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Algorithm 913: An Elegant IDR(s) Variant that Efficiently Exploits
Biorthogonality Properties

MARTIN B. VAN GIJZEN and PETER SONNEVELD, Delft University of Technology

The IDR(s) method that is proposed in Sonneveld and van Gijzen [2008] is a very efficient limited memory
method for solving large nonsymmetric systems of linear equations. IDR(s) is based on the induced dimension
reduction theorem, that provides a way to construct subsequent residuals that lie in a sequence of shrinking
subspaces. The IDR(s) algorithm that is given in Sonneveld and van Gijzen [2008] is a direct translation of
the theorem into an algorithm. This translation is not unique. This article derives a new IDR(s) variant, that
imposes (one-sided) biorthogonalization conditions on the iteration vectors. The resulting method has lower
overhead in vector operations than the original IDR(s) algorithms. In exact arithmetic, both algorithms give
the same residual at every (s + 1)-st step, but the intermediate residuals and also the numerical properties
differ. We show through numerical experiments that the new variant is more stable and more accurate than
the original IDR(s) algorithm, and that it outperforms other state-of-the-art techniques for realistic test
problems.
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1. INTRODUCTION

We consider the linear system

Ax = b

with A ∈ C
N×N a large, sparse, and nonsymmetric matrix. In 1980, Sonneveld proposed

the iterative method IDR [Wesseling and Sonneveld 1980] for solving such systems.
The IDR method generates residuals that are forced to be in subspaces G j of decreasing
dimension. These nested subspaces are related by G j = (I − ω j A)(S ∩ G j−1), where S is
a fixed proper subspace of C

N, and the ω j ’s are nonzero scalars.
Recently, it was recognized that this IDR approach is quite general and can be used

as a framework for deriving iterative methods. This observation has led to the devel-
opment of IDR(s) [Sonneveld and van Gijzen 2008]. IDR(s) has attracted considerable
attention; for example, see Gutknecht [2010], Gutknecht and Zemke [2010], Onoue
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5:2 M. B. Van Gijzen and P. Sonneveld

et al. [2008, 2009], and Simoncini and Szyld [2010]. The examples that are described
in Sonneveld and van Gijzen [2008] show that IDR(s), with s > 1 and not too big,
outperforms the well-known Bi-CGSTAB method [van der Vorst 1992] for important
classes of problems.

Although the working principle of IDR(s) differs from that of Bi-CGSTAB, it turns
out that both methods are mathematically closely related. Specifically, IDR(1) is math-
ematically equivalent with Bi-CGSTAB, and IDR(s) with s > 1 is closely related (but
not mathematically equivalent) to the Bi-CGSTAB generalisation ML(k)BiCGSTAB
[Yeung and Chan 1999] of Yeung and Chan. We refer to Sonneveld and van Gi-
jzen [2008] for the details. In Sleijpen et al. [2010], Bi-CGSTAB is considered as an
IDR method, and that paper explains how IDR ideas can be incorporated into Bi-
CGSTAB.

The prototype IDR(s) algorithm that is described in Sonneveld and van Gijzen [2008]
is only one of many possible variants. One of the possibilities to make alternative IDR
methods is a different computation of the intermediate residuals. In IDR(s), the residual
is uniquely defined in every (s+1)-st step, [Sonneveld and van Gijzen 2008, Section 5.1].
This step corresponds to the calculation of the first residual in G j . In order to advance
to G j+1, s additional residuals in G j need to be computed. These intermediate residuals
are not uniquely defined and their computation leaves freedom to derive algorithmic
variants. In exact arithmetic, the residuals at every (s+1)-st step do not depend on the
way the intermediate residuals are computed. The numerical stability and efficiency of
the specific IDR algorithm, however, do depend on the computation of the intermediate
residuals.

