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Abstract. We present IDR(s), a new family of efficient, short-recurrence methods for large
nonsymmetric systems of linear equations. The new methods are based on the induced dimension
reduction (IDR) method proposed by Sonneveld in 1980. IDR(s) generates residuals that are forced
to be in a sequence of nested subspaces. Although IDR(s) behaves like an iterative method, in exact
arithmetic it computes the true solution using at most N + N/s matrix-vector products, with N the
problem size and s the codimension of a fixed subspace. We describe the algorithm and the underlying
theory and present numerical experiments to illustrate the theoretical properties of the method and
its performance for systems arising from different applications. Our experiments show that IDR(s)
is competitive with or superior to most Bi-CG-based methods and outperforms Bi-CGSTAB when
s > 1.
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1. Introduction. Krylov subspace methods are used extensively for the iterative
solution of linear systems of equations

Ax = b.

The most popular method for solving large systems with A Hermitian and positive
definite of size N is the conjugate gradient (CG) method [8] of Hestenes and Stiefel.
The CG method minimizes the A-norm of the error over the Krylov subspace

(1.1) Kn(A, r0) = span
(
r0, Ar0, A2r0, . . . ,A

nr0

)
,

using short recurrences. Here, n is the iteration number, and r0 = b − Ax0 is the
initial residual. Short recurrences imply that only a small number of vectors is needed
to carry out the process, so that an extremely simple and efficient method is obtained.
Unfortunately, as shown by Faber and Manteuffel [1], it is not possible to derive a
method for general A that combines an optimal minimization of some error norm
over Kn(A, r0) with short recurrences.

The search for efficient Krylov methods for systems with a general matrix A has
been dominated by two different approaches, both of which are generalizations of
CG. In the first approach, the requirement of short recurrences is removed. The most
popular member of this family, GMRES [11], yields iterates that minimize the residual
over the Krylov subspace after n iterations, at the expense of having to compute and
store a new orthogonal basis vector for the Krylov subspace at every iteration. This
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1036 PETER SONNEVELD AND MARTIN B. VAN GIJZEN

operation becomes prohibitive, with respect to both memory and computations, if
many iterations have to be performed to achieve a desired precision.

The second approach generalizes CG using short recurrences. The archetype of
this class is the Bi-CG method of Fletcher [2], which is equivalent to CG in the
symmetric case. However, Bi-CG requires two matrix-vector products per iteration,
one with A and one with AH , which makes it approximately twice as expensive as
CG. Moreover, the method has no optimality property for general A.

Since Bi-CG is based on the bi-Lanczos tridiagonalization method [9], the method
terminates (in exact arithmetic) in at most N iterations, hence using at most 2N
matrix-vector products. The search for a faster Bi-CG-type method focused on Sonn-
eveld’s idea of making better use of the “wasted” extra matrix-vector multiplication.
In his CGS method [14], this is achieved by applying the CG polynomial twice at no
extra cost in terms of matrix-vector multiplications. An additional advantage of CGS
is that no multiplications with AH are needed.

For many problems, CGS is considerably faster than Bi-CG, but the convergence
behavior is also much more erratic. To overcome this drawback, van der Vorst pro-
posed Bi-CGSTAB [15], which applies the Bi-CG polynomial in combination with a
linear minimal residual step at each iteration. This method was generalized first by
Gutknecht [6] to BiCGstab2 and later by Sleijpen and Fokkema [12] to the BiCGstab(�)
methods that combine Bi-CG with higher-order minimum residual methods. Another
approach to stabilize CGS is taken in TFQMR [4]. This method combines the CGS
idea with a QMR-type quasi minimization of the residual norm.

Since these developments, many other methods have been proposed that combine
the Bi-CG polynomial with another polynomial. For example, Zhang [19] generalized
CGS and Bi-CGSTAB in a unified way by a class of product-type methods whose
residual polynomials are a product of the Bi-CG polynomial and other polynomials
with standard three-term recurrence relations. Another approach to generalize Bi-
CGSTAB was proposed by Yeung and Chan, whose ML(k)BiCGSTAB method [18]
is a Bi-CGSTAB variant based on multiple left Lanczos starting vectors.

As is clear from the above, research efforts on fast Krylov algorithms based on
short recurrences have focused on Bi-CG-type methods. This is probably due to the
fact that in the symmetric case Bi-CG is mathematically equivalent to the optimal
CG method (albeit at twice the price). However, there is no reason to believe that a
different approach cannot yield faster methods. In this paper, we propose an approach
that seems to confirm that indeed it is possible to derive competitive or even faster
methods for nonsymmetric systems in a way that is not based on Bi-CG or Lanczos.

In order to derive such a method we revisit the induced dimension reduction (IDR)
algorithm proposed in 1980 by Sonneveld in [17] as an iterative method for solving
nonsymmetric systems of equations. The method has several favorable features: it is
simple, uses short recurrences, and computes the exact solution in at most 2N steps
(matrix-vector multiplications) in exact arithmetic.

Analysis of IDR revealed a close relation with Bi-CG. It was shown in [17] that
the iteration polynomial constructed by IDR is the product of the Bi-CG polynomial
with another, locally minimizing polynomial. Sonneveld’s observation that the Bi-CG
polynomial could be combined with another polynomial without transpose-matrix-
vector multiplications led to the development first of CGS and later of Bi-CGSTAB.

Over the years, CGS and Bi-CGSTAB have completely overshadowed IDR, which
is now practically forgotten, except perhaps as the predecessor of CGS. This is un-
fortunate since, although there is a clear relation between CG-type methods and the
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original IDR method, the underlying ideas are completely different. This suggests that
by exploiting the differences new methods may be developed.

Bi-CG, CGS, Bi-CGSTAB, and BiCGstab(�) are essentially based on the com-
putation of two mutually biorthogonal bases for the Krylov subspaces Kn(A, r0) and
Kn(AH , r̃0). The “S”-part in CGS and the “STAB”-part in Bi-CGSTAB are differ-
ent ways of making more efficient use of the AH -related information. The finiteness
of these methods (in exact arithmetic) comes from the finiteness of any basis for (a
subspace of) CN .

The IDR method, on the other hand, generates residuals that are forced to be
in subspaces Gj of decreasing dimension. These nested subspaces are related by Gj =
(I − ωjA)(S ∩ Gj−1), where S is a fixed proper subspace of CN , and the ωj ’s are
nonzero scalars.

In this paper, we describe IDR(s), a family of new iterative solution algorithms
based on the IDR mechanism. We propose a number of improvements and general-
izations of the original IDR method as well as new variants that compute the true
solution in exact arithmetic using at most N +N/s matrix-vector multiplications.

This paper is organized as follows. In section 2, we present and prove the IDR
theorem which provides the theoretical basis for the new algorithms. In section 3, we
describe a prototype for the IDR family of algorithms and we analyze the termination
and breakdown behavior of the IDR(s) algorithms. In section 4, we discuss what free-
dom there is in developing IDR-based algorithms and explain among other things how
this freedom can be exploited to avoid breakdown of the algorithm. In section 5, we
discuss IDR(s) as a polynomial-based algorithm and explain the relationship between
IDR(1) and Bi-CGSTAB and between IDR(s) and ML(k)BiCGSTAB. In section 6, we
describe the numerical experiments. We present both simple experiments to validate
the theoretical properties of IDR(s) and realistic examples to make an evaluative
comparison with the best known Bi-CG-type methods: Bi-CGSTAB, Bi-CG, QMR
[5], CGS, and BiCGstab(�). We present concluding remarks in section 7.

2. The IDR theorem. The new family of algorithms is based on the IDR
theorem. The original IDR theorem was published in [17, p. 550]. Here, we give a
generalization of the original result to complex matrices.

Theorem 2.1 (IDR). Let A be any matrix in C
N×N , let v0 be any nonzero vector

in CN , and let G0 be the full Krylov space KN (A,v0). Let S denote any (proper)
subspace of CN such that S and G0 do not share a nontrivial invariant subspace of A,
and define the sequence Gj , j = 1, 2, . . . , as

Gj = (I − ωjA)(Gj−1 ∩ S),

where the ωj’s are nonzero scalars. Then the following hold:
(i) Gj ⊂ Gj−1 ∀j > 0.
(ii) Gj = {0} for some j ≤ N .
Proof. We first show by induction that Gj ⊂ Gj−1 ∀j > 0. Since G0 is a full Krylov

space, we have

G1 = (I − ω1A)(G0 ∩ S) ⊂ (I − ω1A)G0 ⊂ G0.

