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Abstract. We consider Krylov subspace methods that are designed for sequences of shifted
linear systems. For the efficient numerical solution of shifted problems, the shift-invariance property
of the corresponding Krylov subspaces is used such that a Krylov basis is computed only once
for all shifted systems. Preconditioners in general destroy this shift-invariance property. Known
preconditioners that preserve the shift-invariance are the shift-and-invert preconditioner as well as
polynomial preconditioners. In this work, we introduce a new approach to the preconditioning
of multi-shift Krylov methods. In our new nested framework, we use an inner multi-shift Krylov
method as a flexible preconditioner within an outer multi-shift Krylov method. In order to preserve
the shift-invariance of the underlying Krylov subspaces, we require collinear residuals for the inner
Krylov method. This new approach has been implemented for two possible combinations, namely,
FOM-FGMRES and IDR-FQMRIDR, and has been tested for various numerical examples arising
from geophysical applications.
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1. Introduction. We consider shifted linear systems with equal right-hand sides
of the form

(1.1) (A—UkI)XkZb, kZl,...,Ng,

where the dimensions are A € CV*V x;, € CV,b € CV, and N, denotes the number
of distinct shifts o, € C. For simplicity, we will often write

(1.2) (A-—oDx?) =b, oeC,

keeping in mind that we aim to solve (1.2) for a sequence of many shifts o and that
quantities with a superscript belong to the respective shifted system, i.e., x(?) is the
solution of the linear system with system matrix (A — o) and right-hand-side b.
For an early overview of the numerical solution of shifted linear systems using
Krylov methods we refer to [15, 30]. Multi-shift variants exist for many Krylov meth-
ods, including QMR [9], GMRES(k) [11], FOM(k) [27], BiCGstab(¢) [10], CG [35],
MINRES [16], and, more recently developed, IDR(s) [5, 38] and QMRCGstab [20].
A known preconditioning technique for shifted linear systems is the so-called shift-
and-invert preconditioner of the form (A — 71) where the seed shift T € C has to be
chosen carefully. This preconditioner has been applied to shifted Helmholtz problems,
for example, in [7]. Since the shift-and-invert matrix has to be solved by a direct
method, this approach can be computationally costly. This can be overcome by either
a multigrid approach [8, 26] or an approximation of the shift-and-invert preconditioner
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using a polynomial preconditioner as shown in [1]. Most recently, multiple shift-and-
invert preconditioners have been combined in a flexible Krylov method in order to
capture a wider range of shifts o1,...,0n,; cf. [13, 25]. Our article is motivated by
the question of whether we can use a Krylov method as a polynomial preconditioner
within a flexible method. We will present two new algorithms that are both nested
Krylov methods in the sense that an inner, collinear Krylov method is used as a
(polynomial) preconditioner to solve shifted linear systems within a flexible outer
Krylov iteration.

Our article is organized as follows. In section 2, we review the multi-shift GMRES
[11] and the multi-shift QMRIDR [38] algorithms without preconditioning. The flexi-
ble versions of both are used as an outer Krylov method for the new nested framework
in sections 3.4 and 3.5, respectively. As for the inner, collinear Krylov method, we
present the multi-shift full orthogonalization method (FOM) algorithm [27] that au-
tomatically leads to collinear residuals in section 3.3.1. In order to use IDR(s) as
an inner method, we present a new collinear variant in section 3.3.2. The article
concludes with various numerical tests in section 4.

2. Multi-shift Krylov methods. The main property that is used in Krylov
subspace methods for shifted linear systems is the shift-invariance of the Krylov sub-
spaces that are generated by the matrix A and the shifted matrix (A — o) when the
same right-hand-side b is used, i.e.,

(2.1) Km(A,b) = span{b, Ab,..., A" 'b} = K,,(A —ol,b) VYo cC.

The immediate consequence of this invariance property is that a basis for the underly-
ing Krylov spaces only has to be built once for all shifted systems. Note that relation
(2.1) also holds for collinear starting vectors but, in general, different right-hand sides
in (1.1) destroy the shift-invariance.

2.1. Multi-shift GMRES. The well-known GMRES method [24] can be adapt-
ed to shifted systems in a straightforward way. In [11], a restarted version of multi-shift
GMRES has been developed that relies on collinear residuals at restart. In this section,
we review the main ideas of [11] and point out how the shift-invariance property (2.1)
is used in the algorithm in order to speed up the computational performance when
solving shifted systems numerically.

In the classical GMRES method for the unshifted system Ax = b, an orthogonal
basis of the mth Krylov subspace is obtained by the Arnoldi method. This leads to
the well-known Hessenberg relation [34, eqn. 33.3],

(22) Avm = m+1ﬂm7

where the columns of V,,, € CN*™ span an orthonormal basis of K,,(A4,b), and
H, e C(m+1xm s the respective Hessenberg matrix with entries h;j that are uniquely
determined by the Arnoldi iteration. Then, in classical GMRES, an approximation
to the solution of Ax = b in the mth iteration is given by

(2.3) Xm = Vin¥m, Wwherey,, = arggin||ﬂmy — ||blle1]],
yeCm

with e; being the first unit vector of C™*!, and x¢ = 0. For simplicity, we will assume
the initial guess to be equal to zero throughout the whole document. The optimization
problem in (2.3) can be solved efficiently due to the Hessenberg structure of H,, using,
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for instance, Givens rotations; cf. [12, section 5.1.8]. Clearly, we see from (2.3) that
Xm € K (4, b).

Because of the shift-invariance property (2.1), the matrix V;,, which spans the mth
Krylov subspace can be reused for any shift o. Therefore, the Arnoldi iteration in
multi-shift GMRES needs to be performed only once, and from the shifted Hessenberg
relation,

(A - UI)Vm = erl(ﬂm - Ulm)7
we can derive an approximated solution to the shifted problem (1.2) via

(2.4) x(9) = V,,y@ where y{?) = argmin||(H,, — oL,,)y — ||blle1]|,
ye(cnz

where I, is the identity matrix of size m x m with an extra zero row appended at
the bottom. We note that the matrix H, (o) = H,,, — ol,,, for the shifted system is of
Hessenberg structure as well. Clearly, we get the original Hessenberg matrix of the
unshifted problem back if ¢ = 0, i.e., H,,(0) = H,,.

