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Abstract

New a posteriori error indicators based on edgewise slope-limiting are presented.
The L2-norm is employed to measure the error of the solution gradient in both
global and element sense. A second order Newton-Cotes formula is utilized in order
to decompose the local gradient error from a P1 finite element solution into a sum
of edge contributions. The slope values at edge midpoints are interpolated from the
two adjacent vertices. Traditional techniques to recover (superconvergent) nodal
gradient values from consistent finite element slopes are reviewed. The deficiencies
of standard smoothing procedures – L2-projection and the Zienkiewicz-Zhu patch
recovery – as applied to nonsmooth solutions are illustrated for simple academic
configurations. The recovered gradient values are corrected by applying a slope
limiter edge-by-edge so as to satisfy geometric constraints. The direct computation
of slopes at edge midpoints by means of limited averaging of adjacent gradient
values is proposed as an inexpensive alternative. Numerical tests for various solution
profiles in one and two space dimensions are presented to demonstrate the potential
of this postprocessing procedure as an error indicator. Finally, it is used to perform
adaptive mesh refinement for compressible inviscid flow simulations.

Key Words: error estimation; gradient recovery; adaptive mesh refinement;
convection-dominated problems; high-resolution schemes

1 Introduction

Progress in computer performance and the improvement of numerical methods for CFD
have enabled analysts to simulate more and more challenging problems for which no or at
least little a priori knowledge of the solution structure is available. This increase of com-
plexity has made it rather difficult to guarantee the reliability of the numerical solution.
The recent trend for a posteriori error estimation has provided tools with which to verify
that the model equation is solved accurately enough and/or to steer mesh adaptation.
Starting with the pioneering work of Babuška and Rheinboldt [3] in the late seventies of
the last century, theories and methods of a posteriori error estimation have been devel-
oped extensively [2, 5, 46]. It is noteworthy, that most of the research has focused on
elliptic and parabolic linear problems in the framework of finite element approximations
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while for nonlinear hyperbolic partial differential equations the theory of a posteriori error
estimation and adaptivity has remained in its infancy.

In a series of recent publications [26, 27, 28, 29, 30], a family of high-resolution schemes
subsumed under the algebraic flux correction (AFC) paradigm was developed. In essence,
a linear high order discretization, e.g., standard Galerkin scheme, is rendered local ex-
tremum diminishing (LED) by a conservative elimination of negative off-diagonal entries
from the discrete transport operator so as to end up with a nonoscillatory low-order
approximation. In order to recover the high accuracy of the original scheme a limited
amount of compensating antidiffusion is added in regions of smooth solutions. The in-
terested reader is referred to the aforementioned publications. The promising results
obtained for scalar conservation laws as well as for the simulation of compressible inviscid
and incompressible viscous flows on fixed unstructured grids have led us to combine flux
limiting with an adaptive mesh refinement procedure in order to increase the resolving
power of the algorithm. In addition, the computational cost can be drastically reduced if
local mesh coarsening is employed in regions where the flow field is almost constant or its
variance from node to node is quite small.

A common approach to the adaptive treatment of hyperbolic problems is based in
Richardson extrapolation which is used to estimate the truncation error of the numerical
scheme and equidistribute the error by means of local grid refinement [8, 9, 10]. In its
original form, this technique requires the a priori knowledge of the order of approximation
p. Roache [43] suggested a three grid refinement study to estimate p numerically. For high-
resolution schemes based on flux/slope limiters, the approximation order varies locally
such that special care must be taken [44]. The drawback of extrapolation-based error
indicators is that this approach relies on the local smoothness of the solutions which
cannot be guaranteed for hyperbolic systems of equations. Moreover, its entire relation to
structured grids compromises the flexibility offered by finite elements which are applicable
to unstructured triangular and/or quadrilateral grids.

As an alternative, either a smoothness sensor or the correction factors produced by
the flux limiter can be used to steer grid adaptivity [19]. In order to prevent refinement
due to microscopic jitters in the solution, also the curvature was taken into account. This
approach was adopted to simulate Sod’s transient shock tube problem in one dimension
by means of finite differences. However, the employed indicator strongly depends on the
properties of the limiter and is based solely on the error due to the discretization of
convective terms. Hence, it is incapable of detecting insufficient grid resolution in regions
where no flux limiting is required.

Recovery-based error estimators were first suggested by Zienkiewicz and Zhu [52], as
early as in 1987. The ‘simple error estimator for practical engineering analysis’ presented
for linear elastic problems was motivated by the observation that piecewise continuous
finite element solutions generally exhibit discontinuous gradients at the element interfaces.
Provided the ‘true solution is sufficiently smooth’ [1], these jumps in the gradient serve as
an indicator for errors in the numerical solution. Several methods for recovering improved
gradients have been proposed in the literature. Some of them, including the well-known
Zienkiewicz-Zhu patch recovery technique [53, 54], rely on the superconvergence property
of the finite element method at certain points. Their ease of implementation, robustness,
and accuracy in many situations have boosted the popularity of recovery-based adaptive
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schemes especially in the engineering community. However, problems have been reported
[39] applying this methodology to compressible flows using classical finite element or finite
volume schemes. In essence, shock waves are typically smeared across several elements
and captured as linear approximation with steep gradients. As a consequence, the jumps
across element interfaces are very small and the error predicted by the recovery procedure
tends to zero at the location of the ‘discontinuity’ [38]. Hence, mesh refinement is forced
in the vicinity of the shock but not at its core. Yet, it is questionable if this phenomenon
can be attributed to the error indicator based on gradient reconstruction or to the overly
diffusive discretization scheme employed.

The reformulation of the element gradient error in terms of edge contributions allows
for the application of slope limiting techniques which have been originally designed for a
special treatment of convective terms ∇ · (vu). Let us replace the velocity vector by the
unit vector ei in ith spatial direction one after another. Then the task of finding a good
approximation to the convective term reduces to that of computing the ith component of
the nodal gradient and vice versa. Based on our experience with algebraic flux correction
schemes we derived two different approaches for the evaluation of edge gradients by means
of slope limiting schemes. The gradient values at the edge midpoints can be directly
computed as a limited average of consistent slopes adjacent to the corresponding edge.
Moreover, standard recovery techniques may be employed to acquire smoothed nodal
gradients from which provisional slopes can be interpolated along the edge. A slope
limiter is applied edge-by-edge in order to adjust the intermediate values to the natural
bounds set up by the constant gradient values from adjacent cells. This idea can be traced
back to the concept of flux corrected transport (FCT) [26, 27], whereby a flux limiter was
designed so as to restrict the high-order solution on the basis of upper and lower bounds
stemming from an intermediate positivity-preserving (PP) solution.