In this article we will derive an elegant, efficient, and in our experience numeri-
cally very stable IDR-based method that imposes and exploits as much as possible
(one-sided) biorthogonality conditions between the intermediate residuals and the pre-
chosen vectors p1, . . . , ps, that define the subspace S. We will denote this new IDR
variant by IDR(s)-biortho1 to distinguish it from IDR(s)-proto, the prototype algorithm
in Sonneveld and van Gijzen [2008]. IDR(s)-biortho uses less vector operations per
iteration than IDR(s)-proto, and has better stability properties, in particular for large
values of s.

This article is organized as follows.
The next section describes a general framework for deriving an IDR-based method.

It starts with reviewing the IDR theorem. Then it explains how the theorem can be
used to compute the first residual in G j+1 and the corresponding approximation for
the solution, given sufficient vectors in G j . Furthermore it explains how sufficient
intermediate residuals and vectors in G j+1 can be computed in order to advance to
the next lower-dimensional subspace, and what freedom there is in generating these
intermediate vectors.

Section 3 derives the IDR(s)-biortho variant by filling in the freedom in generating
the intermediate residuals by imposing biorthogonality conditions between the inter-
mediate residuals and the vectors p1, . . . , ps.

Section 4 presents numerical experiments that compare IDR(s)-biortho and IDR(s)-
proto. It also shows experiments to illustrate the excellent performance of IDR(s) in
comparison with state-of-the-art methods like Bi-CGSTAB, GMRES [Saad and Schultz
1986], and BiCGstab(�) [Sleijpen and Fokkema 1994].

We make concluding remarks in Section 5.

1Other authors have used different names for IDR(s)-biortho: the method is called IDR(s)BiO in Gutknecht
[2010], IDRBiO in Gutknecht and Zemke [2010], and Bi-IDR(s) in Onoue et al. [2009].
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2. DESIGNING AN IDR-BASED ALGORITHM

2.1. The IDR Theorem

At the basis of every IDR algorithm is the IDR Theorem [Sonneveld and van Gijzen
2008], which is given next.

THEOREM 2.1. Let A be any matrix in C
N×N, let v0 be any nonzero vector in C

N, and
let G0 be the full Krylov space KN(A, v0). Let S denote any (proper) subspace of C

N such
that S and G0 do not share a nontrivial invariant subspace of A, and define the sequence
G j , j = 1, 2, . . . as

G j = (I − ω j A)(G j−1 ∩ S),

where the ω j ’s are nonzero scalars. Then
(i) G j ⊂ G j−1 for all G j−1 �= {0}, j > 0.
(ii) G j = {0} for some j ≤ N.

For the proof we refer to Sonneveld and van Gijzen [2008].
Without loss of generality, we may assume the space S to be the left null space of

some (full rank) N × s matrix P.

P = ( p1 p2 . . . ps), S = N (P H)

2.2. General Recursions

Let Ax = b be an N × N linear system. A Krylov-type solver produces iterates
xn for which the residuals rn = b − Axn are in the Krylov spaces Kn(A, r0) =
span{r0, Ar0, . . . , Anr0}. Here, x0 is an initial estimate of the solution.

An IDR-based method can be made by using recursions of the following form

rn+1 = rn − αAvn −
î∑

i=1

γi gn−i (1)

xn+1 = xn + αvn +
î∑

i=1

γiun−i

in which vn is any computable vector in Kn(A, r0)\Kn−1(A, r0), gn−i ∈ Kn(A, r0), and un−i
such that

gn−i = Aun−i. (2)

These recursions are quite general and hold for many Krylov subspace methods.
The IDR theorem can be applied by generating residuals rn that are forced to be

in the subspaces G j , where j is nondecreasing with increasing n. Then, according to
Theorem 2.1, rn ∈ {0} for some n.

2.3. A Dimension-Reduction Step: Computing the First Residual in Gj +1

According to Theorem 2.1, the residual rn+1 is in G j+1 if

rn+1 = (I − ω j+1 A)vn with vn ∈ G j ∩ S.