By comparing (2.3) and (2.4), we note that the mth iterate lies in both cases in
the column space of the matrix V,, and, therefore, lies in the same Krylov subspace
Km(A,b). Moreover, we note from the derivation of the shifted Hessenberg matrix
H, (o) that the shift of the matrix A directly translates into a shift of the Hessenberg
matrix.

In order to allow restarting for multi-shift GMRES, the authors of [11] require
collinear residuals in order to preserve shift-invariance of the respective Krylov spaces
after restart; cf. [11, Algorithm 2.4]. A numerically more robust implementation of
restarted multi-shift GMRES has recently been proposed in [41].

2.2. Multi-shift QMRIDR. The QMRIDR method presented in [38] is a vari-
ant of the induced dimension reduction (IDR) method [31] that makes use of a so-
called generalized Hessenberg decomposition and determines the mth iterate via a
quasi-minimization of the mth residual. In [14, 38], the following relation is derived:

(25) AGmUm - Gm+lﬂm7

where U,, € C™*™ is upper triangular, H € C"+1)x™ ig of Hessenberg form, and
s+ 1 consecutive vectors in G, belong to the nested Sonneveld spaces G, ...,G;. The
entries of U,,,Gy,, and H,, are uniquely determined by the specific IDR algorithm
[31, 39]; cf. [14] for a detailed derivation. Based on the generalized Hessenberg
decomposition (2.5), a multi-shift version of the QMRIDR(s) algorithm has been
derived in [38].

The approach of QMRIDR(s) is very similar to the GMRES approach. Therefore,
the mth iterate is constructed as a linear combination of the columns of G,, by
putting x,,, = GmUmym, with a coefficient vector y,, € C™ that is determined via a
least-squares problem that involves the Hessenberg matrix H,, only. Altogether, the
following minimization problem needs to be solved:

(2.6) X = GUnmym, where y,, = argmin||H,,y — ||blle1]|;
yecm

this is called quasi-minimization of the mth residual because the matrix G,, does not
have orthogonal columns (cf. [38]).
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For shifted linear systems of the form (1.2), a very similar relation holds,

(27) %) =GnUnyly), where y7) = argmin ||(H,, — oU,,)y — [blle].
yeCm

and by comparing (2.6) with (2.7), we note that the approximate solutions to the
respective systems lie in the same subspace and the matrix H, (o) = H,, — oU,, is
again of Hessenberg structure since U,, consists of the upper triangular matrix U,
derived in [38] with an extra zero row appended.

From the derivations of multi-shift GMRES in section 2.1 and of multi-shift
QMRIDR in this section, we note that in both cases the efficient computation of
the Hessenberg matrix of the shifted system H, (o) is crucial for the design of the al-
gorithm. Therefore, we will put emphasis on the computation of H, (o) as a function
of H,, in the nested Krylov framework in sections 3.4 and 3.5 as well.

3. Flexible preconditioning for multi-shift Krylov methods. This section
is structured as follows. We will first point out the requirements of a single precon-
ditioner for shifted linear systems that preserves the shift-invariance property of the
Krylov subspaces in (2.1). In this work, we restrict ourselves to such types of precondi-
tioners that preserve the shift-invariance, but we would like to mention the promising
approaches of [4, 32, 33], which do not rely on shift-invariance after preconditioning.
Based on the requirements of a single preconditioner that preserves shift-invariance,
we design a flexible preconditioner in subsection 3.2 that requires collinear residuals
for the inner iteration. In subsection 3.3, we present two nested Krylov methods that
lead to collinear residuals, namely, FOM, which produces collinear residuals automati-
cally, and a new variant of the IDR(s) method, where some modifications are necessary
in order to obtain collinear residuals. Both methods are used as preconditioners in a
flexible Krylov method in subsections 3.4 and 3.5, respectively.

3.1. The single shift-and-invert preconditioner for shifted systems. In
order to precondition a shifted linear system (1.2) without destroying the shift-
invariance property of the respective Krylov spaces, we require the following equality
after preconditioning;:

(3.1) Km((A—=oI)P(o)",b) = K,n(AP~L,b),

where P(o) is a different preconditioner for every considered shifted system, and P
is a preconditioner for the unshifted system Ax = b; cf. [1, 15]. Relation (3.1) is
satisfied if we find a parameter 7 that depends on the shift 0 and a constant matrix
P such that

(3.2) (A—oD)P(o)"t = AP~ — (o)1,

which in fact means that we can write the preconditioned shifted systems as shifted
preconditioned systems with new shifts n(c). From [18, 19, 28], it is well known that
the so-called shift-and-invert preconditioner P = (A — 7I) applied to (3.2) leads to

(A— UI)P(U)_l = A(A - TI)_1 — (o)
— (1= /(GO AR
= (1 —n( ))(A+1—n(a) I(A—7I)"".
——

=—0
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By choosing n(¢) in an appropriate way, we can factor out the term (A — oI) on both
sides, which yields the following formulas:
o 1 T—0

n(o) = P(o) P=""Cp,

oc—1’ :1—77(0') T

where the dependence of P (o) on the shift becomes explicit.

Therefore, only the seed shift 7 has to be chosen, and in order to invert P(o) we
only need to decompose P. However, the one-time decomposition of P can numeri-
cally be very costly and the suitable choice of the seed shift 7 is difficult for a large
range of shifts o1, ..., on,, as has been pointed out in [25]. In [1, 41], polynomial pre-
conditioners are suggested that cheaply approximate P~'. Note that the right-hand
side in (3.2) defines a new shifted problem, for which reason the single shift-and-invert
preconditioner can be applied as a first layer in our later algorithm.

We remark that also in the more general case of shifted problems (A — 0 B) with
a mass matrix B # I, the shift-and-invert preconditioner P = A — 7B can be used.
Applying this preconditioner yields a sequence of preconditioned shifted systems with
a shifted identity in the same way as in the right-hand side of (3.2); cf. [18].

3.2. Flexible preconditioning for shifted linear systems. Flexible precon-
ditioning of an iterative Krylov subspace method means that a different preconditioner
can be used in every iteration j; see [22], where flexible GMRES (FGMRES) has been
introduced for preconditioning systems of the form Ax = b. For flexible precondi-
tioning of shifted linear systems, we require a very similar relation to (3.2), namely,

(3.3) (A—aD)Pj(0) ! =qy (U)AP]l — Bi(o)1,

where the parameters «; and 3; will depend on the shift, and different preconditioners
P; and Pj(o) are used in every iteration j. Note that the right-hand side in (3.3) is
a shifted coefficient matrix and, thus, the shift-invariance is preserved by the flexible
preconditioner. Since in a practical algorithm, the preconditioner is always directly
applied to a vector v, (3.3) translates into

(3.4) (A—oI)P;(0)"'v; = a;(0)AP; v, — Bi(0)v;.