2 A posteriori error indicators

As a model problem, consider a partial differential equation of the following form

Lu = f, in Ω, (1)

where the (possibly nonlinear) differential operator L may consist of both spatial and
time derivatives. The variational form of (1) is derived by first multiplying the residual
of this equation by a weighting function w and integrating over the domain Ω

∫

Ω

w[Lu − f ] dx = 0. (2)

Let the exact solution u be approximated by means of finite elements

u ≈ uh =
∑

j

ujϕj , (3)

where ϕj denotes the basis functions spanning the finite-dimensional subspace.
Any solution to equation (2) represents an approximation to the original problem

(1) involving all sorts of numerical errors, such as: integration errors, round-off errors,

3



implementation errors (!), algorithmic error, discretization errors, etc. In what follows,
we shall concentrate on spatial errors due to the finite element discretization.

The numerical error relates the exact solution u of the continuous problem (1) to the
nodal values uh of the finite element approximation satisfying equation (2)

e = u − uh. (4)

Obtaining an approximation to e yields a problem as complex as the one for u. Thus the
main objective of a-posteriori error estimation is not to get an approximation of the error
defined in (4), but to estimate its magnitude in a suitable norm.

Instead of measuring the error of the solution, for some applications, e.g., convection-
dominated flows, it may be useful to consider the error of the gradient. Let

e = σ − σh (5)

denote the vector-valued error in the gradient computed directly from the solution as

σh = ∇uh =
∑

j

uj∇ϕj . (6)

In what follows, we shall refer to σh as the low-order gradient. The aim of recovery-based
estimators, introduced by Zienkiewicz and Zhu in [52], is to replace the exact value σ,
which in general is not known, by a smoothed gradient field σ̂h (defined below), such that

e ≈ ê = σ̂h − σh (7)

gives a good approximation to the exact error defined in (5).
In general, pointwise error estimates are difficult to obtain, so integral measures are

typically employed in the finite element framework. Different norms show different as-
pects of the error, and for convection-dominated problems, the question of choosing an
appropriate norm has not been completely answered. A widely used integral measure is
the standard L2-norm

||ê||L2 =

(
∫

Ω

êTê dx

)1/2

. (8)

Although the above integral measure is defined in the whole domain Ω, its square can be
obtained by summing all element contributions over the triangulation Th of Ω. Thus

||ê||2L2
=

∑

T∈Th

||ê||2L2(T ), (9)

where subscript L2(T ) refers to the local L2-norm computed on element T ∈ Th.
Since we employ piecewise linear (P1) trial functions ϕ for the approximation of the

finite element solution, the discrete gradient σh is constant on each element and exhibits
discontinuous jumps at element interfaces/vertices. Hence, the improved slopes should be
at least piecewise linear so as to provide a better approximation to the exact gradient. To
this end, it suffices to specify slope values at all midpoints of edges, i.e., xij := 1

2
(xi +xj),

to obtain a smoothed quantity σ̂h that varies linearly in each T ∈ Th and is allowed to
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exhibit jumps across interelement boundaries. This approach can be seen as determining
the nodal values for a nonconforming approximation of σ̂h by means of linear Crouzeix-
Raviart (P̃1) finite elements for which the local degrees of freedom are located at edge
midpoints. For bilinear (Q1) finite elements used on quadrilateral meshes, the gradient
approximation can be based on the nonconforming Rannacher-Turek element (Q̃1).

In two space dimensions, the following second order accurate Newton-Cotes quadrature
rule may be used to compute the element contributions to the global gradient error

∫

T

êTê dx =
|T |
3

∑

ij

êT
ij êij, (10)

where |T | stands for the area of the triangle and the summation extends over the midpoints
of the three surrounding edges. Let us single out the contribution of the edge ~ij to (10)

êT
ij êij = [σ̂ij − σij ]

T[σ̂ij − σij ]. (11)

Here, σij := σh(xij) is constant on each element and σ̂ij := σ̂h(xij) varies linearly along
the edge. It remains to devise a procedure for constructing improved gradient values σ̂ij .

3 Gradient reconstruction

Our first approach to obtaining a smoothed edge gradient is largely inspired by slope
limiting techniques employed in the context of high-resolution finite volume schemes and
later carried over to discontinuous Galerkin finite element methods [14]. Various attempts
to extend slope limiting to multidimensions can be found in the literature. In essence, the
task is to reconstruct the slopes at interelement boundaries where discrete solution values
exhibit jumps. However, geometric constraints need to be satisfied in order to guarantee
that the numerical solution is free of nonphysical oscillations which would be generated
otherwise. To this end, the value of the recovered gradient is taken as a limited average
of constant slopes adjacent to edge ~ij.

As an alternative, a provisional gradient at the midpoint of edge ~ij can be linearly
interpolated from nodal values: σ̂ij = 1

2
(σ̂i + σ̂j). Sophisticated projection or discrete

patch recovery techniques can be employed to compute smoothed slopes at the element
vertices. However, the resulting edge gradient may violate the natural bounds given by
the first-order slopes σh of the two adjacent cells. This can be rectified by applying a
slope limiter edge-by-edge so as to satisfy geometric constraints.

3.1 Limited gradient averaging

For simplicity, we will discuss the basic ideas of slope-limited finite volume methods in one
space dimension. Let the interval I =

⋃m
j=1 Ij be partitioned into a set of finite volumes

Ij = (xj−1/2, xj+1/2) and let uj denote the mean value of some scalar quantity u on cell
Ij. The task is to construct a piecewise linear approximate solution

ũh(x) = uj + (x − xj)σj ∀x ∈ Ij, (12)
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where σj denotes an approximation of the solution gradient on the jth cell. In the simplest
case, one-sided or centered slopes have been employed to obtain first- and second-order
accurate schemes, respectively. However, oscillations are quite likely to appear in the
second case while first-order schemes lead to rather diffusive solution profiles. For a
numerical scheme to be nonoscillatory, it should possess certain properties, e.g., be mono-
tone, positivity preserving or total variation/local extremum diminishing. This can be
accomplished by replacing the approximate slope value σj in equation (12) by its limited
counterpart.

