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Overview

1 From Numerical Analysis to Hardware-Oriented Numerics

2 Computational Building Blocks: Smart Fast Expression Templates

3 Application: Compressible flow solver

4 Isogeometric Analysis

5 Applications: Flow Problems, Meshing, and Optimization
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Numerical Analysis: Past, Present, and Future(?)

Given a problem p ∈ P:

−∆u = f + bc’s

1 Find a method m ∈M that solves problem p

continuous Galerkin P1-FEM

2 Find an algorithm a ∈ A that realizes method m

matrix-free CG solver with element-wise Gaussian quadrature

QoI: errors, rate of convergence, FLOP, stability, monotonicity, . . .

Given a hardware h ∈H:

3 Find an implementation i ∈ I that realizes algorithm a

OpenMP parallelized SHMEM C++ code using Eigen library

QoI: FLOPS, memory bandwidth, parallel speed-up, . . .

THE metric that matters: time to solution for prescribed accuracy
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Hardware-Oriented Numerics

State of the art

Given a problem p ∈ P and a target hardware h ∈H:

1 Find an optimal combination (m, a, i)p,h ∈M ×A × I that solves
problem p on hardware h in shortest time with prescribed accuracy

Next step

2 Develop a strategy that automatically inspects the available
hardware and chooses the optimal combinations (m, a, i)p,hk

Future vision

3 Automatically determine and schedule optimal combinations
(m, a, i)pj ,hk ∈M ×A × I for multi-physics problems
{p1,p2, . . .} ⊂ P and target hardware {h1,h2, . . .} ⊂H
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HPC hardware

and beyond

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs many-core MICs and GPUs FPGAs

There are good reasons (performance-per-watt, low-latency) to believe
that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators Stand-alone Xeon Phi Hybrid CPU/FPGA

6 / 45



HPC hardware

and beyond

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs many-core MICs and GPUs FPGAs

There are good reasons (performance-per-watt, low-latency) to believe
that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators

Stand-alone Xeon Phi Hybrid CPU/FPGA

6 / 45



HPC hardware

and beyond

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs many-core MICs and GPUs FPGAs

There are good reasons (performance-per-watt, low-latency) to believe
that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators Stand-alone Xeon Phi

Hybrid CPU/FPGA

6 / 45



HPC hardware

and beyond

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs many-core MICs and GPUs FPGAs

There are good reasons (performance-per-watt, low-latency) to believe
that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators Stand-alone Xeon Phi Hybrid CPU/FPGA

6 / 45



HPC hardware and beyond

Current and (most probably) future HPC hardware is diversified:

multi-core CPUs many-core MICs and GPUs FPGAs

There are good reasons (performance-per-watt, low-latency) to believe
that the future of HPC lies in heterogeneous and hybrid technologies:

CPUs + accelerators Stand-alone Xeon Phi Hybrid CPU/FPGA

Quantum Computing

Strong effort in the Netherlands to establish quantum computers
and algorithms as key technology in future scientific computing

Application in PDE-constrained optimization

• ∃ QA to estimate x⊺Mx s.t. Ax = b in poly(logN, log(1/ε))
• best classical algorithm requires O(N√

κ)
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Question 1

Can we come up with a unified programming approach to exploit
the performance of the different hardware architectures automati-
cally with minimal effort for code development and maintenance?
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Computational building blocks
• Highly optimized dense and sparse linear algebra libraries

y ← α ∗ x + y , y ← A−1 ∗ x

BLAS/LAPACK implementation of y ← A−1(x − y)

c a l l xSCAL ( n , −1.0 , y , 1)
c a l l xAXPY( n , 1 . 0 , x , 1 , y , 1)
c a l l xGESV( n , 1 , A, n , IPIV , y , 1 , INFO )

Here: 3 function calls, 5× fetching data, 3× storing data.

Ideal: no call (inlining!), 3× fetching data, 1× storing data.

And it’s the memory transfer that is the bottleneck!

