Numerical Analysis group

Department of Applied Mathematics (DIAM) Faculty of Electrical Engineering, Mathematics and Computer Science

Head – Kees Vuik

- Professor of Numerical Analysis
- Director of the TU Delft Institute of Computational Science and Engineering (DCSE)
- Director of Delft High Performance Computing Center (DHPC)
- Scientific Director of 4TU.AMI Applied Mathematics Institute

Staff

- Prof.dr.ir. C. Vuik
- Prof.dr.ir. C.W. Oosterlee (TUD, CWI)
- Dr. N.V. and Dr.ir. M.B. van Gijzen
- Dr. K. Cools, Dr. D. Toshniwal, Dr. M. Möller
- Dr.ir. J.E. Romate (TUD, Shell)
- Drs. I. Goddijn, Ir. P. van Nieuwenhuizen
- Dr.ir. D. den Ouden, Drs. S. Aerts
- 25-30 PhD students/postdocs, 20 Master/Bachelor students

Research

Numerical Methods

BEM, FEM, IGA, meshless methods (SPH), hybrid methods (MPM)

Fast Solvers

Krylov methods, multigrid, preconditioners, domain decomposition

Scientific Computing

High-performance computing, GPU, FPGA, quantum computing

Applications

 CFD, CSM, multi-phase flows, inverse problems, medical imaging, computational finance, radar applications, scientific machine learning

Numerical Simulations

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) - \nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

Karman vortex street animation by V. Fuka (https://artax.karlin.mff.cuni.cz/~fukav1am/sqcyl.html)

Numerical Simulations

$$\rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} \right) - \nabla \cdot \boldsymbol{\sigma} = \boldsymbol{f}$$
$$\nabla \cdot \boldsymbol{u} = 0$$

Karman vortex street animation by V. Fuka (https://artax.karlin.mff.cuni.cz/~fukav1am/sqcyl.html)

Numerical Simulations

- Study the behavior of fluids, solids, stock market ... by virtual experiments under changes to external parameters (geometry, material, ...) in order to
 - predict future behaviour (weather, stock market, ...)
 - **optimize** the shape of designs (aircraft wing, nozzles, ...)
 - find back hidden parameters (inverse problems)
 - analyse what-if scenarios

Our interests

- Development, analysis and implementation of new numerical methods
- Use of methods in applications (in collaboration with domain experts)

Design optimization of rotor profiles

Traditional workflow

Paradigm shift: Design-Through-Analysis

CAD-integrated CAE pipeline

B-spline basis functions (quadratic, p = 2)

B-spline curves

Polygons are just linear B-spline curves

Open-source software

Flexible floating structures

TU Delft 3mE Ships and Offshore Structures

Efficient multigrid solvers (not A\b)

	p=2		p = 3		p = 4		p = 5	
	ILUT	GS	ILUT	GS	ILUT	GS	ILUT	GS
$h = 2^{-6}$	2	13	2	18	2	41	2	78
$h = 2^{-7}$	2	12	2	20	2	41	2	92
$h = 2^{-8}$	3	13	2	19	2	43	2	95
$h = 2^{-9}$	3	13	2	21	2	41	2	95
(a) Poissons's equation on quarter annulus								
$h = 2^{-6}$	2	7	2	13	2	29	2	65
$h = 2^{-7}$	2	8	2	13	2	29	2	70
$h = 2^{-8}$	2	7	2	12	2	29	2	64
$h = 2^{-9}$	2	7	2	14	2	28	2	72
(b) CDR-equation on unit square								
$h = 2^{-6}$	3	10	2	16	2	26	2	52
$h = 2^{-7}$	3	10	2	17	2	32	2	57
$h = 2^{-8}$	3	10	2	17	2	33	2	66
$h = 2^{-9}$	4	11	2	18	2	36	2	64
(c) Poissons's equation on L-shaped domain								
$h = 2^{-2}$	2	14	2	30	2	94	3	276
$h = 2^{-3}$	2	16	2	40	2	105	2	229
$h = 2^{-4}$	2	19	2	44	2	119	3	285
$h = 2^{-5}$	2	19	2	49	3	136	≤ 3	310

(d) Poissons's equation on the unit cube

Material Point Method

(a) formation of the first slip plane at t = 6.0 s

(b) formation of the second slip plane at t = 23.25 s

(c) final quasi-static state at t = 38.25 s

Faster convergence is better!