Now assume Gj ⊂ Gj−1 for some j > 0, and let x ∈ Gj+1. Then

x = (I − ωj+1A)y

for some y ∈ Gj ∩ S. Then y ∈ Gj−1 ∩ S by the induction hypothesis. Hence, (I −
ωjA)y ∈ Gj . This implies that Ay ∈ Gj , and therefore (I − ωj+1A)y = x ∈ Gj .
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It follows that Gj+1 ⊂ Gj .
We now show that Gj = {0} for some j ≤ N . Since Gj+1 ⊂ Gj , there are two

possibilities: either Gj+1 is a proper subspace of Gj , or Gj+1 = Gj .
In the first case, dim(Gj+1) < dim(Gj). The second case can occur only if Gj ∩S =

Gj . Otherwise, dim(Gj ∩ S) < dim(Gj), and consequently dim(Gj+1) < dim(Gj). So
Gj ∩S = Gj , and therefore Gj ⊂ S. Also Gj+1 = (I−ωj+1A)(Gj ∩S) = (I−ωj+1A)Gj ,
which implies that Gj is an invariant subspace of A.

Since Gj ⊂ S and Gj ⊂ G0, and by assumption S and G0 do not share a nontrivial
invariant subspace of A, it follows that Gj = {0}. Therefore, either the dimension of
the Gj space is reduced at each step, or Gj = {0}. Since dim(G0) ≤ N , no more than
N dimension reduction steps can be performed. Hence there is a j ≤ N for which
Gj = {0}.

Remark. The restriction that S and G0 may not share a nontrivial invariant sub-
space of A is not severe. Because G0 is a full Krylov space, all eigenspaces of A in G0

are one-dimensional. So if, for instance, S is chosen at random, then the event that
one of these eigenspaces is in S has zero probability.

The above theorem states that it is possible to generate a sequence of nested sub-
spaces of decreasing dimension and that under mild conditions the smallest possible
subspace is {0}.

3. The IDR(s) algorithm.

3.1. Derivation of the prototype. Let Ax = b be an N × N linear system.
A Krylov-type solver produces iterates xn for which the residuals rn = b − Axn are
in the Krylov spaces Kn(A, r0). Here, x0 is an initial estimate of the solution. As a
consequence, the residuals rn can be written as Φn(A)r0, where Φn is an nth degree
polynomial:1 Φn ∈ Pn \Pn−1. Given a recursion for the residuals rn, we must be able
to produce a corresponding recursion for xn. Assume this has been possible for the
residuals up to step n; then it must be possible to calculate xn+1 from the equation

AΔxn = −Δrn = [Φn(A) − Φn+1(A)] r0

without actually solving an equation with the matrix A. Here, the forward difference
operator Δuk = uk+1 − uk is used.

This is always possible if the polynomial difference Φn+1(τ) − Φn(τ) is divisible
by τ , i.e., Φn+1(τ) = Φn(τ)+τΨn(τ), with Ψn ∈ Pn \Pn−1. With Φ0 ≡ 1, this implies
that Φn(0) = 1 ∀n ≥ 0.

Therefore the general Krylov-type solver can be described by recursions of the
following form:

rn+1 = rn − αAvn −
l̂∑

l=1

γlΔrn−l,(3.1)

xn+1 = xn + αvn −
l̂∑

l=1

γlΔxn−l,

where vn is any computable vector in Kn(A, r0) \ Kn−1(A, r0). The integer l̂ is the
depth of the recursion. If l̂ = n, we have a so-called long recurrence, which implies that

1Under very exceptional circumstances, the polynomial may be of lower degree, causing break-
down in most Krylov methods.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IDR(s) FOR SOLVING NONSYMMETRIC SYSTEMS 1039

the amount of work and the memory requirements grow with n. On the other hand,
if l̂ is fixed and small (compared to N), then we have a so-called short recurrence,
which is attractive with respect to computational and memory requirements.

The IDR theorem can be applied by generating residuals rn that are forced to
be in the subspaces Gj , where j is nondecreasing with increasing n. Then, under the
assumptions of Theorem 2.1, the system will be solved after at most N dimension
reduction steps.

The residual rn+1 is in Gj+1 if

rn+1 = (I − ωj+1A)vn with vn ∈ Gj ∩ S.

Now if we choose

(3.2) vn = rn −
l̂∑

l=1

γlΔrn−l,

then the expression for rn+1 reads

rn+1 = rn − ωj+1Avn −
l̂∑

l=1

γlΔrn−l,

which corresponds to (3.1), the general Krylov-solver recursion.
Without loss of generality, we may assume the space S to be the left nullspace of

some N × s matrix P:

P = (p1 p2 . . . ps), S = N (PH).

Since vn is also in S = N (PH), it additionally satisfies

(3.3) PHvn = 0.

Combining (3.2) and (3.3) yields an s× l̂ linear system for the l̂ coefficients γl. Under
normal circumstances this system is uniquely solvable if l̂ = s. Consequently, comput-
ing the first vector in Gj+1 requires s+ 1 vectors in Gj , and we may expect rn to be
in Gj+1 only for n ≥ (j + 1)(s+ 1). We will come back to the exceptional case when
the system is not uniquely solvable in the next section.

Define the following matrices:

ΔRn = (Δrn−1 Δrn−2 · · · Δrn−s),(3.4)

ΔXn = (Δxn−1 Δxn−2 · · · Δxn−s).(3.5)

Then the computation of rn+1 ∈ Gj+1 can be implemented by the following algorithm:
Calculate: c ∈ Cs from (PHΔRn)c = PHrn,

v = rn − ΔRnc,
rn+1 = v − ωj+1Av .

Since Gj+1 ⊂ Gj , repeating these calculations will produce new residuals rn+2, rn+3,
. . . in Gj+1. Once s+1 residuals in Gj+1 have been computed, we can expect the next
residual to be in Gj+2.
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In the calculation of the first residual in Gj+1, we may choose ωj+1 freely, but the
same value must be used in the calculations of the subsequent residuals in Gj+1. A
suitable choice for ωj+1 is the value that minimizes the norm of rn+1, similarly as is
done in, among others, the Bi-CGSTAB algorithm.

Of course, we must update the solution vector xn+1 together with the updates
for the residual rn+1. Furthermore, the process must be initialized; that is, residuals
and solution updates must be generated by a Krylov-oriented procedure, before we
can start the above type of calculations. We present the algorithm in Figure 3.1.

We make the following remarks:
– This prototype is intended not as a practical but as a mathematical algo-

rithm. The implementation of ΔRn = (Δrn−1 · · ·Δrn−s), etc., as well as the
the computation of matrices PHΔRn, can, of course, be done much more
efficiently than suggested. We refer to the appendix for a simple but efficient
MATLAB code.

– The s× s system may be (nearly) inconsistent, leading to a (near) breakdown.
We will refer to this as breakdown of type 1.
This is similar to what is called Lanczos breakdown in Bi-CG-based methods.
Working around this problem, however, is far less complicated than in the
Bi-CGSTAB algorithm.

– The ω calculation might produce a (nearly) zero ω-value, leading to stagnation
of the procedure. This is referred to as breakdown of type 2.

Estimates for work and memory requirements are presented in Table 3.1. The opera-
tion count for the main operations to perform a full cycle of s+ 1 IDR(s) steps yields
(s + 1) matrix-vector products, s2 + s + 2 inner products, and 2s2 + 7

2s + 5
2 vector

updates. For this count we refer to the appendix. Note that we have counted scaling
of a vector and a simple addition of two vectors as half an update each. Table 3.1 gives
an overview of the number of vector operations per matrix-vector multiplication for
some IDR(s) variants, and for the most widely used other Krylov methods. This table
also gives the memory requirements (excluding storage of the system matrix and of
the preconditioner, but including storage for the right-hand side and the solution).