If we choose

vn = rn −
î∑

i=1

γi gn−i (3)
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the expression for rn+1 reads

rn+1 = rn − ω j+1 Avn −
î∑

i=1

γi gn−i, (4)

which corresponds to (1), with α = ω j+1.
Now suppose that rn, gn−i ∈ G j, i = 1, . . . , î. This implies that vn ∈ G j . If we choose

γi, i = 1, . . . , î such that in addition vn ∈ S, then by Theorem 2.1 we have rn+1 ∈ G j+1.
If vn ∈ S = N (P H), it satisfies

P Hvn = 0. (5)
Combining (3) and (5) yields an s × î linear system for the coefficients γi. Except for
special circumstances, this system is uniquely solvable if î = s, which means that we
need s vectors gi ∈ G j for rn+1 ∈ G j+1.

Suppose that after n iterations we have exactly s vectors gi ∈ G j, i = n − 1, . . . n − s,
and s corresponding vectors ui with gi = Aui at our disposal. Define the matrices

Gn = (gn−s gn−s+1 . . . gn−1), (6)
Un = (un−s un−s+1 . . . un−1). (7)

Then the computation of the residual rn+1 ∈ Gn+1 can be implemented by the following
algorithm.

Calculate: c ∈ C
s from (P H Gn)c = P H rn,

vn = rn − Gnc,
rn+1 = vn − ω j+1 Avn.

According to (4), the new residual satisfies
rn+1 = rn − ω j+1 Avn − Gnc.

Multiplying this expression with A−1 yields the corresponding recursion for the iterate.
xn+1 = xn + ω j+1vn + Unc

In the calculation of the first residual in G j+1, we may choose ω j+1 freely, but the same
value must be used in the calculations of the subsequent residuals in G j+1. A natural
choice for ω j+1 is the value that minimizes the norm of rn+1, similarly as is done in,
amongst others, the Bi-CGSTAB algorithm. Minimizing ‖rn+1‖2 = ‖vn − ω j+1 Avn‖2
yields

ω j+1 = (Avn)Hvn

(Avn)H Avn
.

In Sleijpen and van der Vorst [1995], Sleijpen and Van der Vorst propose in the context
of Bi-CGSTAB an improvement on this choice. They explain that a small value for the
minimal residual parameter ω can have a negative effect on the accuracy of the Bi-CG
parameters, and as a consequence on the convergence of Bi-CGSTAB. As a possible cure
to this they propose to use not a pure minimal residual step, but to increase the value
of ω if the cosine of angle between Avn and vn is smaller than a threshold κ. This means
that ω is increased if these vectors are too close to being perpendicular. A similar ap-
proach can be applied to the IDR(s) algorithm. In the setting of this algorithm the com-
putation of ω j+1 according to the strategy of Sleijpen and Van der Vorst [1995] becomes

ω j+1 = (Avn)Hvn

(Avn)H Avn
, ρ = (Avn)Hvn

‖Avn‖‖vn‖
IF |ρ| < κ

ω j+1 = ω j+1κ/|ρ|
ENDIF
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Sleijpen and Van der Vorst recommend 0.7 as a suitable value for κ. In our experience,
this “maintaining the convergence” choice for ω can greatly improve the rate of
convergence of IDR(s); see Section 6.4 of Sonneveld and van Gijzen [2008] for an
example. In Section 4 we will illustrate through numerical experiments that this
choice for ω may also yield a more accurate solution, in particular for larger values of s.
Note that the calculation of ω j+1 does not require an additional matrix multiplication,
since the vector Avn can be reused in the update of the residual.

Of course, other than the previously discussed strategies for the computation of ω j+1
are possible; see, for example, Simoncini and Szyld [2010] for a new approach based on
precomputed Ritz values.

The preceding framework explains how a residual in G j+1 can be computed given
rn, gn−i ∈ G j, i = 1, . . . s. Next we will discuss a technique for computing these vectors.