Scientific computing

Divide-and-conquer

Offloading

Scientific computing in the quanum era

- Divide-and-conquer
- $\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) \nabla \cdot \sigma = f$ $\nabla \cdot u = 0$ $\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) \nabla \cdot \sigma = f$ $\nabla \cdot u = 0$ $\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) \nabla \cdot \sigma = f$ $\nabla \cdot u = 0$ $\rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) \nabla \cdot \sigma = f$ $\nabla \cdot u = 0$

Offloading

Application: First bell state

#include <LibKet.hpp>

```
// Select quantum device
QDevice<ibmq_london, 5> device;
```

```
// Populate quantum kernel
device(expr);
```

```
// Execute quantum job
auto job = device.execute_async(..., [stream]);
```

```
// Wait for job and retrieve result
auto result = job->get();
```

Application: First bell state

#include <LibKet.hpp>

// Select quantum device
QDevice<ibmq_london, 5> device;

// Populate quantum kernel
device(expr);

// Execute quantum job
auto job = device.execute_async(..., [stream]);

```
// Wait for job and retrieve result
auto result = job->get();
```


 $|0\rangle_A$

H

 $|0\rangle$

H

Application: First bell state

Towards a "QTOP-500": n-qubit QFT benchmark

Execute n-qubit QFT for n=1..12 on different quantum simulators

Ongoing projects

- Quantum Linear Solvers
 [S. Sigurdson]
- Quantum Linear Solvers with application to CFD / CSM [E. Cappanera & G. Balducci]
- Quantum-accelerated optimization for graph problems [J. Bus]
- Quantum Machine Learning [C. Swart & M. v Loenen]

Ethics Inf Technol (2017) 19:253–269 DOI 10.1007/s10676-017-9438-0

ORIGINAL PAPER

On the impact of quantum computing technology on future developments in high-performance scientific computing

Matthias Möller¹ · Cornelis Vuik¹

A conceptual framework for quantum accelerated automated design optimization

Matthias Möller^{a,*}, Cornelis Vuik^a

Delft University of Technology, Delft Institute of Applied Mathematics (DIAM), Van Mourik Broekmanweg 6, XE Delft 2628, The Netherlands

|Lib>: A Cross-Platform Programming Framework for Quantum-Accelerated Scientific Computing

Matthias $M\"oller^{(\boxtimes)}$ and Merel Schalkers

Department of Applied Mathematics (DIAM) and 4TU.CEE, Centre for Engineering Education, Delft University of Technology, Delft, The Netherlands m.moller@tudelft.nl,merelschalkers@gmail.com http://ta.twi.tudelft.nl/nw/users/matthias/

Scientific machine learning

General-purpose ML

- GP-ANN learns to mimic behavior by massive, time-consuming training
- no guarantee of physically correct results (e.g., negative densities)

Scientific ML

integrate prior knowledge (e.g. physic laws) into network architecture

Ongoing projects

- Matrix decompositions via SML [S. Veldkamp]
- Physics-informed neural networks for ideal MHD equations [J. Bouma]
- SML for solving PDE problems [F. v Ruiten & S. Ul Haq]
- Optimization in optics using SML [J. Imhoff]

Summary

- Research at NAG
 - Numerical Methods
 - Fast Solvers
 - Scientific Computing
 - Applications
- If you are interested in collaboration please contact me/us \rightarrow

Thank you!