3.2. Performance and exceptions. The original IDR theorem predicts only
dimension reduction but does not say by how much. In the original algorithm [17],
where S = p⊥ (the s = 1 case), the dimension is reduced by one at each step. For
that, a step requires two matrix-vector operations, but, in the case of IDR(s), each
step requires (s + 1) matrix-vector operations, possibly leading to about (s + 1)N
“matvecs” for the whole finite procedure. Now in practice the method shows a much
faster convergence, but, still, we would like to have a reliable prediction for the finite
behavior.

The following theorem concerns the rate at which the dimension reduction takes
place in the IDR(s) algorithms.

Theorem 3.1 (extended IDR theorem). Let A be any matrix in CN×N , let
p1,p2, . . . ,ps ∈ CN be linearly independent, let P = [p1,p2, . . . ,ps], let G0 = KN (A,
r0) be the full Krylov space corresponding to A and the vector r0, and let the sequence
of spaces {Gj , j = 1, 2, . . . } be defined by

Gj = (I − ωjA)(Gj−1 ∩ N (PH)),

where ωj are nonzero numbers, such that I − ωjA is nonsingular.
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Require: A ∈ CN×N ; x0, b ∈ CN ; P ∈ CN×s; TOL ∈ (0, 1); MAXIT > 0
Ensure: xn such that ‖b − Axn‖ ≤ TOL
{Initialization.}
Calculate r0 = b − Ax0;

{Apply s minimum norm steps, to build enough vectors in G0}
for n = 0 to s− 1 do

v = Arn; ω = (vHrn)/(vHv);
Δxn = ωrn; Δrn = −ωv;
rn+1 = rn + Δrn; xn+1 = xn + Δxn;

end for
ΔRn+1 = (Δrn · · ·Δr0); ΔXn+1 = (Δxn · · ·Δx0);

{Building Gj spaces for j = 1, 2, 3, . . .}
n = s
{Loop over Gj spaces}
while ‖rn‖ > TOL and n < MAXIT do

{Loop inside Gj space}
for k = 0 to s do

Solve c from PHΔRnc = PHrn

v = rn − ΔRnc;
if k = 0 then

{Entering Gj+1}
t = Av;
ω = (tHv)/(tHt);
Δrn = −ΔRnc − ωt;
Δxn = −ΔXnc + ωv;

else
{Subsequent vectors in Gj+1}
Δxn = −ΔXnc + ωv;
Δrn = −AΔxn;

end if
rn+1 = rn + Δrn;
xn+1 = xn + Δxn;
n = n+ 1;
ΔRn = (Δrn−1 · · ·Δrn−s);
ΔXn = (Δxn−1 · · ·Δxn−s);

end for
end while

Fig. 3.1. The IDR(s) algorithm.
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Table 3.1

Vector operations per matrix-vector product and memory requirements.

Method DOT AXPY Memory requirements

IDR(1) 2 4 8
IDR(2) 2 2

3
5 5

6
11

IDR(4) 4 2
5

9 7
10

17

IDR(6) 6 2
7

13 9
14

23

GMRES n+1
2

n+1
2

n + 3

Bi-CG 1 2 1
2

7

QMR 1 4 13
CGS 1 3 8

BiCGSTAB 2 3 7
BiCGstab(2) 2 1

4
3 3

4
9

BiCGstab(4) 2 3
4

5 1
4

13

BiCGstab(8) 3 3
4

8 1
4

21

Let dim(Gj) = dj; then the sequence {dj, j = 0, 1, 2, . . .} is monotonically nonin-
creasing and satisfies

0 ≤ dj − dj+1 ≤ dj−1 − dj ≤ s.

Proof. Let U = Gj−1 ∩ N (PH), and let Gj−1 be a matrix whose columns form a
basis for Gj−1. Then each x ∈ Gj−1 can be written as x = Gj−1c for some c. Therefore
each x ∈ U can be represented as x = Gj−1c, with c satisfying PHGj−1c = 0. Hence
U = Gj−1(N (PHGj−1)), and consequently

Gj = (I − ωjA)Gj−1(N (PHGj−1)).

We assumed (I − ωjA) to be nonsingular, so

dj = dim(Gj) = dim(U).

Now PHGj−1 is an s× dj−1 matrix; therefore

(3.6) dj = dim(N (PHGj−1)) = dj−1 − rank(PHGj−1).

On the other hand, rank(PHGj−1) = s− dim(N (GH
j−1P)); hence

dj = dj−1 − s+ l

with l = dim(N (GH
j−1P)) ∈ [0, s]. This proves that 0 ≤ dj−1 − dj ≤ s.

Now suppose v ∈ N (GH
j−1P), v 
= 0; then Pv ∈ N (GH

j−1), and hence Pv ⊥
Gj−1. Since Gj ⊂ Gj−1, this implies that Pv ⊥ Gj , and hence v ∈ N (GH

j P). So
N (GH

j−1P) ⊂ N (GH
j P), and therefore dim(N (GH

j−1P)) ≤ dim(N (GH
j P)). It follows

that

dj+1 = dj − s+ l′

with l′ = dim(N (GH
j P)) ≥ l. Therefore dj − dj+1 ≤ dj−1 − dj , which proves the

theorem.
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Remark. According to Theorem 3.1 the dimension reduction per step is between 0
and s. Zero reduction occurs only if Gj ⊂ N (PH), which is highly improbable, as was
remarked after Theorem 2.1. In practical situations the reduction is s, the maximal
value. This can be understood by the following observation. According to (3.6) in the
proof of Theorem 3.1, the dimension reduction equals the rank of the s× dj−1 matrix
PHGj−1. The columns of Gj−1 are linearly independent, because they are a basis for
Gj−1. The columns of P are independent by definition. If rank(PHGj−1) < s, then
we must have pHGj−1 = 0H for some nonzero p = Pc. Now, if dj−1 > s, then it is
highly improbable that p can be made to satisfy these dj−1 relations, having only the
s components of c as free parameters.

Unfortunately, this does not prove that dj = dj−1 − s “almost always,” since the
space Gj−1, and therefore the matrix Gj−1, is not constructed independently from
the matrix P, which is strongly involved in the construction procedure. It can be
shown, however, that for a random choice of P, dj − dj−1 < s will happen with zero
probability.

If the dimension reduction per step is precisely s throughout the process, then
we will speak of the generic case; otherwise we have the nongeneric case. In the
nongeneric case we call s− (dj−1−dj) the deficiency of the reduction. In Theorem 3.1
we have proved that the deficiency is nondecreasing during the process.

Corollary 3.2. In the generic case IDR(s) requires at most N+ N
s matrix-vector

multiplications to compute the exact solution in exact arithmetic.
Observation of nongenericity. Can nongenericity be recognized during execu-

tion of the algorithm? If in some application the IDR(s) algorithm happens to be
nongeneric, then for some j0 we must have dim(Gj ∩S) < s for j = j0, j0 +1, . . . . The
only way this can be observed is rank deficiency of the s× s matrices PHΔRn. How-
ever, rank deficiency is not an exclusive property of nongenericity. So it may happen
that, after having produced, say, 100 vectors in Gj ∩ S spanning only a (s − 1)-
dimensional space, the 101th vector happens to be outside this subspace. Therefore
a nongeneric case cannot be detected in practice. However, the example mentioned
above is also a reason not to worry about nongenericity: rank deficiency is a serious
problem anyway, whether we are in the generic case or not. We go into this in the
next section.

4. Other IDR-based algorithms. The IDR(s) algorithm that we presented in
section 3 is a direct translation of the IDR theorem into an actual algorithm. There is,
however, considerable freedom in this translation. Different ways of using this freedom
give mathematically different methods. In this section we indicate what freedom there
is in developing an IDR-based algorithm and discuss some of the choices that can be
made.

There are three elements of choice in the algorithmic translation of the IDR
theorem. First, and perhaps the most fundamental, is the choice of the matrix P which
defines the subspace S. Second, there are different possible strategies for selecting the
factors ωj . Third, there are different ways to define and calculate the intermediate
residuals rj(s+1)+k for k = 1, 2, . . . , s.

4.1. The choice of P. Similar to the experiences with the early Lanczos and
CG-type methods, algorithms of the IDR(s) family are finite in a structural way but
behave like an iterative procedure as well. Only in the case of CG, applied to positive
definite Hermitian matrices, do we have a rather complete convergence analysis, on
the basis of which we can fine-tune the method to extremely high performance (by
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preconditioning). The convergence analysis is based on the behavior of the zeros of
the CG polynomials (Ritz values), in relation to the (active part of the) spectrum
of A.