2.4. Computing Additional Vectors in Gj +1

The procedure that is outlined in the previous section can be used directly to compute
a new residual rn+2 ∈ G j+1: since gi ∈ G j, i = n − 1, . . . n − s and rn+1 ∈ G j+1 ⊂ G j , the
computations

Calculate: c ∈ C
s from (P H Gn)c = P H rn+1,

vn+1 = rn+1 − Gnc,
rn+2 = vn+1 − ω j+1 Avn+1

yield a residual that satisfies rn+2 ∈ G j+1.
Furthermore, we observe that the residual difference vector (rn+2 − rn+1) is in the

space G j+1. Since A−1(rn+2 − rn+1) = −(xn+2 − xn+1) we have found a suitable pair of
vectors gn+1, un+1.

gn+1 = −(rn+2 − rn+1), un+1 = xn+2 − xn+1

In a practical algorithm, the computation of gn+1 and of un+1 precedes the computation
of rn+2 and of xn+2. First, the update vector for the iterate can be computed by

un+1 = ω j+1vn+1 + Unc,

followed by the computation of gn+1 by

gn+1 = Aun+1 (8)

to preserve in finite precision arithmetic as much as possible the relation between un+1
and gn+1. The iterate and residual are then updated through

xn+2 = xn+1 + un+1, rn+2 = rn+1 − gn+1. (9)

The vector gn+1 is in the space G j+1, and hence also in G j . This means that we can
use this vector in the calculation of new vectors in G j+1, and discard an old vector, for
example, gn−s. This can be done by defining the matrices Gn+2 and Un+2 as

Gn+2 = (gn+1 gn−s+1 . . . gn−1), (10)
Un+2 = (un+1 un−s+1 . . . un−1). (11)

The advantage of this procedure is that it saves vector space: storage for exactly s
g-vectors and s u-vectors is needed.

We can repeat the preceding procedure s times to compute rn+s+1, gn+k ∈ G j+1, k =
1, . . . s, and the corresponding vectors xn+s+1, un+k, k = 1, . . . s, which are the vectors
that are needed to compute a residual in G j+2.

The aforesaid relations define (apart from initialization of the vectors) a complete
IDR-method. In fact, the algorithm that is outlined before is almost the same as the
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IDR(s) method from Sonneveld and van Gijzen [2008]. The only difference is that the
original IDR(s) method also computes gn = −(rn+1 − rn), which vector is then included
in Gn+k, k = 1, . . . , s. Leaving this vector out simplifies the IDR(s)-biortho algorithm
that we present in the next section.

In the previous algorithm, vectors in G j+1 are generated by direct application of
the IDR theorem. The computations of the first residual in G j+1 are almost the same
as the computation of the following s residuals in G j+1. However, in computing the
intermediate residuals, there is more freedom that can be exploited. In the preceding
algorithm, a residual is updated by

rn+k+1 = rn+k − gn+k.

Here, rn+k+1, rn+k, and gn+k are in G j+1. But in order to compute a new residual in G j+1
we could also have used a more general linear combination of vectors in G j+1.

rn+k+1 = rn+k −
k∑

i=1

βi gn+i

Clearly, the vector rn+k+1 computed in this way is also in G j+1. We can choose the
parameters βi to give the intermediate residuals a desirable property, like minimum
norm. In the algorithm that we present in the next section we will use the parameters
βi such that the intermediate residual rn+k+1 is orthogonal to p1, . . . , pk.

The same freedom that we have for computing a new residual in G j+1, we have for
computing the vectors gn+k: linear combinations of vectors in G j+1 are still in G j+1. Let

ḡ = −(rn+k+1 − rn+k).

Then the vector

gn+k = ḡ −
k−1∑
i=1

αi gn+i

is also in G j+1, and can be used in the subsequent computations. Again, the parameters
αi can be chosen such that the vector gn+k gets some favorable properties. In the
algorithm that we present in the next section we will chose the parameters αi such
that the vector gn+k is made orthogonal to p1 . . . pk−1.

Apart from the initialization of the variables, we have now given a complete frame-
work for an IDR-based solution algorithm. To initialize the recursions, values for
xs, rs, U0, and G0 have to be computed. This can be done by any Krylov method. Figure 1
presents a framework, including an (implicit) initialization in the first s steps, for an
IDR-based algorithm. The freedom that is left open is in the choice of the parameters
αi and βi, and ω. In the algorithm we have omitted the indices for the iteration number.
Vectors on the left are overwritten by vectors on the right.