For the construction of LED and TVD schemes, Jameson utilized limited average
operators L(a, b) which are characterized by the following properties [24]:

P1. L(a, b) = L(b, a).

P2. L(ca, cb) = cL(a, b).

P3. L(a, a) = a.

P4. L(a, b) = 0 if ab ≤ 0.

While the first three conditions are natural properties of an average, P4 is to be enforced
by means of limiting. Jameson demonstrated that a variety of standard TVD limiters can
be written in such a form. Let the modified sign function be given by

S(a, b) =
sign(a) + sign(b)

2
(13)

which equals zero for ab ≤ 0 and returns the common sign of a and b otherwise. Then
the most widely used two parameter limiters for TVD schemes can be written as:

1. minmod: L(a, b) = S(a, b) min{|a|, |b|}
2. maxmod: L(a, b) = S(a, b) max{|a|, |b|}

3. MC: L(a, b) = S(a, b) min

{ |a+b|
2

, 2|a|, 2|b|
}

4. superbee: L(a, b) = S(a, b) max{min{2|a|, |b|}, min{|a|, 2|b|}}

In light of the above, the limited counterpart of σj in equation (12) can be computed from

σj := L(
uj − uj−1

∆j

,
uj+1 − uj

∆j

), (14)

where the cellwidth of the jth subinterval is denoted by ∆j = xj+1/2 − xj−1/2.
Let us return to our original task that requires the computation of the solution slopes

at the midpoint of edge ~ij so as to estimate its contribution (11) to the local error. Let
σ+

ij and σ−
ij denote the piecewise constant gradient values evaluated on the two elements

to the left and to the right of edge ~ij, respectively. Then, the auxiliary quantities

σ
max
min
ij =

max

min
{σ+

ij , σ
−
ij} (15)
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provide excellent lower and upper bounds that should be satisfied by any gradient value
along the edge. Moreover, each of the limited average operators presented above can be
utilized to obtain a usable edge gradient that can be computed efficiently as follows

σ̂ij = L(σ+
ij , σ

−
ij). (16)

For all limiter functions L presented above, the recovered gradient value equals zero if
σ+

ijσ
−
ij ≤ 0 and satisfies the following inequality otherwise

σmin
ij ≤ σ̂ij ≤ σmax

ij . (17)

If the upper and lower bounds have different signs, this indicates that the approximate
solution attains a local extremum across the edge. Hence, property P4 of limited average
operators acts as a discrete analog to the necessary condition in the continuous case which
requires the derivative to be zero. Clearly, the recovered gradient (16) depends on the
choice of the limiter function to some extent. In the authors’ experience, the monotonized
centered (MC) limiter seems to be a safe choice as it tries to select the standard average
whenever possible without violating the natural bounds (15) provided by the low-order
slopes.

3.2 Nodal gradient recovery

The idea of using recovery techniques to obtain improved gradient/stress values exhibits
quite a long tradition in finite elements (c.f. Oden et al. [34, 35] or Hinton and Campbell
[23]). To the authors’ best knowledge, Cantin et al. [13] were the first to consider so-called
averaging projection schemes which have also been utilized by Zienkiewicz and Zhu [52]
in their original paper on recovery-based error estimation. Let the smoothed gradient be
approximated by

σ̂ =
∑

j

σ̂jφj, (18)

where the coefficients σ̂j are obtained by solving the discrete problem

∫

Ω

φi(σ̂ − σh) dx = 0. (19)

Note that the element shape functions used to construct the basis functions φi onto which
σh is projected may by different from those employed in the finite element approximation
(3). A detailed analysis of projection-based error estimators by Ainsworth et al. [1]
reveals that the corresponding polynomial degrees should satisfy degφ ≥ degϕ. Like in an
earlier publication by Oden and Brauchli [34], they conclude that the recovery procedure
utilized in [52], which corresponds to choosing φ ≡ ϕ in the equations above, ‘is not only
effective, but also the most economical’ one. Substitution of equation (18) into (19) yields

∑

j

[
∫

Ω

φiφj dx

]

σ̂j −
∑

j

[
∫

Ω

φi∇ϕj dx

]

uj = 0, ∀i. (20)
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Thus, the smoothed gradient can be recovered by solving the linear algebraic system

MC σ̂ = Cu, (21)

where MC = {mij} denotes the consistent mass matrix and C = {cij} is the matrix of
discretized spatial derivatives. The coefficients of these matrices are given by

mij =

∫

Ω

φiφj dx, cij =

∫

Ω

φi∇ϕj dx. (22)

For a fixed mesh, the coefficients mij and cij remain unchanged throughout the simulation
and, consequently, need to be evaluated just once during the initialization step and each
time the grid has been modified. If φ ≡ ϕ, the coefficients defined in (22) coincide with
the matrix entries of the finite element approximation and, hence, are available at no
additional cost.

An edge-by-edge assembly of the right-hand side is also feasible

(Cu)i =
∑

j 6=i

cij(uj − ui) (23)

since C features the zero row sum property
∑

j cij = 0 as long as the sum of the basis
functions equals one. Note that for φ ≡ ϕ, the algebraic system (21) can also be obtained
by applying the standard Galerkin approximation to the weak form of the continuous
problem σ = ∇u. Thus, projection schemes of the form (18)–(19) are called variational
recovery [31] and can be applied repeatedly so as to determine an approximation to a
higher-order derivative.