However, if the matrix is not Hermitian, and may have complex eigenvalues, then
the convergence analysis collapses.

In the cases of CGS and Bi-CGSTAB, part of the analysis still holds if the matrix
is only moderately non-Hermitian and if the (initial) shadow residual, i.e., the starting
vector for the left iterates in Bi-CG, is chosen equal to the initial residual. But also
if the problem does not satisfy the necessary restrictions for maintaining “theoretical
convergence,” then the practical convergence often remains satisfactory.

Motivated by this “natural” choice for the shadow residual in the Bi-CG meth-
ods, we tried several ways to choose P in relation to the problem. Surprisingly, the
IDR(s) algorithms with these “clever” choices of P performed poorly in many test
problems. After extensive experimentation, we decided to choose the columns of P as
orthogonalization of a set of random vectors. This choice is justified by robustness:
in exact arithmetic there is a zero probability that the dimension reduction is less
than s. In the comparison with Bi-CGSTAB, however, we use p1 = r0 in most of our
experiments, because this is done in most implementations of Bi-CGSTAB (although
originally in Bi-CGSTAB p could be chosen arbitrarily).

Although we advocate choosing P as orthogonalization of a set of random vectors
on the basis of robustness, other suitable choices for the matrix P can be made on
completely different grounds. For example, an interesting alternative is to choose the
columns of P blockwise zero or nonzero, where the nonzero parts are nonoverlapping.
This choice is inspired by the subdomain deflation technique described in, e.g., [10, 3]
and has some clear computational advantages. First, computations like PHrn become
extremely cheap. The computation of these s inner products requires inner products of
vectors of length N/s, hence the equivalence of one inner product of length N . Second,
only the nonzero parts of the columns of P need to be stored; hence only space for
N numbers is needed to store P. Third, in parallel computing, if the vectors pk are
nonzero in only one subdomain, then the communication for the inner product pH

k ri

involves only the transmission of the local inner product to the other subdomains.
No partial inner products need to be summed, since the other subdomains do not
contribute to the result.

4.2. The choice of ω. In the previous section we suggested selecting ω such
that the norm of rn+1 is minimized. This leads to

ω =
tHvn

tHt
, with t = Avn.

As was remarked before, this may give ω ≈ 0, which yields a (near) breakdown of
type 2. Most type 2 breakdowns can be repaired by methods as developed in [13]; i.e.,
the value of ω is increased if the angle between Avn and vn is too small, a technique
that we will also use in some numerical experiments.

In some problems, however, the ω calculations fail systematically, for example, if A
behaves like a skew-symmetric matrix. For these cases Gutknecht proposed BiCGstab2
[6]. This technique uses quadratic stabilization polynomials. The BiCGstab(�) method
[12] of Sleijpen and Fokkema generalizes this idea to stabilization polynomials of
degree �. We have not yet found a similar possibility for the IDR(s) algorithms, since
this would require a new variant of the IDR theorem. However, in our numerical
experiments the problems vanish completely when we choose the matrix P complex
rather than real.
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In some computational environments, for example in grid computing, the compu-
tation of an inner product can be very expensive. In such an environment it may even
be an option to choose ω constant, for example, equal to one. Of course, for many
problems this will result in a slower rate of convergence.

4.3. The computation of intermediate residuals. In our prototype algo-
rithm presented in Figure 3.1, a new intermediate residual in Gj+1 is constructed
according to

Solve c from (PHΔRn)c = PHrn,

Calculate v = rn − ΔRnc,

Calculate rn+1 = v − ωj+1Av.

In this code fragment, rn and the columns of ΔRn must be in Gj , in order for rn+1

to be in Gj+1. Moreover, the matrix PHΔRn must be of rank s.
These requirements leave freedom to generate different intermediate residuals and

residual differences with desirable properties, as we will explain below.
The choice of ΔRn. In the prototype algorithm, ΔRn consists of the s most

recent residual differences, and, when we construct the first residual rn+1 in Gj+1,
this is the only possibility (if no breakdown is happening). But in calculating rn+k,
with k > 1, we have s + k − 1 vectors Δri ∈ Gj at our disposal to construct a new
intermediate residual.

One way to use this freedom is to generate a new matrix ΔRj+1, with all of its
columns in Gj+1 (hence the change in subscript) using the matrix ΔRj with all of
its columns in Gj . That is, we reuse the matrices ΔRj and PHΔRj during the steps
to generate the intermediate residuals. Clearly, this approach increases the amount
of storage, but the advantage is that the conditioning of the matrix PHΔRj+1 can
be controlled. If we assume that PHΔRj is well-conditioned, then every new vector
Δrn+1 is computed without the possibility that breakdown of type 1 occurs. If during
this process a vector Δrn+1 is generated such that PHΔRj+1 becomes ill-conditioned,
then this vector is simply not used as a column in ΔRj+1. This means in practice
that a dimension reduction step may be postponed a few iterations, until a set of s
columns of ΔRj+1 is generated such that PHΔRj+1 is well-conditioned.

However, in the nongeneric case the dimension reduction is less than s for the
remainder of the iterative process, and this cannot be cured by postponing the dimen-
sion reduction step. A work-around for both the generic and the nongeneric case is to
reduce the number of vectors in P after a fixed number of unsuccessful iteration steps.
This defines a new subspace S, but this subspace includes the original S; hence the
dimension reductions from the past are not lost, and only future dimension reductions
will correspond to the smaller rank of the reduced matrix P.

Orthogonalization of the vectors in Gj. In order to be able to update the solution
with the residual we use residual difference vectors in the prototype algorithm. This
is, however, not the only possibility. If we have a matrix Gn with columns in Gj

and a corresponding matrix Un such that AUn = −Gn, then it is also possible
to update the solution together with the residual. For example, if new vectors in
Gj+1 are computed using a fixed matrix ΔRj as described above, then we could
choose to orthogonalize the columns of ΔRj for stability reasons. Since all of the
columns of ΔRj are in Gj , any linear combination of the columns of ΔRj is also in
Gj . In practice, this orthogonalization should be done while computing a new vector
in Gj+1. This allows us to monitor if a new vector in Gj+1 is (nearly) dependent on
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the previously computed columns, which would result in an ill-conditioned matrix
PHGj+1. Moreover, having computed k < s orthogonal columns of Gj+1, the norm
of the kth intermediate residual can be minimized by making it orthogonal to the first
k columns of Gj+1.

We have developed an algorithm with the above properties. The drawback of
this algorithm is that it requires considerably more storage and vector operations
than the prototype IDR(s) method. It shows, however, the flexibility in developing
an IDR-based method.

5. Polynomial issues. Because of the Krylov nature of the IDR(s) algorithms,
a polynomial analysis may give some insight into the properties of these algorithms.
Concentrating on the residuals we have

(5.1) rn = Φn(A)r0, Φn ∈ P
n \ P

n−1, Φn(0) = 1.

Similar to CGS and Bi-CGSTAB, the algorithm can be interpreted as a construction
method for the polynomials Φn, and, what is important, the algorithmic require-
ments can be translated into relations between polynomials. This interpretation can
be used to answer questions of uniqueness and, of course, for determining possible
relationship with other Krylov methods. In particular the relation between IDR(1)
and Bi-CGSTAB, but also between IDR(s) and the ML(k)BiCGSTAB method [18],
will be investigated.

5.1. Uniqueness of r(s+1)j. Let rn ∈ Gj for some j > 0; then rn = r′−ωjAr′

for some r′ ∈ Gj−1 ∩ S. Similarly, r′ = r′′ − ωj−1Ar′′ for some r′′ ∈ Gj−2 ∩ S. Going
on like this we arrive at

(5.2) rn = Ωj(A)w,

where w ∈ G0 ∩ S, and where the polynomial Ωj is defined by

(5.3) Ωj(t) = (1 − ωjt)(1 − ωj−1t) · · · (1 − ω1t), Ω0(t) ≡ 1.

Obviously, Ωl(A)w ∈ Gl ∩ S for l = 0, 1, . . . , j − 1; therefore the following j vectorial
relations must be satisfied by w:

(5.4) PHΩl(A)w = 0, l = 0, 1, . . . , j − 1.