We will next determine how «a; and ; have to be chosen such that (3.3) and (3.4)
hold. Therefore, we assume the preconditioning to be done by a multi-shift Krylov
method itself (the inner method), which means that

z; = ”Pj_lvg‘, Z;U) =P;(0) v,

are computed via a truncated multi-shift Krylov method at step j. More precisely, the

vectors z; and 2'%) denote the approximate (truncated) solution of the linear systems

with system matrix A and (A — o), respectively, and the same right-hand side v;.
Hence, the corresponding (inner) residuals are given by

(35) r, =v; — AZj =V;— APJ-_lvj,
(3.6) r;g) =v,;,—(A- O’I)Z;a) =v,; — (A—a)Pj(o) v,.

We require the residuals (3.5)—(3.6) of the inner method to be collinear, i.e.,

(3.7) E'yj(-g) eC: rgo) = j(o)rj.
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Note that the collinearity factor *yj(»a) will be different at every iteration j and for every
shift 0. Moreover, relation (3.7) is not a very strong assumption since, for example,
multi-shift FOM [27], multi-shift BiCGstab [10], restarted multi-shift GMRES [11],
and multi-shift IDR [5, 17] yield collinear residuals. With this assumption, «; and f;
can be determined from (3.4) by using the collinearity relation (3.7), as the following
calculation shows:

= a;vj — ajAz; + (1 — a; + 5j)v;
= a; rj+(1—a;+55)v;
—~— _—

zy(a) =0

Thus, with (3.4) the residuals are collinear if we choose

aj =1, Bi=a;—1=" -1

in every (outer) iteration 1 < j < m. We show the relation
(3.8) (A— UI)Zg-U) = vj(o)Azj - ('yj(-g) - 1) vj,
or, in terms of the flexible preconditioners P; and P;(c), the following holds:

(A= oDPi(0) vy = (1A = (47 =1) 1) v;, 1<ji<m.

Note that the factors o; and ; do depend on o since the collinearity factors "y](g) are
different for every shift.

3.3. Krylov methods with collinear residuals. In the previous section, we
derived the theoretical basis for a nested Krylov method for shifted linear systems.
In order to be able to design a preconditioner that preserves the shift-invariance of
the corresponding Krylov spaces, we assumed collinear residuals (3.7) for the inner
multi-shift method. Next, we will present two multi-shift Krylov methods that lead to
collinear residuals and, therefore, fulfill assumption (3.7). It is well-known from [27]
that the multi-shift version of FOM leads to collinear residuals. We will review this
result in subsection 3.3.1. Moreover, we describe a new variant of the IDR method
that has collinear residuals in subsection 3.3.2.

3.3.1. Collinear residuals in multi-shift FOM. Multi-shift FOM (msFOM)
can be derived very similarly to multi-shift GMRES of section 2.1; cf. [27]. In FOM,
an orthogonal basis of K, (A, b) is obtained via the Arnoldi iteration, which yields

VHAV, = H,,

and can be derived from (2.2) by left-multiplication with V!, where H,, is a square

matrix and the superscript H denotes Hermitian transpose. Assuming H,, is invert-
ible, the mth iterate is then obtained by

Xm = Vin¥m, Wwherey,, = H;ll (ﬂe1)7
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ALGORITHM 1: msFOM FOR (A —oxl)xp =b, k=1,..., N, [27].
1: // Single FOM:
2: Initialize ro = b, = ||ro||, vi =10/
3: for j =1tom do
4:  Compute w = Av;
5. fori=1t%oj do
6
7
8
9

. H
hij =v;w

W =W — hi_,jvi

: Set hjy1; =||w| and vj11 = w/hji1;
10: end for
11: Solve y,, = H,,' (Be1)
12: Set X = Vin¥Vm
13: // Multi-shift FOM:
14: for k=1 to N, do
15:  Construct Hy, (o) = Hyy — 0l
16:  Solve y{7*) = H (o) (Ber)
17 Set x\7%) = meggk)
18: end for

where, for simplicity, we assumed xy, = 0 as an initial guess, and 8 = ||ro|| = ||b]|.
Similarly to multi-shift GMRES, the shifted Hessenberg matrix in msFOM can be
derived as H,(0) = H,, — ol,; see [27]. The complete multi-shift FOM algorithm is
repeated in Algorithm 1. It is well known that msFOM as presented in Algorithm 1
leads to collinear residuals of the shifted system and the original (¢ = 0) system. We
repeat this result in the following lemma.

LEMMA 3.1 (collinearity of the residuals in Algorithm 1). We use the notation of
Algorithm 1. Let the respective residuals of the original and the shifted system after
m steps be

r, =b— Ax,,,
rl) =b— (A—ol)x!?.

Then there exists a scalar v\7) that depends on the number of performed msFOM
iterations m, and the shift o such that

r(©) — ()

T

Proof. This proof can be found in [23, Proposition 6.7] as well as in [27]. For the
residual of the original system it holds after m iterations that

I'm :b_AXm :b_A‘/mYm =T _A‘/mYm

H H
= ﬁvl - VmHmym _herl,memymeJrl = _hm+l7memymvm+1~
—_—
=0

Repeating the same calculation for the shifted system yields

I',(f{) = _h1(73<)kl7me7|;|zygg)vm+la
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with e, = [0,...,0,1]H € C™, and the Arnoldi vector v, is identical to the un-
shifted case. Since the off-diagonal elements of the shifted Hessenberg matrix are
identical to the unshifted Hessenberg matrix in Algorithm 1, and the orthogonal basis
vectors v; obtained by the Arnoldi iteration are identical, we conclude

(3.9) Y7 =42 yrm,
with vy, y,(g ) being the last entry of the vectors y,.,, y,(g), respectively. The residuals

are collinear with the collinearity factor 4(?) explicitly given by (3.9). d

The above lemma shows that msFOM is suitable as a preconditioner for the nested
framework derived in section 3.2. The required collinearity factor ’yj(-o) of the jth outer
iteration in (3.8) is given by (3.9), where we assume that msFOM is stopped after m
inner iterations.