• Expression template libraries (ETLs)

y ← A ∗ ((m. ∗m)./(ρ) + p)
• Smart and fast expression template libraries which combine

classical ETL concepts with vector intrinsics, node-level
parallelization, cache-size/architecture optimized compute kernels

• Just-in-time compilation (’reconfigurable computing’)
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SFET concept

Code that you write1

vex : : v e c t o r<f l o a t > x , y , z ; z = x ∗ y ;

OpenCL compute kernel generated by VexCL

k e r n e l v o i d v e x c l k e r n e l ( . . . ) {
f o r ( s i z e t i d x = g e t g l o b a l i d ( 0 ) ;

i d x < n ;
i d x += g e t g l o b a l s i z e ( 0 ) ) {

prm 1 [ i d x ] = prm 2 [ i d x ] ∗ prm 3 [ i d x ] ; }}

1https://github.com/ddemidov/vexcl
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vex : : v e c t o r<f l o a t > x , y , z ; z = x ∗ y ;

CUDA compute kernel generated by VexCL

e x t e r n ”C” g l o b a l v o i d v e x c l k e r n e l ( . . . ) {
f o r ( s i z e t i d x = blockDim . x ∗ b l o c k I d x . x

+ t h r e a d I d x . x ,
g r i d s i z e = blockDim . x ∗ gr idDim . x ;
i d x < n ;
i d x += g r i d s i z e ) {
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SFET concept

Code that you write1

vex : : v e c t o r<f l o a t > x , y , z ; z = x ∗ y ;

MaxJ compute kernel to be generated by VexCL (D.Pouw)

c l a s s v e x c l k e r n e l e x t e n d s K e r n e l {
p u b l i c v e x c l k e r n e l ( . . . ) {

DFEVar x = i o . i n p u t ( ” x” , d f e F l o a t ( 8 , 2 4 ) ) ;
DFEVar y = i o . i n p u t ( ” y” , d f e F l o a t ( 8 , 2 4 ) ) ;

DFEVar r e s u l t = x ∗ y ;
i o . output ( ” z ” , r e s u l t , d f e F l o a t ( 8 , 2 4 ) ) ; }}

1https://github.com/ddemidov/vexcl
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Compressible Euler equations

Divergence form

∂tU +∇ ⋅ F(U) = 0

Quasi-linear form

∂tU +A(U) ⋅ ∇U = 0

Conservativea variables, inviscid fluxes, flux-Jacobian matrices

U =
⎡⎢⎢⎢⎢⎢⎣

ρ
ρv
ρE

⎤⎥⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎢⎣

ρv
ρv ⊗ v + Ip
v(ρE + p)

⎤⎥⎥⎥⎥⎥⎦
, A = ∂F

∂U

Equation of state (here for an ideal gas)

p = (γ − 1) (ρE − 1

2
ρ∥v∥2) , γ = Cp/Cv

aSimilar formulations exist for primitive and entropy variables
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, F =

⎡⎢⎢⎢⎢⎢⎣

f 1
1 ⋯ f d1
⋮ ⋱ ⋮

f 1
d+2 ⋯ f dd+2

⎤⎥⎥⎥⎥⎥⎦
, A = ∂F

∂U

Notation

fk = [f 1
k , . . . , f

d
k ] , fk =

⎡⎢⎢⎢⎢⎢⎣

f k1
⋮

f kd+2

⎤⎥⎥⎥⎥⎥⎦

aSimilar formulations exist for primitive and entropy variables
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Fluid Dynamics Building Blocks2
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Unified wrapper function API to core functionality of ETL’s:
make temp, tag, tie, +, -, *, /, abs, sqrt, ...