According to (5.1) and (5.2), and since w is in the Krylov space G0, w can be written
as

(5.5) w = Ψn−j(A)r0.

So we have Φn = ΩjΨn−j, and the residuals can be written as

(5.6) rn = Ωj(A)Ψn−j(A)r0.

Now (5.4) represents relations between the coefficients of Ψn−j. Splitting P into
columns, the relations (5.4) read

(5.7) pH
k Ωl(A)Ψn−j(A)r0 = 0, k = 1, 2, . . . , s, l = 0, 1, . . . , j − 1.

Together with the requirements Ψn−j(0) = 1, this represents an inhomogeneous sys-
tem of sj + 1 equations in n − j + 1 unknowns. The vectors pk, k = 1, 2, . . . , s, are



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IDR(s) FOR SOLVING NONSYMMETRIC SYSTEMS 1047

chosen arbitrarily, not in relation to the system Ax = b. Therefore it is a true ex-
ception if these relations can be satisfied if n − j + 1 < sj + 1. So, again generally
speaking, we must have n ≥ (s+1)j for rn to be in Gj . Therefore we can assume that,
independent of the strategy chosen for finding enough vectors in Gj , the first residual
in Gj , r(s+1)j = Ωj(A)Ψsj(A)r0, is uniquely determined by

pH
k Ωl(A)Ψsj(A)r0 = 0, k = 1, 2, . . . , s, l = 0, 1, . . . , j − 1,(5.8)

Ψsj(0) = 1.

5.2. Relation between IDR(s), Bi-CGSTAB, and ML(k)BiCGSTAB.
The relations in (5.7) can be interpreted as formal orthogonality relations for the
polynomial Ψn−j. Define s formal inner products on the space of polynomials as
follows:

(5.9) [ϕ, ψ]k = pH
k φ(A)ψ(A)r0, k = 1, 2, . . . , s.

Then (5.7) can be written as

(5.10) [Ωl,Ψn−j]k = 0, k = 1, 2, . . . , s, l = 0, 1, . . . , j − 1,

and this is equivalent to formal orthogonality of Ψn−j to all polynomials in Pj−1, with
respect to the s inner products [ . , . ]k.

Comparing to Bi-CGSTAB. Since Bi-CGSTAB is historically related to the orig-
inal IDR method, we first investigate the case s = 1. In this case only classic theory
on orthogonal polynomials plays a role. We have sj = j, and

[Ωl,Ψj] = 0, l = 0, 1, . . . , j − 1,

with [φ, ψ] = pHφ(A)ψ(A)r0. So, independent of the choices for ωl in the algorithm,
the “Ψ-part” of the polynomial will be the unique orthogonal polynomial of degree j,
with respect to this formal inner product, and be unity in the origin. This is exactly
the Bi-CG-polynomial.

The remark in [15] about the mathematical equivalence between the old IDR and
Bi-CGSTAB is true only for the “even IDR residuals” r2j . Bi-CGSTAB as described
in [15] does not compute intermediate (i.e., “odd”) residuals. This is because Bi-
CGSTAB must calculate the Bi-CG coefficients αj and βj , and this calculation is
completely dictated by the classical organization of the algorithm with residuals and
search directions.

We can also think the other way round. The Bi-CG method produces residuals
r̃n = ϕn(A)r0, and search directions p̃n = ψn(A)r0, linked together by beautiful
formulas, in which the well-known coefficients α and β play an essential role. For our
comparison, one relation is of importance:

r̃n+1 = r̃n − αnAp̃n.

In Bi-CGSTAB, the vectors rn = Ωn(A)r̃n and vn = Ωn(A)p̃n play a role.2 Fur-
thermore, the vectors rn and Avn are made orthogonal to a fixed “shadow residual.”
With respect to the IDR philosophy, this implies that both rn and Avn are in Gn.

Indeed, instead of producing s+ 1 residuals in Gj , we can also produce only one
residual, and s, “search directions” in Gj , and we get a genuinely different variant of

2The numbering differs from that in [15].
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IDR(s). The authors have implemented this variant, and tested it, and the outcome
was a nearly as stable algorithm. There is, however, a drawback. It is slightly more
expensive in vector operations, and it does not produce intermediate residuals. So we
can decide to stop only after every s+1 steps. Trying to retrieve intermediate residual
information is rather expensive and complicated.

Bi-CGSTAB is the first example of a “search-direction” variant of IDR(s). Some
implementations, for instance those of MATLAB, produce intermediate residuals.
These vectors, however, are reliable purely by accident: some part of the update is
qualified as intermediate residual, but it could as well have been dropped.

Comparing to ML(k)BiCGSTAB. The ML(k)BICGSTAB algorithm is a trans-
pose free method, based on a Lanczos-type method with multiple left starting vec-
tors, which has drawn relatively little attention. Like IDR(s), it is theoretically a finite
termination method, which terminates after at most N + N

k matrix-vector multipli-
cations.

A complete comparison with ML(k)BICGSTAB is much more difficult than with
Bi-CGSTAB, since the derivations and implementations of both methods differ very
much. But to a certain extent a relation can be established. According to its derivation
in [18], the residuals in the ML(k)BiCGSTAB algorithm, with k replaced by s, and j
replaced by j − 1, satisfy

(5.11) r̂(j−1)s+i = Ωj(A)Ψ̃(j−1)s+i(A)r0, j = 1, 2, . . . , i = 1, 2, . . . , s,

with Ψ̃(j−1)s+i ∈ P(j−1)s+i, satisfying

(5.12) p̂H
n Ψ̃(j−1)s+i(A)r0 = 0, n = 1, 2, . . . , (j − 1)s+ i,

in which the vectors p̂n are defined by

(5.13) p̂j′s+i′ =
(
AH

)j′

pi′ , j′ = 0, 1, . . . , i′ = 1, 2, . . . , s.

The vectors r̃n = Ψ̃n(A)r0 are the so-called ML(s)BiCG residuals, similar to ordinary
BiCG residuals but constructed using multiple left starting vectors.

If we choose i = s in formula (5.11), then we get

r̂js = Ωj(A)Ψ̃js(A)r0

with Ψ̃j determined by (5.12) and (5.13). Now since both {Ωj}l
j=0 and {tj}l

j=0 are
bases for the space Pl, (5.12) and (5.13) are equivalent to the relations in (5.8).

Therefore, if r0, p1,p2, . . . ,ps, and the numbers ωl are chosen the same in both
methods, we must have

rjs+j = r̂js

for j = 0, 1, . . . .
Yet there are essential differences.
1. ML(k)BiCGSTAB is considerably more complicated to implement and more

costly in storage and vector operations. The operation count for the main
operations to perform a full cycle of s+ 1 IDR(s) steps yields (s+1) matrix-
vector products, s2 + s+ 2 inner products, and 2s2 + 7

2s+ 5
2 vector updates.

In comparison, the operations for a full cycle of s ML(k)BiCGSTAB itera-
tions are [18] (s + 1) matrix-vector products, s2 + 2s inner products, and
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5
2s

2 + 11
2 s + 1 vector updates. Also the (vector) storage requirements are

higher for ML(k)BiCGSTAB: IDR(s) needs space for 5 + 3s vectors, whereas
ML(k)BiCGSTAB needs space for 4 + 4s vectors.

2. The IDR(s) residual rjs+j is the first one in Gj . The value ωj is determined
just before the calculation of this residual. Then this ωj is used for the fol-
lowing s steps.
In ML(s)BiCGSTAB, on the other hand, the residual r̂js = Ωj(A)Ψ̃js(A)r0

is the last one with the factor Ωj involved. The next s residuals r̂js+i carry
the factor Ωj+1, according to (5.11). The algorithmic step in which ωj was
calculated in ML(s)BiCGSTAB is performed far before it is done in IDR(s).
So it is impossible to arrive at the same ωj values, unless they are chosen
constant or according to some other predefined rule.

3. The third difference is in the other residuals. In ML(k)BiCGSTAB, the re-
quirements for the residuals are very severe: the polynomials Ψ̃n must all
represent the ML(k)BiCG residuals, implying that a lot of specific inner prod-
ucts are zero. In the IDR(s) algorithm only the first residual in a new Gj+1

space happens to be related to these polynomials, whereas the intermediate
residuals (for “filling” the space) can be chosen in many different ways, as
long as the residuals appear in Gj+1.