3.3.2. A variant of multi-shift IDR(s) with collinear residuals. The
IDR(s) method as presented in [31] is a Krylov subspace method that is based on
the idea that the residual is forced to lie in spaces G; of shrinking dimensions as the
number of iterations increases. In more detail, we require the residual r,, ;1 to fulfill

(310) gj+1 SDTIpy1 = (I — wj_,_lA)vn with v,, € Qj n S, Wi+l € C \ {0},

with Go = Kn(A,b), and, without loss of generality, let S = N (P") be the null
space of some N X s matrix P = [p1,...,ps)- It is known from the IDR theorem
[31, Theorem 2.1] that the spaces G; that are generated via the recursive definition
(3.10) are of decreasing dimension and that, eventually, G; = {0} for some j < N.
This result guarantees that in exact arithmetic the residual will be equal to zero at
some point. Moreover, note that the scalars w;, in (3.10) can be chosen freely, which
we will exploit in the following in order to derive a collinear variant of the IDR(s)
method.

According to [31], the vectors v,, € G; NS can be computed in the following way:

(3.11) (PHAR,)c = P'r,,,

(3.12) v, =1, — AR,c,

with AR, = [Ar,_1,...,Ar,_;] and residual difference Ar,,_y = r, —r,—1. In a
similar way, we denote the matrix of the last s + 1 residuals by R, = [rp,...,In_s].

From the last two definitions, we note that the residual updates can be expressed as
a product of the actual residuals and a difference matrix D as

(313) [rn, _ARn] =R, D,
where D is defined as the invertible matrix:
1 -1

D= € ClsHDx(s+1)
’ -1
1

Note that (3.13) holds in the same way for residuals of the shifted systems.

A first approach to adapt the IDR method to shifted linear systems that leads to
collinear residuals has been done by [17]. The algorithm presented in [17] follows the
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classical approach of evaluating the shifted residual polynomial. For the collinear IDR
variant presented in this section, we derive a purely algebraic approach that exploits
the IDR theorem and an implementation of the shifted algorithm that is very closely
related to the first IDR version in [31]. After finishing this manuscript, we discov-
ered that the same approach but a different implementation of it was independently

followed by [5].

We first note that collinear residuals r,,; and rsf ll will lie in the same Sonneveld
spaces. We therefore aim to construct the spaces G; only once for all shifted systems.
Moreover, we express the collinearity via a diagonal matrix I'Y) = diag(v\”, ..., 71(1”)8)
that consists of the last s + 1 consecutive collinearity factors such that it holds that

(3.14) R\ = R, T\,

where R\ = [rgf’ ) | is constructed in the same way as R,,.

) n S
Our approach can be described in two phases. First, we note from (3.10) that in
order to obtain collinear residuals, we need to produce collinear vectors v, and VS{Y).

Therefore, we want to calculate the intermediate vector ¢(®) in (3.11) of the shifted

systems such that V(U) = a(?v,, with a(?) € C to be determined. In the following
calculation, we make use of (3.13) and (3.14) in order to manipulate relation (3.12)
for the shifted system:

o v, =vlD =@ AR () = [p() _AR)) Lé)}

=RYD ! =R, 9D L
n cl@) " c(@)
= [rp, —ARn]Dflf‘(”)D ! .
n C(o)

By comparing with (3.12), we obtain the following (s+1) x (s+1) system of equations:

—11 (o 1 _ o -1
(3.15) DT D [c(") =al?) ol

where the vector ¢ is known, and ¢(?) € C* and a(?) € C can be uniquely determined.

Note that in contrast to (3.11)—(3.12), we have computed ¢(?) and v = (v, of

the shifted systems without storing additional residual differences.

(o)

In the second step of our approach, we determine the free IDR parameter Wity

and the factor 4(?) such that the residuals are collinear, i.e.,

rfﬁ)l =7t

Therefore, we substitute the definition of the residuals from (3.10) and use the

collinearity of the vectors v,, and V( ).

2, = Ory

= (1-wii(a-on) a<”>vn=v<><<1—wj+1A>vn>

= (1 —|—o.)j(+)1 ) (@ )v — o.)j(+)1a )Avn = 7(")vn — 'y(”)wj+1Avn.
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By matching the coefficients of the terms that belong to v,, and Av,, respectively,
we obtain

al?) 4 w;i)lo’a(”) =), w§i)1a(”) = 7w,

where 7(?) and wj(-i)l can be calculated as
. (o)
(o) _ _ Wi+l (o) _ ©@
(3.16) Wiyl = 7 w0’ 7 =1 e

Thus, we have derived a formula for the collinearity factor v(?) which can be used
in the nested framework in (3.8). In Algorithm 2, we present the collinear IDR variant
(called collIDR(s)) using (3.16) for the choice of the free IDR parameter wj(»i)l. Note
that in (3.16) the explicit dependence of the collinearity factor on the shift becomes
obvious.

Since in Algorithm 2 we loop over N, distinct shifts, all shifted quantities are
labeled with a superscript that depends on this loop index k. Concerning the choice of
the s-dimensional shadow space S and the parameter w; 1 of the unshifted system, we
refer to sections 4.1 and 4.2 of [31], respectively. As mentioned, the implementation of
Algorithm 2 does not require the storage of residual differences for the shifted systems.
However, we need to additionally store s updates for the iterates.

3.4. Nested FOM-FGMRES for shifted linear systems. We now present
a special case of the nested Krylov framework of section 3.2, namely, a version where
msFOM is used as inner preconditioner and FGMRES is used as an outer Krylov
iteration. FGMRES has been introduced in [22] for unshifted systems Ax = b and
allows a different preconditioner P; in the jth outer iteration. The Hessenberg relation
(2.2) therein extends to

(317) AZy, = erlEm’ (A - O'I)Z’I(T(LT) = VerlEm(U)7

where at step 1 < j < m the (flexible) preconditioning z; = P; 'v;, z;”) =Pj(0)" v,
is carried out, and Z,,, = [z1,...,%Zm] and Z,(,?) = [zgg), .. ,z,(g)]7 respectively. Note
that (3.17) is formulated for both the shifted and unshifted cases and that one column
of relation (3.17) yields

Azj = mi1hy, (A— UI)Z§U) = Vm_,_lhg-a),

which we will use next in order to determine the shifted Hessenberg matrix H, (o)
columnwise. To this end, we assume that the preconditioner P;(c) is equivalent to a

truncated msFOM inner iteration with collinear factors "y](-o) for the residuals according
to (3.9). From the calculation

(4= 01)P;(0)1vj = Vi by
o Dz — (~ _ 1) v, = V. h?
v AZj v Vi = Vm+13,
@y h.—V, @ _1)e. =V, h'?
= 73 m+1_J m—+1 ij QJ m+1_J
& Vo (07h; — (47 = 1) ;) = Vi)
we can conclude the jth column of the shifted Hessenberg matrix to be

(3.18) h(” = "h; — (47 = 1)e;, 1<j<m,

=i J

with e; being the jth unit vector of C™ .

