{B: \operatorname{supp} \varphi_{A} \cap \operatorname{supp} \varphi_{B} \neq \varnothing\right\}, \quad \mathcal{J}_{A}:=\mathcal{I}_{A} \backslash\{A\}
$$

- symmetric operators $D_{A B}$ and $\alpha_{A B}$
- skew-symmetric fluxes $U_{B}-U_{A}$ and $\mathcal{F}_{A B}$
\Rightarrow can be expressed as block-SpMV

Illustration of Zalesak's flux limiter ${ }^{4}$

- Mass-lumped low-order predictor yields nodal bounds $\tilde{u}_{A}^{\text {min }}$
- AFC-corrected solution is allowed to vary within the bounds
${ }^{4}$ S. Zalesak, JCP 1979, 31(3), 335-362

Double Mach reflection ${ }^{5}$

Test: Roe-linearization + FCT, structured mesh, Q_{1} finite elements $T=0.2$, Crank Nicolson time stepping $(\theta=0.5)$

${ }^{5}$ P.R. Woodward, P. Colella, JCP 54, 115 (1984), 115-173.

Double Mach reflection

Double Mach reflection

Question 3

The presented approach is applicable to unstructured meshes and general FE spaces except for AFC which is limited to P_{1} and Q_{1} !

It there a way to extend AFC to higher-order approximations?

Polynomial spaces

Definition

The space of polynomials of degree p over the interval $[a, b]$ is

$$
\Pi^{p}([a, b]):=\left\{q(x) \in \mathcal{C}^{\infty}([a, b]): q(x)=\sum_{i=0}^{p} c_{i} x^{i}, c_{i} \in \mathbb{R}\right\}
$$

Example: $\Pi^{2}([0,1])$

- Canonical basis

$$
\mathcal{B}=\left\{1, x, x^{2}\right\}
$$

- Polynomials

$$
q(x)=c_{0}+c_{1} x+c_{2} x^{2}
$$

Spline space

Definition

Let $\mathcal{P}=\left\{a=x_{1}<\cdots<x_{p+1}=b\right\}$ be a partition of the interval Ω_{0} and $\mathcal{M}=\left\{1 \leq m_{i} \leq p+1\right\}$ a set of positive integers. The polynomial spline of degree p is defined as $s: \Omega_{0} \mapsto \mathbb{R}$ if

$$
\begin{array}{ll}
\left.s\right|_{\left[x_{i}, x_{i+1}\right]} \in \Pi^{p}\left(\left[x_{i}, x_{i+1}\right]\right), & i=1, \ldots, k \\
\frac{d^{j}}{d x^{j}} s_{i-1}\left(x_{i}\right)=\frac{d^{j}}{d x^{j}} s_{i}\left(x_{i}\right), & i=2, \ldots, k, \\
& j=0, \ldots, p-m_{i}
\end{array}
$$

Polynomial splines of degree p form the spline space $\mathcal{S}\left(\Omega_{0}, p, \mathcal{M}, \mathcal{P}\right)$.

Knot vectors

Definition

A knot vector is a sequence of non-decreasing values $\xi_{i} \in[a, b] \subset \mathbb{R}$ in the parameter space $\Omega_{0}=[a, b]$

$$
\equiv=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n+p+1}\right)
$$

where

- p is the polynomial order of the B-splines
- n is the number of B-spline functions
- ξ_{i} is the i-th knot with knot index i

Knots ξ_{i} can have multiplicity $1 \leq m_{i} \leq p+1$. The knot vector is called open if the first and last knot have multiplicity $p+1$.

B-spline basis functions

Cox-de Boor recursion formula

$$
\begin{aligned}
& p=0 \\
& \quad N_{i, 0}(\xi)= \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& p>0 \\
& N_{i, p}(\xi)=\frac{\xi-\xi_{i}}{\xi_{i+p}-\xi_{i}} N_{i, p-1}(\xi)+\frac{\xi_{i+p+1}-\xi}{\xi_{i+p+1}-\xi_{i+1}} N_{i+1, p-1}(\xi)
\end{aligned}
$$

B-spline basis functions

Constant basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Constant basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Constant basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\bar{E}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\bar{Z}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\overline{=}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\overline{=}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Linear basis functions corresponding to $\bar{Z}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

B-spline basis functions

Quadratic basis functions corresponding to $\bar{\equiv}=\{0,0,0,1,2,3,3,3\}$

Properties of B-spline basis functions

Compact support

$$
\operatorname{supp} N_{i, p}(\xi)=\left[\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

- System matrices are sparse like in the standard FEM
- Support grows with the polynomial order so that system matrices have a slightly broader stencil due to the coupling of degrees of freedom over multiple element layers (good for HPC)

Properties of B-spline basis functions

Compact support

$$
\operatorname{supp} N_{i, p}(\xi)=\left[\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