4. The most crucial difference between both methods is in the different ap-
proaches for deriving them. The IDR approach offers freedom for algorithmic
variants that are not possible in a (multi-)Lanczos approach. This is illus-
trated by the relatively simple way in which type-1 breakdowns can be re-
paired, as is described in section 4.3. In IDR(s) we can continue producing
extra vectors in Gj until a sufficiently well-conditioned subset is obtained to
produce an element of Gj+1. The formal relationship between both methods
then vanishes completely, since the polynomial analysis in section 5.1 is no
longer valid.

As far as we can now see, neither algorithm can be considered as a variant of the
other.

6. Numerical examples. In this section we consider four different examples.
The first example is one-dimensional and is included to confirm the theoretical prop-
erties of the algorithm. The other three are more realistic and are typical for three
different problem classes.

We have performed the experiments with MATLAB 6.5 and have used the stan-
dard MATLAB implementation of Bi-CGSTAB, Bi-CG, CGS, and QMR. The tests
with BiCGstab(�) have been performed with the MATLAB code of Sleijpen.3

6.1. A one-dimensional convection-diffusion problem. The first example
we discuss is a one-dimensional convection-diffusion problem. With this academic
example we illustrate the termination behavior of IDR(s) as predicted by Theorem 3.1.
Moreover, this example also illustrates the correspondence in the convergence behavior
of Bi-CGSTAB and IDR(1).

The test problem is the finite difference discretization of the following differential
equation:

−d
2u

dx2
+ w

du

dx
= 0, x ∈ (0, 1),

3http://www.math.uu.nl/people/sleijpen/.
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with boundary conditions u(0) = u(1) = 1. The convection parameter w is chosen
such that wh

2 = 0.5, in which h is the mesh size. We have taken a total of 60 grid
points, excluding the boundary nodes, which yields for the grid size h = 1

61 . Central
differences are used for both the convection and the diffusion term.

We have solved the system with four (unpreconditioned) variants of IDR(s) using
for s the values 1, 2, 4, and 6. As the initial guess the nullvector was chosen. For the
columns of P we took the orthogonalization of s− 1 random vectors, complemented
with the initial residual. To investigate the stagnation level of the different methods,
each iterative process is continued until no further reduction of the true residual norm
is achieved.

The system consists of 60 equations; hence according to Theorem 3.1 the IDR(s)
methods should terminate (in exact arithmetic) at the exact solution within 120, 90,
75, and 70 matrix-vector products (matvecs), respectively. Figure 6.1 displays for the
four methods the norm of the true residual (scaled by the norm of the right-hand side
vector) as a function of the number of matvecs. The figure also shows the convergence
curves for full GMRES and Bi-CGSTAB. Note that in exact arithmetic GMRES
should terminate within 60 matvecs and Bi-CGSTAB within 120 matvecs.
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Fig. 6.1. Finite termination of IDR(s), Bi-CGSTAB, and GMRES.

The figure clearly shows for all the methods a sharp drop of the residual norm
around the point where termination of the algorithm should occur. Also the conver-
gence curves of IDR(1) and BiCGSTAB are essentially the same, which confirms the
fact that in exact arithmetic the residual norms of the two methods should be the
same at the even steps. The norms of the true residuals of all of the methods stag-
nate at a level close to machine precision, although IDR(4) and IDR(6) stagnate at a
slightly higher level than the other methods. This difference can be attributed to the
peaks in the residual norms in the initial iterations.

In this example, we investigated the property that IDR(s) is a finite termination
method. In the next examples IDR(s) will be used as an iterative method; i.e., we
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want to compute a sufficiently accurate approximation to the solution in far fewer
iterations than needed to reach the point where termination at the exact solution
should occur.

6.2. An example from oceanography. The second example that we discuss
is a convection-diffusion problem from oceanography. This realistic example is typical
for a wide class of problems encountered in CFD. The system matrices of this kind of
problem are real and nonsymmetric, with eigenvalues that have a positive real part
and a small (or zero) imaginary part. Bi-CGSTAB is often quite efficient for this type
of problem.

Steady barotropic flow in a homogeneous ocean with constant depth and in near
equilibrium can be described by the following partial differential equations:

−rΔψ − β
∂ψ

∂x
− = (∇× F)z in Ω.

Here, Δ is the Laplace operator, ψ is the stream function, and F is the external force
field caused by the wind stress τ divided by the average depth of the ocean H times
the water density ρ:

(6.1) F =
τ

ρH
.

The other parameters are the bottom friction coefficient r and the Coriolis parameter
β. The zero normal velocity boundary condition implies that the stream function is
constant on continent boundaries:

(6.2) ψ = Ck on Γk, k = 1, . . . ,K,

where K is the number of continents. The values of the constants Ck are a priori
unknown. In order to determine them one has to impose integral conditions, stating
that the water level is continuous around each island or continent:

(6.3)
∮

Γk

r
∂ψ

∂n
ds = −

∮
Γk

F · s ds.

The equations are commonly expressed in spherical coordinates to map the physical
domain onto a rectangular domain. The coordinate transformation causes singularities
on the poles. The singularity at the South Pole gives no problem since the South Pole
is land. The singularity at the North Pole is solved by imposing the Dirichlet condition
ψ = 0 on the North Pole.

The values for the physical parameters, which are taken from [16], are listed below:
• wind stress τ : long term averaged data for January [7],
• average depth H = 500 m,
• water density ρ = 1000 kg/m3,
• earth radius R = 6.4 · 106 m,
• coriolis parameter β = 2.3 · 10−11 cos θ (ms)−1,
• bottom friction coefficient r = 5 · 10−6 s−1.

The above problem has been discretized with the technique described in [16]. The
solution is plotted in Figure 6.2.

The resulting system consists of 42,248 equations. The matrix is nonsymmetric,
but has a positive definite symmetric part, meaning that all eigenvalues are in the
right-half plane. The number of nonzeros in the matrix is almost 300,000. As the
preconditioner we use ILU(0), which we apply symmetrically.
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Fig. 6.2. Solution of the ocean problem.

The resulting system is solved with the IDR variants IDR(1), IDR(2), IDR(4),
and IDR(6). For comparison we have also solved the system with Bi-CGSTAB and
with full GMRES. We stress that full GMRES is not a limited memory method. In
each iteration a new orthonormal basis vector for the Krylov subspace is computed
and stored, which makes the method quite expensive, both with respect to memory
and with respect to computations. GMRES is included only because it is optimal with
respect to the number of matrix-vector multiplications. Since GMRES is optimal in
this sense, none of the other methods can converge faster with respect to the number
of matvecs. It is therefore quite interesting to determine how close the convergence
curves of the other (limited memory) methods are to the optimal convergence curve
of GMRES.

In order to assess the numerical accuracy of the methods we compute in each iter-
ation the true residual of the (preconditioned) system, and we continue the iterative
process until the stagnation level has been reached. The convergence curves of the
different methods are plotted in Figure 6.3. Although in this example the methods
are used as iterative techniques, rather than as finite termination methods as in the
previous example, there is considerable qualitative agreement in the behavior of the
methods for the two examples. We make the following observations:

– The required number of matrix-vector multiplications decreases if s is in-
creased. The convergence curves of IDR(4) and IDR(6) are close to the opti-
mal convergence curve of GMRES.

– The convergence curves of IDR(1) and Bi-CGSTAB agree well. The other
variants of IDR(s) converge significantly faster than Bi-CGSTAB.

– The (scaled) norm of the true residual of all methods except GMRES stag-
nates at a level between 10−10 and 10−12. GMRES stagnates near machine
precision, but to achieve this extra accuracy an orthonormal set of basis vec-
tors has to be computed and stored. This is for most applications prohibitively
expensive, and the gain in precision is for most practical applications unim-
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Fig. 6.3. Convergence for the ocean problem of IDR(s), Bi-CGSTAB, and GMRES.

Table 6.1

Number of matrix-vector multiplications to solve the ocean problem such that the (true) norm
of the scaled residual is less than 10−8.