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/13/20 to 145.94.71.204. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

S100 MANUEL BAUMANN AND MARTIN B. VAN GIJZEN

ALGORITHM 2: colllDR(s) FOR (A —oxl)xp =b, k=1,...,N,.

1: Set xo = x((JG’“) =0,1r90=b, and Wég’“) =1

2: forn=0,...,s—1do

32 v =Ar,; w=(r,)/(vv)

4: Ax, = wr,; Ar, = —wv

5. fork=1,...,N, do

6: o) = A (1 = wor); wl) = w/(1 - woy)
7 qu(f’“) = w(”k)ﬁy,(f’“)rn

8: xslg_fl) = x,(f’“) + Ax,(f’“)

9:  end for
10:  Update: x,41 = x5, + AXy; rpp1 =1 + Ary,
11: end for

12: ARpq1 := (Ary,, ..., Arg); AX, 41 = (Axy, ..., AXg)

13 AXIH = (A7, AxET); ) = (0 AET)
14: n=s

15: while ||r,,|| > TOL and n < MAXIT do

16: for j=0,...,sdo

17: Solve ¢ from PHAR,,c = P'r,,

18: v=r, - AR,c

19: for k=1,...,N, do

20: f‘slok) = diag('y(”k))

21: Solve [1,c(“¥)] from D‘lf‘sf’k)D[l,c(”k)] = al¥)[1, ] s.t.
vior) = qlor)y

22: end for

23: if j == 0 then

24: t=Av

25 w = (t"v)/(t"t); wlow) = w/(1 — woy,)

26: Ax, = —AX,c+wv; Ar,, = —AR,c — wt

27: else

28: Ax, = —AX,c+wv; Ar,, = —AAx,

29: end if

30: Update: X411 = X, + AXy; Tpp1 =1y + Ary,

31: for k=1,...,N, do

32: ”yfff:l) =al7) /(1 — woy,)

33: AxIT) = “AXTE elon) 1 (o) glon)y

34 xﬁifl) = xsf’“) + Axsf’“)

35: end for

36: // The IDR-update:

37: n=n+1

38: AR, := (Arp_1,...,Ar,_4); AX, = (Axp—1, ..., AXy_g)

39: AX) = (Ang_kl), Cee Ax,(j’_ks)); ~(k) = (”y,(f’“), ceey 7(10_’“5))

40:  end for
41: end while

Aligning the columns of m outer iterations together yields the following formula
for the shifted Hessenberg matrix:
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ALGORITHM 3: NESTED FOM-FGMRES FOR (A—0r)x, =b, k=1,...,N,.
1: Initialize ro = b, § = ||rol|, vi =r¢/8
2: for j =1tom do
3:  Preconditioning: z;g’“) =msFOM(A — o.1,v;)

Compute 73(0&) according to (3.9)

0)

Compute w = Az;
for i =1to j do
hi7j = V;—'W
W =W — hi,jvi
end for
10: Set hj+1_’j = ||W|| and Vitl = W/hj_,_l’j
11:  // Loop over shifted systems:
12: for k=1 to N, do

13: Define Z;U’“) = [z:(LU"‘)7 ey zgg’“)]

14: Construct H; (o) according to (3.19)

15: Solve(yga’“) :(argm(in}; |Ber — H;(ok)y]||, with e; = [1,0,...,0]" € RI*?
oK) o). (o

16: Set x; " = Z;"My ;"

17:  end for

18: end for

where I, is the m x m identity matrix with an extra row of zeros attached and 1",(73 )

is a diagonal matrix with the collinearity factors on the diagonal, i.e.,

g
(3.20) r) = ecmm,
7

We use this notation in order to point out the similarities to the nested algorithm in
section 3.5. Note that for ¢ = 0, the shifted Hessenberg matrix (3.19) reduces to the
original Hessenberg matrix, H, (0) = H,,,, because in this case the collinearity factors
are all equal to one and, hence, 1“,(3) = [. The FOM-FGMRES nested Krylov method
for shifted linear systems is summarized in Algorithm 3.

The least-squares problem in line 15 minimizes the residual of each shifted system,
as the following calculation proves:

xgo) = argmin ||b — (A — ol)x|| = argmin Hb —(A- UI)Z;U)y}’
er]@) yet

— argmin||b — V;1 H(0)y|| = argmin | 8er — ((H, ~ 1) 1" +1,) v,
yeCi yeCi
where we used the flexible shifted Arnolid relation of (3.17) as well as (3.19).

We note that in the same way as in FGMRES for the unshifted case [22], extra
storage is required because the matrices Z ;U’“) which span the solution space for every
shifted problem need to be stored. This is in fact a major drawback of FGMRES that
has already been pointed out by [22] and applies here for every shift. We therefore
present in section 3.5 a nested algorithm that uses flexible QMRIDR [38, section 4]
as an outer method and partly overcomes this storage requirement.
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3.5. Nested IDR-FQMRIDR for shifted linear systems. Similar way to
the nested FOM-FGMRES algorithm, we present a nested IDR-FQMRIDR method
for shifted linear systems where colllIDR(s) from Algorithm 2 is used as an inner
method. In contrast to the combination in section 3.4, this is a combination of two
short recurrence methods. For V,,, = G,,,U,,, relation (2.5) in QMRIDR was given by,

A‘/m - Gm+1ﬂm-

In flexible QMRIDR (FQMRIDR) which has been introduced in [38, section 4], this
relation is replaced by

(3.21) AZy = GmiH,,, (A— UI)Zr(r?) = G7n+1ﬂm(a)7

with Z,,, Z,(,?) consisting of the respective columns z; = Pj_lvj, z(-g) = P(U)»‘lvj for
1 <7 < m, just as before. One column of (3.21) reads

Azj = Gm+lhj7 (A - UI)Zg'U) = Gm+lh§‘0)a

which we will use in order to derive the shifted Hessenberg matrix of IDR-FQMRIDR.