The solution to the algebraic system (21) can be computed iteratively by successive
approximation preconditioned by the lumped mass matrix ML = {mi}, mi =

∑

j mij

σ̂(m+1) = σ̂(m) + M−1
L [Cu − MC σ̂(m)], m = 0, 1, 2, . . . . (24)

If mass lumping is applied directly to equation (21), the values of the projected gradient
can be determined at each node from the explicit formula

σ̂i =
1

mi

∑

j 6=i

cij(uj − ui). (25)

Over the years, a more accurate patch recovery technique was introduced by Zienkiewicz
and Zhu [53, 54], which relies on the superconvergence property of the finite element
solution at some exceptional, yet a priori known, points. Let the smoothed gradient be
represented in terms of a polynomial expansion of the form

σ̂ = p(x) a (26)

where for two space dimensions p(x) = [1, x, y, x2, . . . , xk, xk−1y, . . . , xyk−1, yk] contains
the monomials of degree k at most. Since each vertex is surrounded by a patch of elements
sharing this node, the vector of coefficients a = [a1, a2, . . . , am]T with m = (k+1)(k+2)/2
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can be computed from a discrete least square fit to the set Si of sampling points xj [53].
From that it follows, that the coefficient vector a is the solution to the linear system

Mpa = f , (27)

where the local matrix Mp and the right-hand side vector f are given by

Mp =
∑

j∈Si

p(xj)
Tp(xj), f =

∑

j∈Si

p(xj)
T σh(xj). (28)

For linear triangles, a = [a1, a2, a3]
T, p = [1, x, y] and the gradient is sampled at the cen-

troid xj of each triangle in the patch. In this case the lumped L2-projection yields almost
the same results on uniform grids but only patch recovery retains its superconvergence
property if the grid gets distorted which in general makes (26) superior to (25). However,
the solvability of the linear system (27) strongly depends on the relation rankMp = m.

Since the advent of the superconvergent patch recovery (SPR) technique [53] its super-
and even ultraconvergence property has been analyzed extensively in the literature [48,
49, 50]. This paved the way to the development of so-called polynomial preserving (PPR)
gradient recovery schemes [32]. While in SPR methods a Pk-polynomial is best fitted
to σh directly, PPR schemes compute the nodal quantity p ∈ Pk+1 as a polynomial
approximation to uh and apply the derivative operator afterwards (σ̂h = ∇p). In order to
ensure the solvability of the linear system (27), the patch of surrounding elements needs to
be enlarged recursively. Recently, Zhang et al. introduced a ‘meshless’ gradient recovery
method [51] in which the idea of element patches is abandoned in favor of spherical patches
which are expanded adaptively so as to satisfy a solvability condition.

The ease of implementation, generality and ability to produce quite accurate esti-
mators boosted the popularity of recovery-based techniques especially in the engineering
community. However, any of the above-mentioned strategies to compute a high-order gra-
dient from the finite element solution is quite likely to fail either for steep gradients or in
case the solution exhibits jumps as it is often the case in compressible flow computations
featuring shock waves and contact discontinuities. This can be attributed to the fact,
that the consistent L2-projection scheme tends to produce nonphysical oscillations in the
vicinity of jumps whereas both its lumped counterpart and the patch recovery are overly
diffusive. This drawback of the standard procedures can be rectified by combining both
imperfect methods as explained below.

3.3 Edgewise slope limiting

No matter if patch recovery or averaging projection schemes are employed, the nodal
gradient values result from an averaging process over an unsettled number of surrounding
element gradients which may strongly vary in magnitude and even possess different signs.
Thus, it is very difficult to find admissible upper and lower bounds to be imposed on the
recovered nodal gradient. Let us recall, that in order to compute the element gradient
error (10) we have to sum the contributions (11) of the adjacent edges. In the interior,
each edge can be associated with exactly two triangles sharing it. Hence, the auxiliary
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xj xi

σ̂j

σ̂ij

σ̂
∗
ij

σ̂i

σ
−
ij

σ
+
ij

σ
max
ij

σ
min
ij

Figure 1: Edgewise slope-limited gradient recovery for internal edges.

quantities defined in (15) constitute natural upper and lower bounds for the final edge
gradient, such that

σmin
ij ≤ σ̂ij ≤ σmax

ij . (29)

In the first step, provisional edge gradient values are predicted at the midpoint of edges
which are located in the overlap of two element patches. Hence, the intermediate edge
slopes can easily be computed by linear interpolation of nodal values resulting from any
of the above nodal recovery schemes, i.e., σ̂ij = 1

2
(σ̂i + σ̂j). As an alternative, patch

recovery can be used to obtain the midpoint gradient values directly. In the next step,
the provisional edge gradients are corrected subject to the upper and lower bounds (15)

σ̂∗
ij = max{σmin

ij , min{σ̂ij , σ
max
ij }}. (30)

The edgewise slope-limiting procedure is illustrated in Figure 1 for an interior edge. In
one space dimension, Zienkiewicz and Zhu observed, that ‘the recovered derivative nodal
values [computed by either lumped L2-projection or patch recovery] for linear elements
are located between the discontinuity of the finite element solution’ [53]. The task of
our edgewise slope limiter is to enforce this property in the sense of a multidimensional
extension. The generality of this concept allows for the application of any nodal gradient
recovery procedure proposed in the literature or even a combination thereof.

Let us consider the situation when the upper and lower bounds (15) have different
signs. This indicates that the approximate solution attains a local minimum/maximum
across the edge. In the continuous case, the necessary condition of an extremum requires
that the corresponding derivatives be equal to zero. For the recovered gradient to satisfy
a discrete analog, it makes sense to modify equation (30) as follows

σ̂∗
ij = S(σmin

ij , σmax
ij )

∣

∣max{σmin
ij , min{σ̂ij , σ

max
ij }}

∣

∣ . (31)

This adjustment corresponds to property P4 of limited average operators (see above).

Boundary treatment In the framework of nodal recovery procedures, the gradient val-
ues at boundary vertices can be reconstructed from specially designed boundary patches.
However for a corner node, say ’�’, an insufficient number of elements denoted by ’△’
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can render the matrix of system (27) singular as illustrated in Figure 2 (left). Zienkiewicz
and Zhu recommend always recovering the nodal values at the boundary from an interior
patch recovery point ’◦’ [53] which for unstructured triangulations is not unique.

In the context of our edge-based formulation, it is natural to adopt the constant slope
value from the adjacent element, say ’△’, also at the midpoint ’�’ of a boundary edge. As
an alternative, the gradient value of a boundary edge can be recovered from the unique
patch assembly point ’◦’ opposite to it as depicted in Figure 2 (right).