Method Number of matvecs
GMRES 265
Bi-CG 638
QMR 624
CGS stagnates

Bi-CGSTAB 411
IDR(1) 420
IDR(2) 339
IDR(4) 315
IDR(6) 307

BiCGstab(1) 420
BiCGstab(2) 424
BiCGstab(4) 424
BiCGstab(8) 432

portant.
In order to make a more quantitative comparison, we have checked for each of

the methods after how many matvecs the norm of the scaled residual drops below
10−8. The results are tabulated in Table 6.1. This table also includes the results for
BiCGstab(�), Bi-CG, QMR, and CGS. The results in this table clearly show that
IDR(s) outperforms the other limited memory methods with respect to the number
of matvecs, in particular for higher values of s. The IDR(6) variant is close to optimal
with respect to the number of matvecs. The difference with full GMRES is 42, which
is only about 15% more than the minimum possible. For comparison, Bi-CGSTAB
takes 411 matvecs, or 50% more than the minimum.

We did not tabulate the computing times for this example since the standard
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MATLAB routines are not as optimized with respect to efficiency as our own IDR(s)
routine.

6.3. A three-dimensional convection-dominated problem. The next test
problem is rather academic and is taken from [12]. This problem was proposed as an
example for which Bi-CGSTAB does not work well, due to the strong nonsymmetry of
the system matrix. Specifically, the problem is caused by the fact that the matrix has
eigenvalues with large imaginary parts. We recall that Bi-CGSTAB is a combination
of linear minimal residual steps and Bi-CG steps. Bi-CGSTAB does not work well for
this type of problem because the linear minimal residual steps produce a polynomial
Ωl (cf. section 5.2) that is a product of real linear factors. Consequently, Ωl has real
roots, and hence is unsuited as a residual minimizing polynomial, which should have
roots close to the eigenvalues. Analogously, IDR(s) is a combination of linear minimal
residual steps and IDR reduction. The linear minimal residual steps generate the same
type of polynomial Ωl as Bi-CGSTAB. It is therefore interesting to see if IDR(s) also
performs poorly for this problem and, if so, to examine possible remedies.

The test problem is the finite difference discretization of the following partial
differential equations on the unit cube [0 , 1]× [0 , 1]× [0 , 1] with Dirichlet boundary
conditions:

uxx + uyy + uzz + 1000ux = F.

The vector F is defined by the solution u(x, y, z) = exp(xyz) sin(πx) sin(πy) sin(πz).
The partial differential equation is discretized using central differences for both the
convection and the diffusion terms. We take 52 grid points in each direction (including
boundary points), which yields a system of 125,000 equations.

We have solved this problem with IDR(1), IDR(2), IDR(4), IDR(6), Bi-CGSTAB,
and GMRES. For the the columns of P space we take our standard choice, i.e., the
orthogonalization of the initial residual complemented with s−1 real random vectors.
No preconditioner is applied. The iterative process is terminated once the residual
norm, divided by the norm of the right-hand side vector, drops below 10−8. The
convergence test is performed on the recursively computed residual, as would be the
case in practice. At the end of the process a check is performed if the norm of the
true residual matches that of the recursively updated residual, which was the case for
all tests we present here. Figure 6.4 shows the convergence behavior of the different
methods. The figure shows the poor convergence behavior of Bi-CGSTAB for this
problem, as can also be expected for IDR(1). No convergence is achieved for both
methods within 2000 matvecs. Increasing s significantly improves the convergence
behavior of IDR(s). However, compared with the optimal convergence of GMRES,
the rate of convergence is still rather poor. We have tabulated in Table 6.2 for each
method the required number of matvecs to achieve the desired accuracy. This table
also includes the results for CGS, Bi-CG, and QMR. We note that the results of
Bi-CG and QMR are quite satisfactory. These methods do not use linear minimal
residual steps. CGS does not converge due to the well-known lack of robustness of
this method.

As was remarked before, the disappointing convergence behavior of both Bi-
CGSTAB and IDR(s) can be attributed to the poor performance of the minimal
residual step in the algorithms. Sleijpen and Fokkema [12] overcome this problem
by combining Bi-CG with higher-order minimal residual polynomials, thus creating
a polynomial Ql that admits complex roots. This has given rise to the elegant Bi-
CGstab(�) method. Figure 6.5 shows the convergence of this method, and Table 6.2
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Fig. 6.4. Convergence for IDR(s) (with real P), Bi-CGSTAB, and GMRES.

Table 6.2

Number of matrix-vector multiplications to solve the three-dimensional convection-diffusion
problem such that the (true) norm of the scaled residual is less than 10−8.

Method Number of matvecs
GMRES 191
BiCG 454
QMR 450
CGS n.c.

Bi-CGSTAB n.c.
IDR(1) n.c.
IDR(2) 1858
IDR(4) 1125
IDR(6) 784

BiCGstab(1) n.c.
BiCGstab(2) 252
BiCGstab(4) 216
BiCGstab(8) 224

gives the required number of matrix-vector multiplications. The improvement in the
convergence is quite spectacular; the required number of matvecs for BiCGstab(2)
drops to 252, and for BiCGstab(4) and BiCGstab(8) to 216 and 224, respectively,
which is very close to 191, the number of matvecs for GMRES.

As was remarked in section 4, it is not obvious how to derive an IDR variant that
uses higher-order minimal residual steps. There is, however, another solution to this
problem: by choosing P complex, instead of real, the polynomial Ql can have complex
roots. Following this idea we have rerun the example using the orthogonalization
of randomly chosen complex vectors for the columns of P. The convergence of the
IDR(s) methods is shown in Figure 6.6. Clearly, choosing P complex also solves the
convergence problem: the number of IDR(6) iterations is 242, only slightly more than



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1056 PETER SONNEVELD AND MARTIN B. VAN GIJZEN

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of MATVECS

S
ca

le
d 

re
si

du
al

 n
or

m

3D convection−diffusion problem, BiCGstab(l)

BiCGstab(1)
BiCGstab(2)
BiCGstab(4)
BiCGstab(8)
GMRES
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for Bi-CGstab(8). This is, however, at the price of turning a real computation into a
complex computation.

6.4. A three-dimensional Helmholtz problem. As our last example we con-
sider sound propagation in a room of dimension 4 × 4 × 4m3. If the sound source is
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harmonic, then the acoustic pressure field has the factored form

(6.4) p(x, t) = p̂(x)e2πift.

The pressure function p̂ can be determined from the so-called Helmholtz equation,
which is given by

(6.5)
−(2πf)2

c2
p̂− Δp̂ = δ(x − xs) in Ω.

Here, Δ is the Laplace operator, c is the sound speed (approximately 340 m/s in air),
and δ(x − xs) represents a harmonic point source that is located at xs, which is in
the center of the room. Five of the walls are reflecting, which are modelled by the
boundary condition

(6.6)
∂p̂

∂n
= 0,

whereas the remaining wall is sound absorbing, which is modelled by

(6.7)
∂p̂

∂n
= −2πif

c
p̂.

The above problem is discretized with the finite element method using linear tetra-
hedral elements on a grid with grid size h = 8 cm. The resulting system is given
by

(6.8) [−(2πf)2M + 2πifC + K ]p = b.

The size of this system is 132651, and the number of nonzero diagonals in the
matrix is 19. The system matrix is complex, symmetric, and indefinite. The frequency
we use in the experiments is 100 Hz.

In the experiments we focus on the comparison between IDR(s) and BiCGstab(�).
We use standard ILU(0) as the preconditioner. For reasons of comparison with
BiCGstab(�) we take for the columns of P the orthonormal basis vectors for the
space spanned by the initial residual, complemented with s − 1 randomly generated
vectors. Figure 6.7 shows the convergence of IDR(s) for s equal to 1, 2, 4, and 6 and
of BiCGstab(�) for � equal to 1, 2, 4, and 8.

Table 6.3 gives the comparison between the different methods in terms of numbers
of matvecs and the measured CPU time that is needed to reduce the norm of the initial
residual by a factor of 108. Note that a preconditioned matrix-vector multiplication
is equivalent to approximately 38 vector operations. The BiCGstab(�) code and the
IDR(s) code are both optimized with respect to computing time, and for this reason
we have included the elapsed times in the table. For both classes of methods the
elapsed times are almost proportional to the number of matrix-vector multiplications,
which indicates that this number gives a good measure for the performance of the
methods. As is clear from the results in the table, IDR(4), and in particular IDR(6),
are superior to BiCGstab(�) in the above experiments; they outperform BiCGstab(�)
with about a factor of two. We mention that all methods yield a final (true) residual
of the same magnitude, which indicates that the accuracy achieved is the same for all
methods.