We assume that the factors 'yj(g) are given from (3.16) by an inner colllDR(s)

iteration. Then, the FQMRIDR relation applied to a shifted problem yields

(A= oD)P;(0)"'v; = Gpy1h”
o vj(o)Azj — (’y(-g) — 1) v; = Gerlh;U)

= "YJ(U)GmJ,-th - (’Yj(g) _ 1) GmuJ == G’m,—!—lh;'a-)

< Gmir (7§U)hj - (’YJ(-U) - 1) ﬂj) - Gm“h;a)

and one column of the shifted Hessenberg matrix is given by

(3.22) h(" =~{"h; - (%@ - 1) u, 1<j<m,
where u; = [u;,0]" is the vector u; from the jth iteration of QMRIDR. [38] with an
extra zero.

Altogether, we have derived the shifted Hessenberg matrix,

(323) Em(o) = (Em - Qm) ng) + Qm?

with T7) as defined in (3.20), and U,,, = [uy,...,u,,]. Here we see the close rela-
tion between the two nested methods. By comparing the expression for the shifted
Hessenberg matrices in (3.19) and (3.23), we first note that in principle every inner
Krylov method can be used that provides collinear residuals. Moreover, we use this
factor within the (generalized) Hessenberg relation of the outer Krylov method in a
very similar way, which shows that in principle also every Krylov method as an outer
iteration is suitable.

Note that Algorithm 4 is schematic. For a more detailed and memory-efficient
implementation of the flexible QMRIDR(s) routine, see [38, Algorithm 1]. In fact, we
only need to apply the collIDR(s) routine as a preconditioner in line 18 and change line
32 by the formula (3.22) in order to adapt [38, Algorithm 1] to our nested algorithm.
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ALGORITHM 4: NESTED IDR-FQMRIDR FOR (A—o0pl)x; =b, k=1,...,N,.
1: Initialize ro = b, § = ||rol|, vi =r¢/8
2: for j =1tom do
3:  Preconditioning: z;g’“) = collIDR(A — 0.1,v;)

4:  Compute 73(0&) according to (3.16)

5. Compute h;, u; as in QMRIDR; see [38, Algorithm 1]
6:  Compute h;g’“) from (3.22)

7. // Loop over shifted systems:

8 for k =1 to N, do

9 Define Zj(-ak) = [Zgak), e Z;ak)]

10: Construct H;(ox) according to (3.23)

11: Solve y(@») = argmin,, ||Be; — ﬂj(ak)yH, with e; = [1,0,...,0/" € RI+!
12: Set xgo’“) = Z;U’“)y("’c)

13:  end for

14: end for

In line 11 of Algorithm 4, the following quasi-minimization of the shifted residual is
carried out:

X§U) = argmin [|[b — (A — o)x|| = argmin Hb —(A- UI)ZJ(-U)yH
xGZJ(vU) yeC

 asgmin b — G 1B}y = asgmin [ Gy (51 — (o))
yeCi yeCi

< angin||e; — H()y]| = argmin | 5e: - (8, - 1)) 157 + 1) v
yeCi y€eCi

with an estimation for ||G,11]| given in [38].

4. Numerical experiments. The numerical examples we present are motivated
from geophysical applications. We consider the numerical solution of the Helmholtz
equation in section 4.1 and of the time-harmonic elastic wave equation (Navier equa-
tion) in section 4.2. In both cases, we consider the numerical solution at multiple
frequencies that arise from a frequency-domain model of acoustic and elastic waves,
respectively. We will point out that there exists a one-to-one relation between the
considered shifts in (1.1) and the frequencies of the waves.

All examples have been implemented in MATLAB version R2011B, executed on
an Intel Xeon CPU E3-1240 V2 at 3.40 GHz. For a more detailed description of the
numerical tests, we refer to the extended report [3].

For the numerical solution of shifted linear systems of the form

(4.1) (A—O’kI)XkZb, kZl,...,No,
it is of practical use to reformulate the problem (4.1) by the substitutions

o =0 — 0",

A=A—-0o*I
for some ¢* € {o1,...,0n,}. This way, it is equivalent to solving the shifted linear
systems
(4.2) (A—&kI)XkZb, k=1,...,Ng,
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the only difference being that in the formulation (4.2) the unshifted (55 = 0) solution
corresponds to one of the N, solutions we are interested in.

4.1. A Helmholtz problem. As a first example, we consider acoustic wave
propagation which can be modeled by the Helmholtz equation,

<27T I > ? . 2

(4.3) —Ap — p=s, inQ CR?

c(x)

where p stands for the pressure and fj is the kth wave frequency. We consider the
wedge problem which was introduced in [21]. Therein, the computational domain
is Q2 = [0,600] x [0,1000] and the underlying sound velocity ¢(x) is heterogeneous
and represents three different layers; cf. [3, 21] for more details. Moreover, the
sound source is given by a point source at the top of the computational domain, s =
d(x — 300, z). We distinguish between reflecting boundary conditions (homogeneous
Neumann boundary conditions),

0
(4.4) a_i —0, on &,
and absorbing boundary conditions (so-called Sommerfeld radiation boundary condi-

tions) of the form

(4.5) %—i(i@{;)p:o, on &,

where 7 is the imaginary unit. Preconditioning techniques for the Helmholtz problem
in the single-shift case (N, = 1) are, for instance, discussed in [6, 7, 8, 26, 37]. When
nonhomogeneous Neumann boundary conditions (4.5) are included in (4.3), we end
up with a discretization of the form

(4.6) (K +i27fr)C — 2nfp)>M)p =s, ox = 27f%,

where C represents the boundary conditions (4.5), K is the (negative) discrete Lapla-
cian, and M is a mass matrix. The unknown vector p consists of discrete pressure
values. Note that (4.6) is quadratic in o), and can be linearized as

o {5 88 DB e

as suggested in [27, 28], which yields a shifted problem. For reflecting boundary
conditions (4.4), we get C' = 0, and a shifted linear system can be obtained by simply
multiplying (4.6) with M ~!, which we avoid in the following. The shift-and-invert
preconditioner (as introduced in section 3.1) for (4.7) is given by

e R Na]

I 0 0 I 1 -7

with damping parameter 7 € C, and can be seen as the analogue of the shifted Laplace
preconditioner of [6, 7, 8] applied to the block system (4.7). We remark that (4.8)
can be decomposed and inverted in the following way:

@9 P =0 T e 7 e o]
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Fic. 1. Convergence behavior of multi-shift GMRES (left) and multi-shift QMRIDR(8) (right)
for (4.3)—(4.5).