The same applies to an interior edge, say ’⋄’, that belongs to a triangle with three
boundary nodes. Then the edge slope value can be recovered from the uniquely defined
patch assembly point ’◦’ connected to the adjacent ‘interior’ triangle.
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Figure 2: Boundary treatment: nodal vs. edgewise recovery.

3.4 Summary of reconstruction schemes

Let us summarize the different approaches for recovering an improved gradient value σ̂ij

at the midpoint of edge ~ij and introduce abbreviated forms for each of this techniques.
Improved gradient values σ̂L at edge midpoints can be directly computed from formula

(16) as the limited average of the constant slopes σ±
ij to the left and to the right of edge

~ij.
As an alternative, traditional recovery procedures can be employed to predict (nodal)

gradient values σ̂i from which slopes at midpoints of edges can be computed by linear
interpolation σ̂ij = 1

2
(σ̂i + σ̂j). In what follows, σ̂MC

, σ̂ML
and σ̂ZZ will denote gradient

values which result from consistent (24) or lumped (25) L2-projection schemes and the ZZ
patch recovery technique (26), respectively. Their corrected counterparts which satisfy
the inequalities in (29) are indicated by superscript ∗ and computed by the slope limiter
(30).

4 Mesh adaptivity

For CFD problems, the flow pattern is governed by the propagation and interaction of
localized structures which dominate the error to a large extent. This observation suggests
adaptive mesh refinement as a useful tool for the treatment of hyperbolic conservation
laws. First, disturbances are propagated along characteristics with finite speed such that
adaptive mesh refinement is most likely to improve the solution locally without affecting
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its global behavior. Second, the nonlinear nature of the equations at hand gives rise to
the formation of discontinuities which call for the use of nonoscillatory approximations.
It follows, that local grid refinement would improve the resolution of shocks significantly.
These peculiarities of hyperbolic problems must be accounted for in the process of mesh
adaptation, since they affect both the selection of elements to be refined and coarsened
and the choice of refinement strategies.

4.1 Adaptation strategy

In adaptive solution procedures for steady state simulations of hyperbolic systems of equa-
tions, one typically starts with a moderately coarse grid on which an initial solution can
be computed efficiently. Nevertheless, the mesh needs to be fine enough to capture all
essential flow features so as to enable the error indicator to detect ‘imperfect’ regions. As
pointed out in the introduction, the misfortune experienced with applying the standard
Zienkiewicz-Zhu error estimator to an adaptive shock wave simulation [38] may be at-
tributed to the hapless interplay of overly diffusive spatial discretization schemes applied
on insufficiently fine triangulations. In other words, the artificial dissipation introduced
by the numerical method overstrained the resolution facility of the employed coarse grid
and misled the error indicator.

For all examples presented in this article, the GiD mesh generator [20] which is based
on the advancing front concept is used to create the coarse grid for geometric multigrid
schemes [12]. A hierarchical mesh data structure for the initial grid is generated by
successive subdivision of each triangle of the coarse grid into four subelements of equal
size. To speed up the steady state convergence of the initial solution, nested iterations
[21] are used. The idea is to recursively compute a provisional solution on a coarser mesh
and interpolate it to the next finer level so as to obtain a reasonable initial guess. This
procedure, also referred to as full multigrid (FMG) [11], has proven to be quite expedient
for the simulation of steady compressible flows.

The relative error of the density has been employed to monitor steady state conver-
gence [16]. Following [45], the flow solver is stopped if this error falls below the square root
of the prescribed tolerance, that is, intermediate solutions are required to be only ‘half-
converged’. The (more expensive) computation of a fully converged solution is required
on the final grid.

In the next step, cells are flagged for local refinement or coarsening according to some
adaptation parameters. A common practice is to prescribe the tolerance for the relative
percentage error of the solution and the gradient, respectively

η :=
||e||L2

||∇u||L2

≤ ηref . (32)

Since neither the exact slope values nor the true error are known, the best approxima-
tion available is utilized instead. From (9) it follows that the global L2-norm can be
decomposed into element contributions. Moreover, let us assume that the relative error is
equally distributed between cells. Then the condition η ≤ ηref (c.f. (32)) can be rewritten
as follows

||ê||L2(T ) ≤ ηref

[ ||σh||2L2
+ ||ê||2L2

|Th|

]1/2

=: eref , (33)
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where |Th| denotes the number of elements which constitute the current triangulation Th.
A similar estimate in terms of the solution error is formulated in [52]. Given the ratio

ξT =
||ê||L2(T )

eref
(34)

an element T is marked for refinement if ξT > 1. At the same time, the cells to be
coarsened can be determined by inverting all inequalities and replacing ηref by some ηcrs ≪
ηref .

A suitable refinement algorithm (see below) is employed to locally adapt the mesh
in regions of underresolved wave patterns and the current solution is projected onto the
refined mesh. If mesh coarsening should be performed in regions of uniform flow the use
of a conservative projection scheme such as the one presented in [22] is recommended at
least for transient problems. Once the adapted mesh has been created, the solution is
marched to the stationary limit and the whole process starts again until the final mesh
has been reached. To this end, one or more ‘mesh convergence’ criteria need to be defined.
The simplest approach for steady state problems is to prescribe the maximum number of
refinement levels a priori. If a quantitative analysis of the error is available it is advisable
to stop the adaptation process if the global error has reached some tolerance. As an
alternative, the (relative) changes of the solutions on two successive grids can be used to
terminate the simulation if the difference is sufficiently small.

4.2 Grid refinement techniques

The grid refinement strategy follows the algorithm for regular local mesh refinement pro-
posed by Bank et al. [6]. In a loop over elements, cells which are marked for refinement
by the error indicator are subdivided into four similar triangles. This so-called ‘red’ re-
finement is applied iteratively so as to eliminate adjacent cells with two or three hanging
nodes. In order to restore global regularity of the triangulation ‘green’ refinement is ap-
plied afterwards to all 1-irregular [4] elements, that is, the midpoints of bisected edges are
connected to the opposite vertices. Prior to the next adaptation cycle, all edges which
have been introduced due to green refinement can/should be removed to retain the shape
regularity of the successively refined grids. The regular local mesh refinement algorithm
for triangles and quadrilaterals is dealt with in [6] including a detailed description of
efficient data structures. The red-green refinement strategy has been employed for all
simulation results presented in this publication.