H
ig
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-l

ev
el

SFET’s for conservative/primitive variables, EOS, invis-
cid/viscous fluxes, flux Jacobians, and Riemann solvers

2https://gitlab.com/mmoelle1/FDBB.git
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FDBB at work

Implementation of ∥v∥2

// EOS f o r i d e a l gas (gamma=1.4)
t y p e d e f fdbb : : fdbbEOSidealGas<T> eos ;

// C o n s e r v a t i v e v a r i a b l e s i n 3d
t y p e d e f fdbb : : f d b b V a r i a b l e s<eos , 3 ,

fdbb : : EnumVar : : c o n s e r v a t i v e> v a r ;

// VexCL backend
vex : : v e c t o r<T> u1 , u2 , u3 , u4 , u5 , v ;

// G e n e r i c i m p l e m e n t a t i o n
v = v a r : : v mag2 ( u1 , u2 , u3 , u4 , u5 ) ;

12 / 45
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FDBB µ-benchmark

• All tests were run under CentOS Linux 6.7, GCC 5.3.0, nvcc 7.5.17
with thread pinning (likwid-pin -c N:0-15 benchmark)

• CPU benchmarks
• 2x Intel E5-2670 (16 cores), 2.60GHz, 20MB Cache, 64GB RAM
• ETL’s: Armadillo, Blaze, Blitz++, Eigen, IT++, uBLAS

• GPU benchmarks
• 1x NVIDIA Tesla K20Xm, ECC off, 6GB (DriVer: 352.93)
• ETL’s: ArrayFire and VexCL with CUDA backend enabled

13 / 45
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FDBB µ-benchmark

y ← (mx . ∗mx +my . ∗my +mz . ∗mz)./(ρ. ∗ ρ) 7 flop
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Problem size [bytes]

Double precision performance

Armadillo specific
fdbb

ArrayFire specific
fdbb

Blaze specific
fdbb

Blitz++ specific
fdbb

Eigen specific
fdbb

IT++ specific
fdbb

uBLAS specific
fdbb

VexCL specific
fdbb
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Question 2

Given we have a highly tuned SFET library (and FDBB), how can
we design a compressible flow solver based on SpMV and at the
same time flexible enough for practical applications?
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Compressible Euler equations

Galerkin ansatz (”find solution U s.t. for all W ”)

∫
Ω
W ∂tU −∇W ⋅ F(U)dΩ + ∫

Γ
WF b(U, ⋅)ds = 0

with boundary fluxes

F b =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[0,pn1,pn2,pn3,0]⊺ at solid walls

1
2(Fn(U−) + Fn(U+)) − 1

2 ∣An(Roe(U−,U+))∣ otherwise

Fletcher’s group formulation3

Uh =∑
A

(I ⊗ ϕA(x))UA(t), Fh =∑
A

(I ⊗ ϕA(x))FA(t), FA = F(UA)

3C.A.J. Fletcher, CMAME 37 (1983) 225–244.
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Compressible Euler equations

Semi-discretized problem

⎡⎢⎢⎢⎢⎢⎣

M
⋱

M

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

u̇1

⋮
u̇d+2

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

C
⋱

C

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

f⊺1
⋮

f⊺d+2

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

S
⋱

S

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

fb
⊺

1

⋮
fb

⊺

d+2

⎤⎥⎥⎥⎥⎥⎦
= 0

Read the above as

Cf⊺k = [C 1, . . . ,Cd]
⎡⎢⎢⎢⎢⎢⎣

f 1
k

⋮
f dk

⎤⎥⎥⎥⎥⎥⎦
=

d

∑
l=1

C k f lk for k = 1, . . . ,d + 2

and the same for Sfb
⊺

k
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Compressible Euler equations
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S
⋱

S

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

fb
⊺

1

⋮
fb

⊺

d+2

⎤⎥⎥⎥⎥⎥⎦
= 0

Constant coefficient matrices

M = [∫
Ω
ϕAϕB dΩ] C = [−∫

Ω
∇ϕAϕB dΩ] S = [∫

Γ
ϕAϕBnds]

whereby

−∫
Ω
∇ϕAϕB dΩ = ∫

Ω
ϕA∇ϕB dΩ + ∫

Γ
ϕAϕBnds ⇒ C +C⊺ = S
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Stabilization by algebraic flux correction