Therefore, from a computational point of view, applying the preconditioner (4.8) to
(4.7) reduces to efficiently solving systems with the shifted Laplacian (K +itC —72M)
in (4.9) which is of the same dimension as (4.6).

For large-scale applications, a multigrid approach as in [6, 8, 26] can be used to
approximate the shifted Laplace preconditioner. This gives rise to the question to
which accuracy a multigrid method needs to be applied. Using the nested method
of section 3.4 or section 3.5 for the preconditioned shifted problem yields a setting
similar to [36], where the authors analyze inexact nested Krylov methods for the
unshifted case. The insight of [36] on the accuracy that is needed for matrix-vector
multiplications may give guidelines for an extension to the shifted framework.

In the present test case, we aim to solve (4.7) for a range of six frequencies
fr = {1,2,4,8,16,32} Hz and restrict ourselves to a direct method for the shift-
and-invert preconditioner. For the resolution of high frequencies and due to the
doubling of unknowns from (4.6) to (4.7), the system size becomes more than 30,000
equations. We present the convergence behavior for multi-shift GMRES and multi-
shift QMRIDR with s = 8 using only the single shift-and-invert preconditioner (4.9)
in Figure 1, respecively. The convergence curves show that the residual norms first
stagnate or even increase in the case of QMRIDR(8). Moreover, the convergence
rates are nearly linear as soon as the residual norms start decreasing. Therefore, it
is intuitive to truncate the inner iterations in this region. The convergence plots of
nested FOM-FGMRES and nested IDR-FQMRIDR(8) are presented in Figures 2 and
3, respectively.

In both nested algorithms, the number of inner iterations is chosen in such a way
that the relative residual norms are of size 0.1 or smaller, which seems to be a good
choice for truncation of the inner algorithm. The convergence rate of the outer Krylov
method is in both cases very fast.

In Table 1, we want to point out the CPU time that is required in order to solve all
six shifted systems up to a relative tolerance of 10~%. Comparing multi-shift GMRES
and multi-shift GMRES preconditioned by a nested FOM method (FOM-FGMRES),
we observe that the nested method is more than five times faster. Since the total
number of iterations, and therefore, the number of matrix-vector multiplications, is
larger in the nested method, we conclude that the observed speed-up is due to shorter
recurrence of the Arnoldi orthogonalization process. This also explains why we observe
no speed-up for multi-shift QMRIDR, which is a short recurrence method by design.
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Comparison of multi-shift and nested multi-shift algorithms for the wedge problem (4.3) with
absorbing boundary conditions (4.5). Here, &§ = max{oy,k=1,...,No}.

Multi-shift Krylov methods

msGMRES rest_msGMRES msQMRIDR(8) collIDR(8)
# inner iterations - 200 - -
# outer iterations 404 4 471 584
Seed shift 7 (0.7 - 0.79)6 (0.7 —0.74)6 (0.7 —0.74)6 (0.7 —0.74)6
CPU time 157.33s 39.4s 62.51s 79.13s

FOM-FGMRES

IDR(8)-FGMRES

Nested multi-shift Krylov methods

FOM-FQMRIDR(8)

IDR(8)-FQMRIDR(S)

# inner iterations
# outer iterations
Seed shift 7

CPU time

160
5
(0.7 — 0.7i)6

28.56s

250
13
(0.7 —0.74)6
216.5s

100
8
(0.7 — 0.7i)6
24.4s

170
9
(0.7 —0.74)6
75.41s

Moreover, we included other possible combinations of the nested algorithm which
show that a combination of inner msFOM with outer FQMRIDR(8) performs best.
Table 1 also shows the performance of collIDR(8) as a stand-alone multi-shift
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TABLE 2
Value of constant parameters taken from [2].

p [kg/m3] ¢p [m/s] cs [m/s] A [Pal] u [Pal
2.7-108 6.8983 - 103 | 4.3497-10% | 2.6316- 1010 | 5.1084 - 1010

algorithm as well as restarted multi-shift GMRES [11] (rest-msGMRES), which can
be seen as a nested combination of multi-shift GMRES with an outer Richardson iter-
ation. For all considered cases, the seed shift 7 of the shift-and-invert preconditioner
(4.8) has been tuned such that optimal convergence was obtained.

4.2. The time-harmonic elastic wave equation. Our second example con-
siders the wave propagation of sound waves through an elastic medium. We are
interested in the numerical solution of time-harmonic waves at multiple (angular)
frequencies o = 2w fx,k = 1,...,N,. The scattering of time-harmonic waves is
described in [2] by a Navier equation,

(4.10) —oip(x)u—V-1(u) =s, x€QcCR?

where u : Q — R? is the unknown displacement vector, s is typically a point source,
and p(x) is the density of the material which is assumed to be space-dependent. The
strain and stress tensors are derived from Hooke’s law and are given by

T(u) = A(x) (V- u) + 2u(x)e(u), €e(u) = % (Vu + (Vu)T) .

Note that the underlying density p(x) as well as the Lamé parameters A(x) and p(x)
have to be prescribed in the considered model; see Table 2.

In contrast to the example in section 4.1, we will consider more realistic boundary
conditions. Therefore, the following impedance boundary condition is prescribed:

(4.11) iy(x)opp(x)Bu+ t(u)n(x) =0, x € &K,

where 7 is the absorption coefficient, i = v/—1, and B; j(x) = ¢, (x)nin; + cs(x)t;t;.
Here, n; and t¢; are the components of the (outer) normal vector n and the tangential
vector t, respectively. For Q C R? we consequently get a 2 x 2 matrix B at every
boundary point x € &2. The quantities ¢, and ¢, are the speed of pressure wave
and shear wave, respectively (see Table 2). In the following, we prescribed absorbing
boundary conditions on whole &2 by setting v = 1.