An alternative class of conforming mesh refinement algorithms for triangular/tetrahedral
grids is based on edge bisection and was originally introduced by Rivara in [40]. For each
element flagged for refinement, a new node is inserted at the midpoint of the longest edge
and connected to the opposite vertex. The bisection process continues recursively for
all adjacent triangles sharing a hanging node with the refined element until all noncon-
forming vertices have been eliminated. A nonrecursive variant has been suggested in [41]
where the longest-edge propagation path is computed a priori and a backward algorithm
is employed to perform edge bisection. Some geometric properties of these methods can
be found in [42]. In fact, the classical longest-edge bisection approach is probably not the
best choice as far as algebraic flux correction (AFC) [29, 30] is concerned which may be
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explained as follows. For each element that needs to be refined due to accuracy reasons,
the propagation path which may extend far away from the originating triangle depends
solely on the mesh geometry and does not account for the solution behavior. Recall that
our AFC methodology [29, 30] entirely rests on an edge-based formulation. The amount
of artificial dissipation that outlasts the flux limiting procedure depends on the interplay
of internodal fluxes which are proportional to the edgewise solution difference multiplied
by some (anti-)diffusion coefficient.

If the solution variation along the longest edge is small or even negligible then bisection
will hardly facilitate the task of the flux limiter and neither will it improve the resolution
appreciably. Instead, it is worthwhile to refine the edge with the largest solution variation
or the largest antidiffusive flux. Consider the situation in which this flux into one node, say
i, cannot be balanced by diffusive fluxes from neighboring nodes so that its magnitude
needs to be drastically reduced. In this case, edge ~ij should be bisected, unless this
would entail a reduction of the correction factor for node j. In a forthcoming paper, this
algebraic edge partition approach which is tailored to the peculiarities of AFC schemes
[29] will be embedded into a more theoretical framework and its numerical performance
will be analyzed.

4.3 Grid coarsening techniques

Mesh coarsening is applied in regions of sufficiently uniform flow where the relative gra-
dient error (33) is below some prescribed tolerance ηcrs. For all simulations presented
in this article, the vertex removal procedure described in [22] has been employed. In
essence, edge-swapping is performed repeatedly so as to ‘isolate’ the vertex to be erased.
The iteration continues until the corresponding node is connected to just three triangles
and can be safely removed. If the vertex to be deleted resides on the boundary it is
first ‘moved’ into the interior by introducing an artificial boundary element before the
standard procedure can be applied.

In the context of algebraic flux correction methods which rely on an edge-based data
structure, edge collapse techniques [15] may be a promising alternative. This technique
has been extensively discussed in computer graphics literature (c.f. [25]). The basic idea is
to contract edges and consolidate the two adjacent nodes. In general, different strategies
[47] exist for positioning the newly created vertex which can be combined to improve the
geometric quality of the resulting mesh. For an AFC scheme, the new vertices should be
positioned so as to improve the algebraic properties of the discretization.

4.4 Grid improvement techniques

Typically, edge-swapping is employed as a postprocessing step to improve the mesh quality
with respect to some geometric measures, e.g., the normalized shape regularity functional
[7]:

q(T ) = 4
√

3|T |/
∑

ij

ℓ2
ij. (35)

Here, ℓij denotes the length of the edge from node i to node j. This is where algebraic
aspects come into play. For interior edges, the sum of opposite angles should not exceed
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π so as to guarantee that the coefficient matrix resulting from a piecewise linear Galerkin
finite element approximation of the Laplacian operator is an M-matrix [17]. For boundary
edges the opposite angle is required to be less than π/2. Edge-swapping can be equipped
with algebraic quality measures of such kind so as to guarantee that all off-diagonal entries
of the discrete diffusion operator remain nonnegative.

In addition, ‘smart’ Laplacian or optimization-based mesh smoothing [18] can be
driven by algebraic quality measures in order to ‘minimize’ the amount of required ar-
tificial diffusion. The knowledge about suboptimal regions of the computational mesh
is already ‘hidden’ in the matrix coefficients, and only needs to be retrieved. In other
words, the flux limiter not only prevents the birth and growth of oscillations on a given
(suboptimal) mesh but also provides valuable information for further mesh improvement.

4.5 Summary of the algorithm

Starting from an initial coarse grid that is supposed to be fine enough to capture essential
flow features, the algorithmic steps of our adaptive AFC schemes are as follows:

1. Generate the required adjacency lists for nodes and elements and initialize the edge-
based data structure. Assemble the constant coefficient matrices resulting from the
Galerkin discretization of the variational problem (2) which resemble the ones in
(22).

2. Compute the numerical solution on the current mesh

• Enforce the positivity constraint by means of algebraic flux correction [29].

• Solve the resulting nonlinear system using an iterative defect correction proce-
dure.

• Compute the relative error of some indicator variable, i.e., density, to check if
the solution has ‘half-converged’. Otherwise, continue flux/defect correction.

3. Evalute the consistent gradient (6) and recover improved slope values for each edge
either as a limited average of constant slopes (16) or by means of edgewise slope
limiting (30)/(31) applied to the average of smoothed nodal gradients (c.f. (24)–(25)
or (26)–(27)).

4. Assemble the L2-norm of the element gradient error (10) from the edge contribu-
tions (11) and refine/coarsen all triangles according to conditions (33)–(34).

5. Optionally: Apply edge-swapping or other grid improving methods in order to in-
crease the mesh quality with respect to geometric or algebraic quality measures.

6. If the final/‘converged’ grid has been constructed, proceed to steps 1–2 until the
fully converged solution is obtained. Otherwise, continue with steps 1–6.
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5 Numerical examples

In order to demonstrate the behavior of the edgewise slope-limited recovery procedure let
us start with the investigation of one-dimensional profiles. Each of the following academic
examples is designed so as to illustrate the deficiencies of standard recovery procedures per
se. In contrast, the edgewise slope limited recovery outperforms its linear counterparts.