(I ⊗mA)U̇A +∑
B

(cAB ⋅ FB + sAB ⋅ Fb
B)

+ ∑
B∈JA

DAB(UB −UA) = ∑
B∈JA

αABFAB

1 Perform row-sum mass lumping to decouple the degrees of freedom

2 Add discrete artificial dissipation to prevent spurious oscillations

3 Decompose anti-diffusion into fluxes and apply a limited correction

Details:

• Kuzmin, M., Gurris, AFC II. Compressible Flow Problems.
In: Flux-Corrected Transport, Springer, 2012
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Stabilization by algebraic flux correction

(I ⊗mA)U̇A +∑
B

(cAB ⋅ FB + sAB ⋅ Fb
B)

+ ∑
B∈JA

DAB(UB −UA) = ∑
B∈JA

αABFAB

Compute kernels

• block-VV and block-SpMV

• edge-loops over non-zero entries of sparsity graph

IA ∶= {B ∶ suppϕA ∩ suppϕB ≠ ∅}, JA ∶= IA ∖ {A}

• symmetric operators DAB and αAB

• skew-symmetric fluxes UB −UA and FAB

⇒ can be expressed as block-SpMV
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Illustration of Zalesak’s flux limiter4

xA−1 xA xA+1

ũmin
A

ũ ũmax
A

uAFCA

• Mass-lumped low-order predictor yields nodal bounds ũ
max
min
A

• AFC-corrected solution is allowed to vary within the bounds

4S. Zalesak, JCP 1979, 31(3), 335–362

19 / 45



Double Mach reflection5

Test: Roe-linearization + FCT, structured mesh, Q1 finite elements

T = 0.2, Crank Nicolson time stepping (θ = 0.5)

60○

Γwall

ΓoutUL =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

8.0
8.25 cos 30○

−8.25 sin 30○

116.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

ΓL ΓR

UR =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.4
0.0
0.0
1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

5P.R. Woodward, P. Colella, JCP 54, 115 (1984), 115–173.
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Double Mach reflection

Low-order, h = 1/512, ∆t = 1.25 ⋅ 10−5

FCT, αij(ρ,p), h = 1/512, ∆t = 1.25 ⋅ 10−5
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Double Mach reflection

FCT, αij(ρ, ρE), h = 1/512, ∆t = 1.25 ⋅ 10−5

FCT, αij(ρ,p), h = 1/512, ∆t = 1.25 ⋅ 10−5
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Question 3

The presented approach is applicable to unstructured meshes and
general FE spaces except for AFC which is limited to P1 and Q1!

It there a way to extend AFC to higher-order approximations?
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Polynomial spaces

Definition

The space of polynomials of degree p over the interval [a,b] is

Πp([a,b]) ∶= {q(x) ∈ C∞([a,b]) ∶ q(x) =
p

∑
i=0

cix
i , ci ∈ R}

Example: Π2([0,1])
• Canonical basis

B = {1, x , x2}
• Polynomials

q(x) = c0 + c1x + c2x
2
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Spline space

Definition

Let P = {a = x1 < ⋅ ⋅ ⋅ < xp+1 = b} be a partition of the interval
Ω0 and M = {1 ≤ mi ≤ p + 1} a set of positive integers. The
polynomial spline of degree p is defined as s ∶ Ω0 ↦ R if

s ∣[xi ,xi+1] ∈ Πp([xi , xi+1]), i = 1, . . . , k

d j

dx j
si−1(xi) =

d j

dx j
si(xi),

i = 2, . . . , k ,
j = 0, . . . ,p −mi

Polynomial splines of degree p form the spline space S(Ω0,p,M,P).
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Knot vectors

Definition

A knot vector is a sequence of non-decreasing values ξi ∈ [a,b] ⊂ R
in the parameter space Ω0 = [a,b]