From a discretization of (4.10)—(4.11) using linear finite elements, we obtain the
linear systems

(4.12) (K +ioxC —oiM)u=s, k=1,...,N,,

with K, C, M being symmetric and sparse block matrices and u, s being the discretized
counterpart of u, s in lexicographical order. Here, C' contains the boundary conditions
(4.11), and K and M are a stiffness and mass matrix, respectively. Re-formulation of
(4.12) in the same way as (4.7) yields a block system of the form

S I O N B R

which is again a shifted linear system with shifts oy,...,0n,.
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multi-shift GMRES multi-shift QMRIDR(4)

— —— F T T T : :
—e— f1 =5 kHz . —e— f1 =5kHz

100 = fp = 10 kHz [{ 10° = f, =10 kHz |4
—+— f3 =15 kHz —+— f3 =15 kHz

1071 - s fy =20 kHz |4 107 R s f1 =20 kHz [{
=N f5 =25 kHz FV fs =25 kHz

Ty - fo =30 kHz || 1021 - f5 =30 kiz |

1073

1071

Relative residual norm
Relative residual norm

1075 ¢

1076 1076 4
1077 1077 E oo E
E g \
£ N "\
10-# | 10-8 | | | | I NN, N
0 10 0 20 40 60 80 100 120 140
## iterations # iterations

Fi1c. 4. Convergence behavior of multi-shift GMRES (left) and multi-shift QMRIDR(4) (right)
for (4.13).

TABLE 3
Comparison of multi-shift and nested multi-shift algorithms for the linear elastic wave equation
(4.10)—(4.11). Again, 6 = max{op,k=1,...,Ns}.

Multi-shift Krylov methods

msGMRES rest_msGMRES msQMRIDR(4) collIDR(4)
# inner iterations - 20 - -
# outer iterations 103 7 136 134
Seed shift 7 (0.7 —0.74)6 (0.7 —0.74)6 (0.7 —0.79)6 (0.7 —0.79)6
CPU time 17.71s 6.13s 22.35s 22.58s

FOM-FGMRES

IDR(4)-FGMRES

Nested multi-shift Krylov methods

FOM-FQMRIDR(4)

IDR(4)-FQMRIDR (4)

# inner iterations 20 25 30 30

# outer iterations 7 9 5 15
Seed shift 7 (0.7 —0.74)6 (0.7 —0.74)6 (0.7 —0.79)6 (0.7 —0.79)6
CPU time 9.12s 32.99s 8.14s 58.36s

The considered numerical setting is taken from [2, 18]. Therein, the parame-
ters are set to the values presented in Table 2, and the unit square is considered
as computational domain 2. The angular frequencies oy are given by o = 27 fj
and range from f; = 5,000 Hz to f¢ = 30,000 Hz in uniform steps. For more
details on the discretization and the numerical results, we refer to our technical
report [3].

We again ran our numerical experiments using an additional shift-and-invert pre-
conditioner (4.9) with seed shift 7 as shown in Table 3. In Figure 4, we present
the convergence curves of multi-shift GMRES and multi-shift QMRIDR(4) without
nested preconditioning. In this experiment, we observe a flat convergence behavior
that gives rise to an early truncation in the nested framework.

For nested FOM-FGMRES, we chose the number of inner msFOM iterations such
that the relative residual norms are below a threshold tolerance of 0.1; cf. Figure 5.
Our numerical experiments have proved that this leads to a rapid convergence in only
7 iterations in the outer FGMRES loop. When measuring the actual CPU time that
is required to solve all N, = 6 shifted systems with multi-shift GMRES and nested
FOM-FGMRES, we observe a speed-up of almost two; cf. Table 3.

Moreover, we applied nested IDR-FQMRIDR(4) to (4.13) in Figure 6. From the
convergence behavior of the inner collIDR iteration (Algorithm 2), we note that the
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Fic. 5. Convergence behavior of FOM-FGMRES for (4.13): typical inner convergence (left)
and outer convergence (right).
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Fic. 6. Convergence behavior of IDR-FQMRIDR (4) for (4.13): typical inner convergence
(left) and outer convergence (right).

convergence curves show irregular jumps, which makes a proper truncation of the
inner preconditioner rather difficult. As in the previous tests, we do not observe a
speed-up in CPU time for the nested algorithm, which is mostly due to the short
recurrence of QMRIDR(s).

In Table 3 we present as well numerical results for an implementation of restarted
multi-shift GMRES (rest_-msGMRES) and our IDR variant that exploits collinear
residuals (collIDR(s)), which can be seen as a multi-shift Krylov method when being
applied as a stand-alone algorithm as presented in Algorithm 2. Moreover, we compare
performance of the nested Krylov methods with different inner-outer methods com-
bined. For the specific setting considered in Table 3, we first note that QMRIDR(4)
and collIDR(4) require similar CPU times. Moreover, we observe that a combination
of inner msFOM and outer FQMRIDR(4) perform best among the nested algorithms.
The restarted version of multi-shift GMRES performs best in this setting but did not
converge in some examples described in [3].

5. Conclusion. This work presents an algorithmic framework for the numerical
solution of shifted linear systems (1.1) with inner-outer Krylov methods that allow
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flexible preconditioning. In this sense, it can be seen as a generalization of the work
of [22, 29, 40] to sequences of shifted problems. The most general algorithm of this
paper can be summarized in the following way:
1. The flexible preconditioner P;(o) is itself an inner multi-shift Krylov method
which produces collinear residuals in the sense of (3.7).
2. The collinearity factor is used in the jth iteration of an outer Krylov method
in order to derive the Hessenberg matrix of the shifted systems; cf. (3.18),
(3.22).
We call this new framework a nested Krylov method for shifted linear systems since
the inner Krylov iteration is considered a flexible preconditioner for the outer Krylov
method. Moreover, the fact that we can use a Krylov method as flexible preconditioner
shows that a Krylov polynomial can be used as a polynomial preconditioner in the
sense of [1].

This general framework has been illustrated and tested for two possible combi-
nations of inner-outer Krylov methods. We present a combination of inner FOM and
outer FGMRES in Algorithm 3. Therefore, the collinearity factor for the inner Krylov
method (multi-shift FOM) is given by (3.9) without any further manipulations. When
combining multi-shift IDR(s) and FQMRIDR(s) as presented in Algorithm 4, a new
variant of IDR(s) has been developed which leads to collinear residuals with collinear-
ity factor given by (3.16); cf. Algorithm 2. In both cases, a shifted Hessenberg matrix
has been derived using the respective collinearity factors. This has been done for
FGMRES (3.19) and FQMRIDR(s) (3.23), respectively.

Various numerical tests have been performed that showed an optimal performance
of the nested algorithm when the inner Krylov method was truncated as the relative
residuals satisfy ||r§-o’“)|\ / |\r,(30’“)|| < 0.1 at every (outer) iteration j and for all shifts
01,...,0nN,. This way, we were able to obtain a computational speed-up up to a
factor of five when comparing multi-shift GMRES with nested FOM-FGMRES in
section 4.1.
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