In the second part of this section, the new error indicator is applied to compressible
inviscid flows at different Mach numbers. In previous publications, the authors presented
numerical results for some of these benchmarks computed on fixed meshes in order to
illustrate the performance of modern high-resolution finite element schemes based on the
algebraic flux correction (AFC) paradigm. In this paper, emphasis is placed on grid adap-
tivity so that for all simulations the same TVD type algorithm is utilized in conjunction
with the moderately diffusive CDS-limiter (Φ(θ) = min(1, 2θ)) applied to the character-
istic variables. In contrast to schemes of FCT type, the amount of artificial diffusion
remaining after an upwind-biased flux limiter has been employed does not depend on the
size of the time step. For a detailed comparison of flux limiting schemes of TVD and
FCT type, the interested reader is referred to [27]–[29]. Since we only consider steady
state flows which call for a fully implicit time discretization, i.e., the unconditionally sta-
ble backward Euler method, the time step should be taken as large as possible in order
to rapidly reach a converged solution. Grid adaptivity only needs to be performed each
time the flow has ‘halfway’ converged which does not increase the overall computational
costs considerably. For all benchmarks, the error indicator is applied to the density which
serves as a key variable [37]. A nonconservative projection scheme may be employed in
order to transfer the old solution to the newly generated grid.

5.1 One-dimensional profiles

Example 1: Let us start with the classical hat function given by

u(x) =

{

1 − r0
−1|x − x0| x ∈ (0.3, 0.7),

0 x ∈ [0, 0.3] ∪ [0.7, 1],
(36)

where x0 = 0.5 and r0 = 0.2 as depicted in Figure 3. Obviously, the exact gradient (not
displayed) exhibits three discontinuities at x ∈ {0.3, 0.5, 0.7} and is constant elsewhere.
The values of the finite element gradient σh which serve as upper/lower bounds are denoted
by dots in all plots of Figure 4. It can be clearly seen from diagram (a) that the high-order
gradient breaches the admissible bounds in the vicinity of the discontinuities and thus
suffers from nonphysical oscillations. As depicted in (b), the gradient resulting from either
the lumped L2-projection or the discrete patch recovery, which yield indistinguishable
results on uniform meshes, is completely free of under- and overshoots. Obviously, it
stays within the bounds from the outset (see also remark (ii) in [53]) but is less accurate.
In contrast, edgewise slope-limiting (c) combines the advantages of both techniques: high
accuracy and bounded results. Finally, the improved gradient σ̂L computed directly by
means of limited averaging (16) of constant slope values σh is depicted in Figure 4 (d).
Remarkably, the results recovered by the monotonized centered (MC) limiter very much
resemble the edgewise slope limited gradient σ̂∗

MC
in both accuracy and the fact, that no

undershoots and overshoots take place.
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Figure 3: One-dimensional hat function.
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Figure 4: One-dimensional hat function: Recovered gradients.
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Example 2: Our next example deals with the normal distribution function

u(x) = (4πǫ)−1e−
(x−x0)2

4ǫ , in [0, 1], (37)

where again x0 = 0.5. As can be seen from Figure 5, the solution profile (a) is smooth but
features strong gradients (b), two inflection points and a local extremum. The parameter
ǫ = 0.005 is chosen such that the extrema of the gradient are located at x ∈ {0.4, 0.6},
where the curvature of u changes its sign. Initially, the interval [0, 1] is uniformly dis-
cretized with linear finite elements of size h = 0.1. In order to study the nodal rate of
convergence, regular subdivision is applied until the mesh size reaches h = 0.0004.

(a) solution profile
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(b) exact gradient
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Figure 5: One-dimensional Gaussian hill.

The convergence of the consistent finite element gradient σh (’•’) and its recovered
counterparts are illustrated in Figure 6. From left to right, the absolute error has been
measured at the boundary x = 0, at the local maximum x = 0.4 and at the point
x = 0.7 located in a smooth region. Since σh exhibits discontinuous jumps across element
boundaries, we have always chosen the value giving the maximum absolute error. At the
boundary, only the discretely recovered σ̂ZZ exhibits superconvergence while the conver-
gence rate of all other schemes degenerates to O(h). Consistent L2-projection yields a
slightly smaller error as compared to the rest of linearly converging methods. Due to
the lack of appropriate bounds, no slope limiting is performed at the boundary so that
σ̂∗

MC
:= σ̂MC

.
From Figure 6 (middle) we observe, that all schemes are at least superconvergent with

only negligible differences in terms of the absolute error at local extrema. Unfortunately,
the ultraconvergence of the consistent L2-projection does not carry over to its slope-limited
counterpart. Indeed, peak clipping is a well known phenomenon in the context of limiting
procedures [36] which can be attributed to the fact that the upper and lower bounds (15)
are too restrictive to preserve the accuracy of the the original high-order scheme.

The nodal rate of convergence for smooth gradients is depicted in Figure 6 (right).
Obviously, σh converges only linearly whereas the gradients resulting from discrete patch
recovery, lumped L2-projection and MC-limited averaging of constant slopes exhibit O(h2)
convergence rates. Furthermore, the ultraconvergence of σ̂MC

carries over to its slope
limited counterpart σ̂∗

MC
. It is noteworthy, that limited averaging of constant slopes

yields results competitive to those produced by discrete patch recovery for interior edges.
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This observation implies that limited averaging techniques constitute a useful tool for cost
effective gradient reconstruction procedures which may be extended to the reconstruction
of higher order derivatives.
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Figure 6: Gaussian hill: Nodal rate of convergence of σh, σ̂ and σ̂∗.