Strict positiveness

$$
N_{i, p}(\xi)>0 \quad \text { for } \xi \in\left(\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

- Consistent mass matrix has no negative off-diagonal entries
- Lumped mass matrix is not singular (no zero diagonal entries)

Properties of B-spline basis functions

Compact support

$$
\operatorname{supp} N_{i, p}(\xi)=\left[\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

Strict positiveness

$$
N_{i, p}(\xi)>0 \quad \text { for } \xi \in\left(\xi_{i}, \xi_{i+p+1}\right), \quad i=1, \ldots, n
$$

Partition of unity

$$
\sum_{i=1}^{n} N_{i, p}(\xi)=1 \quad \text { for all } \xi \in[a, b]
$$

Properties of B-spline basis functions

Derivatives

Derivative is a B -spline of order $p-1$

$$
\frac{d}{d \xi} N_{i, p}(\xi)=\frac{p}{\xi_{i+p}-\xi_{i}} N_{i, p-1}(\xi)-\frac{p}{\xi_{i+p+1}-\xi_{i+1}} N_{i+1, p-1}(\xi)
$$

Expression for $k^{\text {th }}$ derivative

$$
\frac{d^{k}}{d^{k} \xi} N_{i, p}(\xi)=\frac{p!}{(p-k)!} \sum_{j=0}^{k} \alpha_{k, j} N_{i+j, p-k}(\xi)
$$

with recursively defined coefficients $\alpha_{k, j}{ }^{a}$
${ }^{a}$ L. Piegl, W. Tiller. The NURBS book (1997).

Spline curves

Geometric mapping G: $\Omega_{0} \mapsto \Omega_{h} \simeq \Omega$

$\mathbf{G}(\xi)=\sum_{i=1}^{n} N_{i, p}(\xi) \mathbf{B}_{i} \quad$ set of control points $\mathbf{B}_{i} \in \mathbb{R}^{d}, d \geq 1$

- $C^{p-m_{i}}$ continuous curve (m_{i} is the multiplicity of knot ξ_{i})
- Convex hull property
- Variation diminishing property
- Knot insertion (h-adaptivity), order elevation (p-adaptivity) preserve shape of geometry

Spline surfaces

Geometric mapping G: $\Omega_{0} \mapsto \Omega_{h} \simeq \Omega$

$$
\mathbf{G}(\xi, \eta)=\sum_{i=1}^{n} \sum_{j=1}^{m} N_{i, p}(\xi) N_{j, q}(\eta) \mathbf{B}_{i, j} \quad \mathbf{B}_{i, j} \in \mathbb{R}^{d}, d \geq 2
$$

Spline surfaces

Geometric mapping G: $\Omega_{0} \mapsto \Omega_{h} \simeq \Omega$

$$
\mathbf{G}(\xi)=\sum_{\mathbf{A}} \hat{\varphi}_{\mathbf{A}}(\boldsymbol{\xi}) \mathbf{B}_{\mathbf{A}} \quad \mathbf{B}_{\mathbf{A}} \in \mathbb{R}^{d}, d \geq 2, \text { multi-index } \mathbf{A}
$$

- Computational 'mesh' is a multi-variate parameterization of Ω_{h}. It can be canonically generated from the geometry by knot insertion and/or order elevation $\left(\hat{\varphi}_{\mathbf{A}}, \mathbf{B}_{\mathbf{A}}\right) \rightarrow\left(\tilde{\varphi}_{\mathbf{A}}, \tilde{\mathbf{B}}_{\mathbf{A}}\right)$

Marriage of geometry and discretization

Geometric mapping

$$
\mathbf{G}(\boldsymbol{\xi})=\sum_{\mathbf{A}} \hat{\varphi}_{\mathbf{A}}(\boldsymbol{\xi}) \mathbf{B}_{\mathbf{A}} \quad \text { 'push-forward' } \mathbf{G}: \Omega_{0} \mapsto \Omega_{h}
$$

Ansatz space

$$
V_{h}=\operatorname{span}\left\{\varphi_{\mathbf{A}}(\mathbf{x})=\tilde{\varphi}_{\mathbf{A}} \circ \mathbf{G}^{-1}(\mathbf{x})\right\} \quad \text { 'pull-back' } \mathbf{G}^{-1}: \Omega_{h} \mapsto \Omega_{0}
$$

Question 4

Bézier extraction is commonly promoted as 'the' way to integrate isogeometric analysis into classical finite element codes. But doesn't this contradict the concept of hardware-oriented numerics?

Our research is based on genuine $\lg A$ tools:

- $\mathrm{C}++$ library . $\underline{\mathbf{G + S M O}}$, developed at JKU/RICAM, Linz
- Python library $\underset{\substack{\text { Numentaluwies }}}{\text { Nutils }}$ byalf Computing, Delft

Application: Convection-diffusion equation

Convection skew to the mesh

Quadratic bi-variate B-spline basis functions.