Ξ = (ξ1, ξ2, . . . , ξn+p+1)

where

• p is the polynomial order of the B-splines

• n is the number of B-spline functions

• ξi is the i-th knot with knot index i

Knots ξi can have multiplicity 1 ≤ mi ≤ p + 1. The knot vector is called
open if the first and last knot have multiplicity p + 1.
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B-spline basis functions

Cox-de Boor recursion formula

p = 0

Ni ,0(ξ) = { 1 if ξi ≤ ξ < ξi+1

0 otherwise

p > 0

Ni ,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni ,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ)
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B-spline basis functions
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Constant basis functions corresponding to Ξ = {0,0,0,1,2,3,3,3}
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B-spline basis functions
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B-spline basis functions
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Properties of B-spline basis functions

Compact support

supp Ni ,p(ξ) = [ξi , ξi+p+1), i = 1, . . . ,n

• System matrices are sparse like in the standard FEM

• Support grows with the polynomial order so that system matrices
have a slightly broader stencil due to the coupling of degrees of
freedom over multiple element layers (good for HPC)
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Properties of B-spline basis functions

Compact support

supp Ni ,p(ξ) = [ξi , ξi+p+1), i = 1, . . . ,n

Strict positiveness

Ni ,p(ξ) > 0 for ξ ∈ (ξi , ξi+p+1), i = 1, . . . ,n

• Consistent mass matrix has no negative off-diagonal entries

• Lumped mass matrix is not singular (no zero diagonal entries)
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Properties of B-spline basis functions

Compact support

supp Ni ,p(ξ) = [ξi , ξi+p+1), i = 1, . . . ,n

Strict positiveness

Ni ,p(ξ) > 0 for ξ ∈ (ξi , ξi+p+1), i = 1, . . . ,n

Partition of unity

n

∑
i=1

Ni ,p(ξ) = 1 for all ξ ∈ [a,b]
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Properties of B-spline basis functions

Derivatives

Derivative is a B-spline of order p − 1

d

dξ
Ni ,p(ξ) =

p

ξi+p − ξi
Ni ,p−1(ξ) −

p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ)

Expression for kth derivative

dk

dkξ
Ni ,p(ξ) =

p!

(p − k)!

k

∑
j=0

αk,jNi+j ,p−k(ξ)

with recursively defined coefficients αk,j
a

aL. Piegl, W. Tiller. The NURBS book (1997).
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Spline curves

Geometric mapping G ∶ Ω0 ↦ Ωh ≃ Ω

G(ξ) =
n

∑
i=1

Ni ,p(ξ)Bi set of control points Bi ∈ Rd ,d ≥ 1

• Cp−mi continuous curve (mi is
the multiplicity of knot ξi )

• Convex hull property

• Variation diminishing property

• Knot insertion (h-adaptivity),
order elevation (p-adaptivity)
preserve shape of geometry
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Spline surfaces

Geometric mapping G ∶ Ω0 ↦ Ωh ≃ Ω

G(ξ, η) =
n

∑
i=1

m

∑
j=1

Ni ,p(ξ)Nj ,q(η)Bi ,j Bi ,j ∈ Rd ,d ≥ 2

• Computational ’mesh’ is a
multi-variate parameterization
of Ωh. It can be canonically
generated from the geometry
by knot insertion and/or order
elevation (ϕ̂A,BA)→ (ϕ̃A, B̃A)
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Spline surfaces

Geometric mapping G ∶ Ω0 ↦ Ωh ≃ Ω

G(ξ) =∑
A

ϕ̂A(ξ)BA BA ∈ Rd ,d ≥ 2, multi-index A

• Computational ’mesh’ is a
multi-variate parameterization
of Ωh. It can be canonically
generated from the geometry
by knot insertion and/or order
elevation (ϕ̂A,BA)→ (ϕ̃A, B̃A)
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Marriage of geometry and discretization

Geometric mapping

G(ξ) =∑
A

ϕ̂A(ξ)BA ’push-forward’ G ∶ Ω0 ↦ Ωh

Ansatz space

Vh = span{ϕA(x) = ϕ̃A ○G−1(x)} ’pull-back’ G−1 ∶ Ωh ↦ Ω0

32 / 45



Question 4

Bézier extraction is commonly promoted as ’the’ way to inte-
grate isogeometric analysis into classical finite element codes. But
doesn’t this contradict the concept of hardware-oriented numerics?