3. AN EFFICIENT IDR(S) VARIANT THAT EXPLOITS BIORTHOGONALITY PROPERTIES

3.1. General Idea

In this section we will fill in the freedom that we have left in the framework IDR
algorithm. As in the previous section we assume that rn+1 is the first residuals in G j+1.
We fill in the freedom by constructing vectors that satisfy the following biorthogonality
conditions:

gn+k ⊥ pi, i = 1, . . . k − 1, k = 2, . . . , s, (12)

and

rn+k+1 ⊥ pi, i = 1, . . . , k, k = 1, . . . , s. (13)
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Fig. 1. A framework for an IDR-based algorithm.

As we will see, these relations lead to important simplifications in the algorithm.

3.2. A Dimension-Reduction Step: Computing the First Residual in Gj +1

The biorthogonality condition for the intermediate residuals (13) implies that the first
intermediate residual is orthogonal to p1, the second to p1 and to p2, etc. Hence, the
last intermediate residual before making a dimension reduction step, that is, rn is
orthogonal to p1, . . . , ps. Consequently,

rn ∈ G j ∩ S.

Now, by Theorem 2.1

rn+1 = (I − ω j+1 A)rn ∈ G j+1.
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With the standard choice for ω j+1, the dimension reduction step simplifies to a standard
minimal residual step.

3.3. Computing Additional Vectors in Gj +1

In order to calculate a vector vn+k ∈ G j ∩ S, a system of the form (P H Gn+k)c = P H rn+k
has to be solved. Using the conditions (12) and (13) this system gets a simple form. Let

μi,k = pH
i gn+k, i = 1, . . . , s.

Then, because of (12), μik = 0 for i < k. Furthermore, let

φi = pH
i rn+k, i = 1, . . . , s.

Then, because of (13), φi = 0 for i < k. Consequently, the system (P H Gn+k)c = P H rn+k
has the following structure.⎛

⎜⎜⎜⎜⎜⎜⎜⎝

μ1,1 0 . . . . . . 0

μ2,1 μ2,2
. . .

...
...

...
. . . . . .

...
...

...
. . . 0

μs,1 μs,2 . . . . . . μs,s

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ1
...
...
...
γs

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

0
...

φk
...
φs

⎞
⎟⎟⎟⎟⎟⎠

Clearly, γ1, . . . , γk−1 are zero, and the update for vn+k becomes

vn+k = rn+k −
s∑

i=k

γi gn+i−s−1.

Next, we compute “temporary” vectors un+k and gn+k by

un+k = ω j+1vn+k +
s∑

i=k

γiun+i−s−1; gn+k = Aun+k.

Next, the vector gn+k ∈ G j+1 is made orthogonal to p1, . . . , pk−1 by the following proce-
dure, that includes the corresponding updates to compute un+k.

For i = 1 to k − 1
α = pH

i gn+k
μi,i

;
gn+k = gn+k − αgn+i;
un+k = un+k − αun+i.

End for

The preceding algorithm is similar to the modified Gram-Schmidt procedure for or-
thogonalizing a vector with respect to a set of orthogonal vectors. Alternatively, we
could have used the classical Gram-Schmidt-like procedure as we have used for the
computation of a vector vn+k that is orthogonal to p1, . . . , ps.

The next step in the algorithm is to compute the next intermediate residual rn+k+1
that is orthogonal to p1, . . . , pk. It is easy to check that such a residual can be computed
by

rn+k+1 = rn+k − φk

μk,k
gn+k. (14)

The corresponding approximate solution then becomes

xn+k+1 = xn+k + φk

μk,k
un+k.
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The outline of the algorithm suggests that we have to compute the inner products as
φi = pH

i rn+k+1, i = k, . . . , s. From (14), however, it follows that

pH
i rn+k+1 = pH

i rn+k − φk

μk,k
pi gn+k i = k + 1, . . . , s,

and hence that

φi = φi − φkμi,k

μk,k
, i = k + 1, . . . , s.