Application: Convection-diffusion equation

Convection skew to the mesh

Quadratic bi-variate B-spline basis functions.

Application: Convection-diffusion equation
Convection skew to the mesh

Quadratic bi-variate B-spline basis functions.

Application: Compressible Euler equations

Convection of isentropic vortex ${ }^{6}$

ρ

v_{X}

v_{y}

Quadratic bi-variate B-spline basis functions.
${ }^{6}$ H-C. Yee, N. Sandham, M. Djomehri, JCP 150 (1999) 199-238.

Application: Compressible Euler equations

Sod's shock tube problem ${ }^{7}$

Quadratic bi-variate B-spline basis functions.
${ }^{7}$ G.A. Sod, JCP 27 (1978) 1-31.

Application: $\lg A$ on evolving manifolds

Gray-Scott reaction-diffusion model

$$
\begin{aligned}
u_{t}+u\left(\ln \sqrt{g_{t}}\right)_{t}-d_{1} \Delta u & =F(1-u)-u v^{2} \\
v_{t}+v\left(\ln \sqrt{g_{t}}\right)_{t}-d_{2} \Delta v & =-(F+H) v+u v^{2} \\
\mathbf{s} & =K v \mathbf{n}
\end{aligned}
$$

MSc-thesis project by J. Hinz

J. Lefèvre, J-F. Mangin, PLoS Comput. Biol. 6(4) e1000749.

Application: $\lg A$ on evolving manifolds

Phenomenological human brain development model

- multi-patch geometry $\Omega_{h} \simeq \Omega$ approximated by quadratic (hierarchical) B-spline basis functions
- C^{p-1} continuity along patch boundaries due to periodic basis functions
- C^{0} continuity in the vicinity of the triple points

Application: $\lg A$ on evolving manifolds

Phenomenological human brain development model

- multi-patch geometry $\Omega_{h} \simeq \Omega$ approximated by quadratic (hierarchical) B-spline basis functions
- C^{p-1} continuity along patch boundaries due to periodic basis functions
- C^{0} continuity in the vicinity of the triple points

Application: $\lg A$ on evolving manifolds

Phenomenological human brain development model

Application: Isogeometric 'mesh generation'8

Create a valid mapping ($=$ diffeomorphism, e.g., $\operatorname{det} J>0$ on Ω_{0})

$$
\mathbf{G}: \Omega_{0} \mapsto \Omega_{h} \simeq \Omega
$$

starting from the boundary parameterization $\bigcup_{i} \gamma_{i}$ of Ω by solving

$$
\left\{\begin{array}{l}
\Delta x(\xi, \eta)=0 \\
\Delta y(\xi, \eta)=0
\end{array} \quad \text { s.t. }\left.\quad \mathbf{S}\right|_{\partial \Omega_{i}}=\gamma_{i}\right.
$$

Theory: Ω_{h} must be convex for \mathbf{G} to be a diffeomorphism.
${ }^{8}$ PhD project by J. Hinz

Application: Isogeometric 'mesh generation'8

Create a valid mapping ($=$ diffeomorphism, e.g., $\operatorname{det} J>0$ on Ω_{0})

$$
\mathbf{G}: \Omega_{0} \mapsto \Omega_{h} \simeq \Omega
$$

starting from the boundary parameterization $\bigcup_{i} \gamma_{i}$ of Ω by solving

$$
\left\{\begin{array}{ll}
\Delta \xi(x, y) & =0 \\
\Delta \eta(x, y) & =0
\end{array} \quad \text { s.t. }\left.\quad \mathbf{S}^{-1}\right|_{\gamma_{i}}=\partial \Omega_{i}\right.
$$

for the inverse mapping $\mathbf{G}^{-1}: \Omega_{h} \mapsto \Omega_{0}$. Inversion yields

$$
\left\{\begin{array}{l}
g_{22} x_{\xi \xi}-2 g_{12} x_{\xi \eta}+g_{11} x_{\eta \eta}=0 \\
g_{22} y_{\xi \xi}-2 g_{12} y_{\xi \eta}+g_{11} y_{\eta \eta}=0
\end{array} \quad \text { s.t. }\left.\mathbf{G}\right|_{\partial \Omega_{i}}=\gamma_{i}\right.
$$

where $g_{11}=x_{\xi}^{2}+y_{\xi}^{2}, g_{12}=x_{\xi} x_{\eta}+y_{\xi} y_{\eta}$ and $g_{22}=x_{\eta}^{2}+y_{\eta}^{2}$.
${ }^{8}$ PhD project by J. Hinz

Application: Isogeometric 'mesh generation'9

(1) Boundary reparameterization

${ }^{9}$ PhD project by J. Hinz

Application: Isogeometric 'mesh generation'9

(1) Boundary reparameterization
(2) Defect detection, e.g., where $\operatorname{det} J\left(\xi^{*}\right)<0$ or using the dual-weighted residual approach by Becker and Rannacher and refine the parameterization locally (THB-splines by Giannelli et al.)