Our research is based on genuine IgA tools:

• C++ library developed at JKU/RICAM, Linz

• Python library by Evalf Computing, Delft
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Application: Convection-diffusion equation

Convection skew to the mesh

Quadratic bi-variate B-spline basis functions.
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Application: Compressible Euler equations

Convection of isentropic vortex6

ρ vx vy

Quadratic bi-variate B-spline basis functions.

6H-C. Yee, N. Sandham, M. Djomehri, JCP 150 (1999) 199-238.
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Application: Compressible Euler equations

Sod’s shock tube problem7

ρ vx p

Quadratic bi-variate B-spline basis functions.

7G.A. Sod, JCP 27 (1978) 1–31.
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Application: IgA on evolving manifolds

Gray-Scott reaction-diffusion model

ut + u(ln
√
gt)t − d1∆u = F (1 − u) − uv2

vt + v(ln
√
gt)t − d2∆v = −(F +H)v + uv2

s = Kvn

MSc-thesis project by J. Hinz

new since it has been applied to model plant growth [21] but it
seems to be the first to tackle the very old and controversial
problem of brain folding in terms of reaction diffusion coupled to
surface deformation. However the question about the origin of the
morphogens used in our model remains open. In [14] the
activation/inhibition process is supposed to model the mechanical
tensions due to white matter fibers so the morphogenetic approach
becomes indirect and extrinsic. On the contrary we prefer to view
the folding process as the result of an intrinsic phenomenon,
promoted by morphogens that decide the cytoarchitechtony.
Different cytoarchitechtonic areas would correspond to different
gyri and the limits between areas to sulci. This idea, suggested one
century ago by Broadmann, has been recently pointed out in [36].
Moreover in [15], the GIP model supposes that the morphogens
responsible for the patterning of subventricular zone could be
some specific genes such as Pax6, Ngn2, Id4. Our model supports
this hypothesis since mutations in the Pax6 gene for instance can
be responsible for polymicrogyria [37], so the parameters F and k
of the model could reflect different gene expression of Pax6. We

Figure 6. Three modes of variability and their correspondence on real anatomies. First column: Three different modes of variability for the
main fold observed on Fig. 5. We can see that the main sulcus, in one part at top left, is interrupted by a gyrus surrounded in white at middle left, and
interrupted by two gyrus at bottom left. Second column: Two different modes of variability for the superior temporal sulcus on experimental data.
Top: the superior temporal sulcus (STS) in pink is in one part. Middle: the STS is in two parts. Bottom: the STS is in three parts.
doi:10.1371/journal.pcbi.1000749.g006

Figure 7. Different modes of the main fold. The histogram shows
the different modes - i.e. the number of connected components - of the
main fold.
doi:10.1371/journal.pcbi.1000749.g007

A Model of Human Brain Development

PLoS Computational Biology | www.ploscompbiol.org 7 April 2010 | Volume 6 | Issue 4 | e1000749

J. Lefèvre, J-F. Mangin, PLoS Comput. Biol. 6(4) e1000749.
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Application: IgA on evolving manifolds

Phenomenological human brain development model

• multi-patch geometry
Ωh ≃ Ω approximated by
quadratic (hierarchical)
B-spline basis functions

• Cp−1 continuity along
patch boundaries due to
periodic basis functions

• C 0 continuity in the vicinity
of the triple points
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A Model of Human Brain Development

PLoS Computational Biology | www.ploscompbiol.org 7 April 2010 | Volume 6 | Issue 4 | e1000749
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Application: Isogeometric ’mesh generation’8

Create a valid mapping (= diffeomorphism, e.g., det J > 0 on Ω0)

G ∶ Ω0 ↦ Ωh ≃ Ω

starting from the boundary parameterization ⋃i γi of Ω by solving

{ ∆x(ξ, η) = 0
∆y(ξ, η) = 0

s.t. S∣∂Ωi
= γi .