5.2 15◦ Converging channel

Let us proceed to the numerical treatment of the compressible Euler equations and employ
the presented error indicator to govern an adaptive mesh refinement/coarsening proce-
dure. As a first benchmark we consider a supersonic flow through a two-dimensional
channel. The right half of the bottom wall is sloped at 15◦ giving rise to the formation
of an oblique shock. For M∞ = 2.5 the inclination angle β = 36.94◦ and the down-
stream Mach number M = 1.87 can be easily computed as explained in any textbook
on oblique shock theory. The of this so-called compression corner benchmark including
numerical solutions computed by the Wind-US code is available in the CFD Verification
and Validation Database of the NPARC Alliance [33].
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The initial coarse grid1 of 1612 linear triangles is presented in Figure 7 (a). The grid
refinement/coarsening procedure has been called each time the relative changes of the
‘halfway’ converged solution reached the square root of ǫ = 10−7. The adapted grids
resulting from 4 iteration cycles are depicted in the diagrams (b)–(e). Here, the edgewise
slope-limited gradient values σ̂∗

MC
have been employed to steer the adaptation process

with ηref = 1% and ηcrs = 0.1%. The resulting Mach number distribution computed
on the final mesh5 is shown in Figure 7 (e). The thin shock wave is captured with an
impressive accuracy and the inclination angle perfectly matches the theoretical value.
The adapted numerical solution is even superior to the one presented in [30] which was
computed on a boundary-fitted uniform mesh of 128 × 128 bilinear elements by the less
diffusive FEM-FCT algorithm making use of s smaller time step.

(a) Coarse grid1
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(c) grid3
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(e) grid5
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(b) grid2
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(d) grid4
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(f) Mach number
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Figure 7: 15◦ Compression corner at M∞ = 2.5.

The regular triangulations resulting from other error indicators ‘look’ quite similar
to the ones presented above and, hence, are not shown here. However, some difference
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in terms of triangles can be observed from Table 1. The number of finite elements that
constitute the finest grid for σ̂ZZ exceeds that for σ̂∗

MC
by as much as 20%. This moderate

improvement may be attributed to the very simple structure of the considered benchmark.

grid1 grid2 grid3 grid4 grid5

σ̂ZZ 1612 1877 2869 5000 9329
σ̂∗

ZZ 1612 1830 2743 4815 8963
σ̂ML

1612 1874 2831 4950 9242
σ̂∗

ML
1612 1827 2738 4781 8888

σ̂MC
1612 1699 2448 4238 7918

σ̂∗
MC

1612 1705 2451 4221 7783

Table 1: Compression corner: comparison of error indicators for ηref = 1%, ηcrs = 0.1%.

5.3 5◦ Converging channel

Our next example is taken from [45] and deals with multiple shock reflections. A su-
personic flow at M∞ = 2 enters a converging channel with the bottom wall sloped at 5◦

from the inlet. The initial triangulation was generated from a uniform mesh of 60 × 16
quadrilaterals by dividing each element into two triangles. Figure 8 shows the coarse grid
as well as a sequence of three refinement/coarsening steps. Note how the finest region
confines it more and more to the vicinity of the shock as the adaptation proceeds. At the
same time, a multiply reflected shock wave confines five zones of essentially uniform flow
in which the mesh becomes increasingly coarsened. The normalized density distribution
computed on the finest grid demonstrates the precise separation of five uniform zones as
depicted in Figure 8 (e). The agreement of density and Mach number for the exact and
the numerical solution presented in Table 2 is amazing.

exact computed

ρI 1.000 1.000
ρII 1.216 1.216
ρIII 1.463 1.462
ρIV 1.747 1.747
ρV 2.081 2.079

MI 2.000 2.000
MII 1.821 1.821
MIII 1.649 1.651
MIV 1.478 1.479
MV 1.302 1.304

Table 2: Converging channel: solution values.
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(a) Coarse grid, 2048 cells
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(b) Adapted grid, 3503 cells
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(c) Adapted grid, 7194 cells
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(d) Finest grid, 15664 cells
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(e) Finest grid, density distribution
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Figure 8: 5◦ Converging channel at M∞ = 2.
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The crisp resolution of the reflected shock wave can also be realized from the density
values on a slice through the grid presented in Figure 9. For unstructured meshes, a
straight line along y = 0.6 is quite unlikely to match any of the grid points. In order
to draw a fair comparison between different levels of refinement, the coordinates of all
intersection points of edges and the prescribed cutline (y = 0.6) have been computed.
In a second step, the density values on the slice have been recovered by means of linear
interpolation from adjacent nodes. No additional error has been introduced during the
visualization procedure, since P1-finite elements have been employed to approximate the
solution which, consequently, varies linearly along edges.

It can be clearly seen that the correct solution values in the interior are already
obtained on the coarsest grid. However, artificial diffusion passing through the flux limiter
smears the shock wave across several elements and yields underpredicted density values
at the outflow. Both the steepness of the ‘cascade’ and the correctness of the boundary
values get greatly improved as the adaptation process continues.
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Figure 9: Density cutlines at y = 0.6.

6 Conclusions and outlook

In this paper we focused on the reliability of gradient recovery procedures applied to
discontinuous solutions. The local L2-error of the solution gradient has been decomposed
into a sum of edge contributions. Standard variational and discrete recovery techniques
have been revisited within an edge-based formulation and their applicability to solutions
with steep gradients has been questioned. Geometric constraints to be imposed on the
high-order slopes have been derived. In particular, the values of the consistent low-order
finite element gradient provided natural upper and lower bounds. A slope limiter was
invoked edge-by-edge so as to correct the provisional gradient values resulting from linear
interpolation of nodal data. Limited averaging procedures inspired by high-resolution
finite volume schemes were presented as a promising alternative. They were utilized to
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compute smoothed gradient values at the midpoints of edges directly from the adjacent
consistent slopes. Moreover, the treatment of boundary nodes/edges was addressed.

The performance of the new error indicators was demonstrated in one and two space
dimensions. Algebraic flux correction schemes [29] have been successfully equipped with
adaptivity. The highly unstructured grids resulting from local refinement call for the
use of fully implicit AFC methods which are unconditionally stable/positivity-preserving.
However, it is rather difficult to march the resulting nonlinear system of equations to
steady state on strongly nonuniform meshes. Full multigrid (FMG) has been employed to
compute the steady state solution on the initial mesh. It could be worthwhile to employ a
full approximation scheme (FAS) to tackle the strong nonlinearity. In addition, the (non-
linear) TVD operator can be constructed explicitly and used as a better preconditioner
for the defect correction procedure so as to improve the nonlinear rate of convergence.

Sophisticated mesh optimization techniques tailored to the peculiarities of algebraic
flux correction schemes will be considered in forthcoming publications. An algebraic ap-
proach to the design of grid refinement/coarsening strategies and mesh smoothing/optimization
algorithms constitutes an interesting direction for further research.
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