In [13], Sleijpen and van der Vorst explain that a small value for the minimal
residual parameter ω can have a negative effect on the accuracy of the Bi-CG param-
eters and, as a consequence, on the convergence of Bi-CGSTAB. As a possible cure
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Fig. 6.7. Convergence of IDR(s) and of BiCGstab(�).

Table 6.3

Number of matrix-vector multiplications and elapsed time to solve the Helmholtz problem.

Method Number of Elapsed time
matvecs [s]

IDR(1) 1500 3322
IDR(2) 598 1329
IDR(4) 353 783
IDR(6) 310 698

BiCGstab(1) 1828 3712
BiCGstab(2) 1008 2045
BiCGstab(4) 656 1362
BiCGstab(8) 608 1337

to this they propose not to use a pure minimal residual step but to increase the value
of ω if this value is too small. A similar approach can be applied to the IDR(s) algo-
rithm. In the setting of this algorithm the computation of ω according to the strategy
of Sleijpen and van der Vorst becomes the following:
ω = (tHv)/(tHt)
ρ = (tHv)/(‖t‖‖v‖)
if |ρ| < κ then

ω = ωκ/|ρ|
end if

The value κ is user-defined. Sleijpen and van der Vorst recommend 0.7 as a suitable
value for κ, and we used this value in our experiments for both BiCGstab(�) and
IDR(s).

Figure 6.8 shows the convergence of IDR(s) for s equal to 1, 2, 4, and 6 and of
BiCGstab(�) for � equal to 1, 2, 4, and 8 with this new choice for ω. Clearly, the
lower-order members of both families of methods show a greatly improved rate of
convergence.

Table 6.4 tabulates for all methods the numbers of matvecs that are needed to
reduce the norm of the initial residual by a factor of 108. With the technique of Sleij-
pen and van der Vorst to compute ω we achieve a further reduction of computing time,
which makes the comparison between IDR(s) and BiCGstab(�) even more favorable
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Fig. 6.8. Convergence of IDR(s) and of BiCGstab(�) with the new choice for ω.

Table 6.4

Number of matrix-vector multiplications and elapsed time for the Helmholtz problem with im-
proved computation of ω.

Method Number of Elapsed time
matvecs [s]

IDR(1) 678 1483
IDR(2) 474 1051
IDR(4) 323 716
IDR(6) 267 601

BiCGstab(1) 640 1300
BiCGstab(2) 652 1323
BiCGstab(4) 608 1263
BiCGstab(8) 608 1337

for the former than when the standard choice for computing ω is used.
We mention that we have also tried this technique for the other examples that

we have discussed in this paper, but for these examples we did not observe such a
significant improvement in the rate of convergence of either IDR(s) or BiCGstab(�).

7. Concluding remarks. We have presented a new approach for solving
nonsymmetric systems of linear equations. Our approach is based on the IDR the-
orem. The resulting family of solution algorithms, which we call IDR(s), uses short
recurrences and hence a limited amount of memory. This is in contrast to methods like
GMRES. We have shown that IDR(1) is mathematically equivalent to Bi-CGSTAB, in
the sense that the two algorithms produce the same residuals at even steps. We have
also explained the mathematical relation with ML(k)BiCGSTAB and have proved
that in exact arithmetic the maximum number of matrix-vector products for IDR(s),
with s > 1, to reach the exact solution is N + N/s, a property that IDR(s) shares
with ML(k)BiCGSTAB, if k = s.

We have presented a simple and, according to extensive numerical testing, nu-
merically stable implementation of the method. This algorithm is an almost direct
translation of the IDR theorem. There is, however, much freedom in how to imple-
ment an IDR-based method. Many variants and extensions are possible, and we have
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indicated some of them. For example, it is easy to extend the algorithm with a “look-
ahead-like” mechanism to avoid a breakdown.

The implementation of IDR(s) algorithms has to be done with great care. Like
other short-recurrence Krylov methods, IDR(s) algorithms are quite sensitive to
round-off errors. Especially, the consistency of Δrn and Δxn requires some prudence:
statements like Δr = −AΔx should be used whenever possible. We have also observed
in several tests that choosing all of the columns of P randomly improved the stability
of the method, and we believe that this randomness is essential for the robustness.

The most basic variant of our algorithm, IDR(1), is about as expensive as Bi-
CGSTAB, in terms of computations and memory requirements, and in our experience
is just as stable. Increasing s makes the algorithm slightly more expensive per itera-
tion, but, in all of our experiments, increasing s also yields a significant decrease in
the number of iterations.

We have performed and presented numerous experiments. In all of our examples,
IDR(s), with s > 1, is superior to Bi-CGSTAB. Increasing s always sped up the con-
vergence, for most problems to a level close to the optimal convergence (in terms of
matvecs) of full GMRES. Even for known difficult problems, such as those with a
highly nonsymmetric or with an indefinite matrix, IDR(s) was among the most effi-
cient methods. For instance, for a three-dimensional Helmholtz-type problem, IDR(6)
outperformed Bi-CGstab(8) by a factor of more than two in terms of CPU time and
the original Bi-CGSTAB by a factor of six.

We feel that this paper has advanced the theory and practice of iterative solution
methods for large nonsymmetric linear systems in two major aspects:

1. The IDR theorem offers a new approach for the development of iterative
solution algorithms, different from the classical Bi-CG or GMRES-based ap-
proaches.

2. The IDR(s) algorithm presented in this paper is quite promising and seems
to outperform the state-of-the-art Bi-CG-type methods for important classes
of problems.

Appendix. Prototype for IDR(s) algorithms for MATLAB. We present a
frame for the algorithms as an M-file, for use with, for instance, MATLAB or Octave.

function [x,resvec]=idrs(A,b,s,tol,maxit,x0);

%

%--------------- Creating start residual: ----------

N = length(b);

x = x0;

r = b - A*x;

normr = norm(r);

tolr = tol * norm(b); % tol: relative tolerance

resvec=[normr];

if (normr <= tolr) % Initial guess is a good enough solution

iter=0;

return;

end;

%----------------- Shadow space: --------------------

rand(’state’, 0); %for reproducibility reasons.
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P = rand(N,s);

P(:,1) = r; % Only for comparison with Bi-CGSTAB

P = orth(P)’; % transpose for efficiency reasons.

%---------------- Produce start vectors: ------------

dR = zeros(N,s); dX = zeros(N,s);

for k = 1:s

v = A*r;

om = dot(v,r)/dot(v,v);

dX(:,k) = om*r; dR(:,k) = -om*v;

x = x + dX(:,k); r = r + dR(:,k);

normr = norm(r);

resvec = [resvec;normr];

M(:,k) = P*dR(:,k);

end

%----------------- Main iteration loop, build G-spaces: ----------------

iter = s;

oldest = 1;

m = P*r;

while ( normr > tolr ) & ( iter < maxit )

for k = 0:s

c = M\m;

q = -dR*c; % s-1 updates + 1 scaling

v = r + q; % simple addition

if ( k == 0 ) % 1 time:

t = A*v; % 1 matmul

om = dot(t,v)/dot(t,t); % 2 inner products

dR(:,oldest) = q - om*t; % 1 update

dX(:,oldest) = -dX*c + om*v; % s updates + 1 scaling

else %

dX(:,oldest) = -dX*c + om*v; % s updates + 1 scaling

dR(:,oldest) = -A*dX(:,oldest); % 1 matmul

end

r = r + dR(:,oldest); % simple addition

x = x + dX(:,oldest); % simple addition

iter = iter + 1;

normr=norm(r); % 1 inner product (not counted)

resvec = [resvec;normr];

dm = P*dR(:,oldest); % s inner products

M(:,oldest) = dm;

m = m + dm;

% cycling s+1 times through matrices with s columns:

oldest = oldest + 1;

if ( oldest > s )

oldest = 1;

end
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end; % k = 0:s

end; %while

return
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