Theory: Ωh must be convex for G to be a diffeomorphism.

8PhD project by J. Hinz
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Application: Isogeometric ’mesh generation’8

Create a valid mapping (= diffeomorphism, e.g., det J > 0 on Ω0)

G ∶ Ω0 ↦ Ωh ≃ Ω

starting from the boundary parameterization ⋃i γi of Ω by solving

{ ∆ξ(x , y) = 0
∆η(x , y) = 0

s.t. S−1∣
γi
= ∂Ωi

for the inverse mapping G−1 ∶ Ωh ↦ Ω0. Inversion yields

{ g22xξξ − 2g12xξη + g11xηη = 0
g22yξξ − 2g12yξη + g11yηη = 0

s.t. G∣∂Ωi
= γi ,

where g11 = x2
ξ + y2

ξ , g12 = xξxη + yξyη and g22 = x2
η + y2

η .

8PhD project by J. Hinz
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Application: Isogeometric ’mesh generation’9

1 Boundary reparameterization

2 Defect detection, e.g., where
det J(ξ∗) < 0 or using the
dual-weighted residual approach
by Becker and Rannacher and
refine the parameterization locally
(THB-splines by Giannelli et al.)

3 Possible extensions:
• optimization of ’mesh properties’
• multi-patch segmentation
• 4th order PDE-problem

9PhD project by J. Hinz
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Application: Isogeometric ’mesh generation’9

9PhD project by J. Hinz
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Application: Adjoint-based optimization10

Proof-of-concept: AD of G+Smo using CoDiPack

−∆u +∇ ⋅ (vu) = f in Ωh, u ≡ 1 on ∂Ωh

with exact solution u ≡ 1.

Goal: Maximize area A = ∥uh∥L2(Ωh) of geometry Ωh while preserving

the circumference C = ∥uh∥L2(Γh) of the initial geometry Ω0 = [0,1]2.

Gradient based optimization using IpOpt with cost functional

L = −A + η∣C0 − C ∣

10PhD project by A. Jaeschke (Lodz)
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Conclusion and outlook

1 Open-source Fluid Dynamic Building Blocks library
https://gitlab.com/mmoelle1/FDBB.git

2 IgA-based solver for compressible flows

3 Isogeometric ’mesh generation’

4 Proof-of-concept AD of G+Smo code

Ongoing and future work:

• Distributed JIT compilation of multi-patch geometries

• Embedding of linear algebra SFETs into CoDiPack

• Extension towards FPGAs (reconfigurable computing)
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Appendix

Further applications of the AFC framework
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Idealized Z-pinch implosion model11

• Generalized Euler system coupled with scalar tracer equation

∂

∂t

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ
ρv
ρE
ρλ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+∇ ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρv
ρv ⊗ v + pI
ρEv + pv
ρλv

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
f

f ⋅ v
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

• Equation of state

p = (γ − 1)ρ(E − 0.5∣v∣2)

• Non-dimensional Lorentz force

f = (ρλ) ( I(t)
Imax

)
2

êr
reff
, 0 ≤ λ ≤ 1

λ = 1.0
ρ = 106

ρ = 1.0
λ = 0.0

ρ = 0.5
λ = 0.0

v = 0.0, p = 1.0 everywhere

11J.W. Banks, J.N. Shadid, IJNMF 2009, 61(7), 725–751
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Idealized Z-pinch implosion
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Idealized Z-pinch implosion

FCT

Low-order

@
@

@
@

@
@

@
@

@I r = 0.5
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