[^4]
Application: Isogeometric 'mesh generation'9

(1) Boundary reparameterization
(2) Defect detection, e.g., where $\operatorname{det} J\left(\xi^{*}\right)<0$ or using the dual-weighted residual approach by Becker and Rannacher and refine the parameterization locally (THB-splines by Giannelli et al.)
(3) Possible extensions:

- optimization of 'mesh properties'
- multi-patch segmentation
- 4th order PDE-problem
${ }^{9}$ PhD project by J. Hinz

Application: Isogeometric 'mesh generation'9

[^5]TUDelft

Application: Adjoint-based optimization ${ }^{10}$

Proof-of-concept: AD of G+Smo using CoDiPack

$$
-\Delta u+\nabla \cdot(\mathbf{v} u)=f \quad \text { in } \Omega_{h}, \quad u \equiv 1 \quad \text { on } \partial \Omega_{h}
$$

with exact solution $u \equiv 1$.
Goal: Maximize area $A=\left\|u_{h}\right\|_{L^{2}\left(\Omega_{h}\right)}$ of geometry Ω_{h} while preserving the circumference $C=\left\|u_{h}\right\|_{L^{2}\left(\Gamma_{h}\right)}$ of the initial geometry $\Omega_{0}=[0,1]^{2}$.

Gradient based optimization using IpOpt with cost functional

$$
L=-A+\eta\left|C_{0}-C\right|
$$

${ }^{10} \mathrm{PhD}$ project by A. Jaeschke (Lodz)

Conclusion and outlook

(1) Open-source Fluid Dynamic Building Blocks library https://gitlab.com/mmoelle1/FDBB.git
(2) IgA-based solver for compressible flows
(3) Isogeometric 'mesh generation'
(4) Proof-of-concept AD of G+Smo code

Ongoing and future work:

- Distributed JIT compilation of multi-patch geometries
- Embedding of linear algebra SFETs into CoDiPack
- Extension towards FPGAs (reconfigurable computing)

Appendix

Further applications of the AFC framework

Idealized Z-pinch implosion model ${ }^{11}$

- Generalized Euler system coupled with scalar tracer equation

$$
\frac{\partial}{\partial t}\left[\begin{array}{c}
\rho \\
\rho \mathbf{v} \\
\rho E \\
\rho \lambda
\end{array}\right]+\nabla \cdot\left[\begin{array}{c}
\rho \mathbf{v} \\
\rho \mathbf{v} \otimes \mathbf{v}+p \mathcal{I} \\
\rho E \mathbf{v}+p \mathbf{v} \\
\rho \lambda \mathbf{v}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathbf{f} \\
\mathbf{f} \cdot \mathbf{v} \\
0
\end{array}\right]
$$

- Equation of state

$$
p=(\gamma-1) \rho\left(E-0.5|\mathbf{v}|^{2}\right)
$$

- Non-dimensional Lorentz force

$$
\mathbf{f}=(\rho \lambda)\left(\frac{l(t)}{I_{\max }}\right)^{2} \frac{\hat{e}_{r}}{r_{\mathrm{eff}}}, \quad 0 \leq \lambda \leq 1
$$

$$
\mathbf{v}=0.0, p=1.0 \text { everywhere }
$$

${ }^{11}$ J.W. Banks, J.N. Shadid, IJNMF 2009, 61(7), 725-751

Idealized Z-pinch implosion

Time: 0.00

Idealized Z-pinch implosion

Time: 0.20

Idealized Z-pinch implosion

Time: 0.40

Idealized Z-pinch implosion

Time: 0.60

Idealized Z-pinch implosion

Time: 0.80

FCT

density

Idealized Z-pinch implosion

Time: 0.85

FCT

density

$5.0 \mathrm{e}-01$

Idealized Z-pinch implosion

Time: 0.90

Idealized Z-pinch implosion

Idealized Z-pinch implosion

[^0]: ${ }^{1}$ https://github.com/ddemidov/vexcl

[^1]: ${ }^{1}$ https://github.com/ddemidov/vexcl

[^2]: ${ }^{2}$ Similar formulations exist for primitive and entropy variables

[^3]: ${ }^{2}$ https://gitlab.com/mmoelle1/FDBB.git

[^4]: ${ }^{9} \mathrm{PhD}$ project by J. Hinz

[^5]: ${ }^{9} \mathrm{PhD}$ project by J. Hinz