So given μi,k, i = k+ 1, . . . , s, the new value for φi can be computed via a scalar update.

3.4. A Preconditioned Version of IDR(s)-Biortho

Preconditioning can simply be implemented by applying the unpreconditioned algo-
rithm to an explicitly preconditioned problem. In the case of right preconditioning with
preconditioner B this means that IDR(s) is applied to the system

AB−1 y = b

and every matrix-vector multiplication becomes a multiplication with AB−1, that is,
an application of the preconditioner followed by a multiplication with A. In order to get
the solution of the problem Ax = b, we have to scale back the solution

x = B−1 y,

so one extra preconditioning step has to be performed after the iterative process has
terminated.

As is shown in Onoue et al. [2008] for IDR(s)-proto, it is possible to avoid this extra
operation and to make preconditioning implicit. The same ideas that are described in
Onoue et al. [2008] can also be applied to IDR(s)-biortho.

The idea is to slightly rearrange the update of the solution. For example, the
dimension-reduction step for the explicitly right-preconditioned problem reads

t = AB−1rn,

rn+1 = rn − ω j+1t,
yn+1 = yn + ω j+1rn.

Multiplying the recursion for y with B−1 gives the recursion for x:

t = AB−1rn,

rn+1 = rn − ω j+1t,

xn+1 = xn + ω j+1 B−1rn,

which can be implemented as

v = B−1rn,

t = Av,

rn+1 = rn − ω j+1t,
xn+1 = xn + ω j+1v.

The same technique can be used to make the preconditioning operation in the inter-
mediate steps implicit.

ACM Transactions on Mathematical Software, Vol. 38, No. 1, Article 5, Publication date: November 2011.



5:10 M. B. Van Gijzen and P. Sonneveld

Fig. 2. Preconditioned IDR(s)-biortho, the preconditioner is denoted by B.

3.5. The IDR(s)-Biortho Algorithm

Figure 2 presents the complete IDR(s)-biortho algorithm, including preconditioning
and the computation of ω j+1 according to the “maintaining the convergence” strategy.
In the algorithm we have omitted the indices for the iteration number.
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Table I. Memory Requirements and Vector Operations per Preconditioned
Matrix-Vector Product

Method DOT AXPY Memory Requirements (vectors)
IDR(1) 2 3 7
IDR(2) 2 2

3 4 2
3 10

IDR(4) 4 2
5 8 2

5 16
IDR(8) 8 1

4 16 2
9 28

GMRES n+1
2

n+1
2 n + 3

Bi-CG 1 2 1
2 7

QMR 1 4 13
CGS 1 3 8
Bi-CGSTAB 2 3 7
BiCGstab(2) 2 1

4 3 3
4 9

The algorithm is quite efficient in terms of vector operations and even more efficient
than IDR(s)-proto, despite the additional orthogonalization operations. The operation
count for the main operations to perform the dimension reduction step yields: one
preconditioned matrix-vector product, two vector updates, and two inner products. For
the intermediate steps we get: s preconditioned matrix-vector products, 2s + 2 vector
updates, and s+1 inner products. Hence, for a full cycle of s+1 IDR(s) steps we get: s+1
preconditioned matrix-vector products, s2 +s+2 inner products, and 2s2 +2s+2 vector
updates. IDR(s)-biortho requires slightly less vector updates than IDR(s)-proto, and
the same number of inner products and preconditioned matrix-vector multiplications.
The original IDR(s) method requires 2s2 + 7

2 s + 5
2 vector-updates.

Table I gives an overview of the number of vector operations per preconditioned
matrix-vector multiplication for some values of s for IDR(s)-biortho, and for comparison
also for the Krylov methods that we will use in the numerical experiments. This table
also gives the memory requirements (excluding storage of the system matrix and of the
preconditioner, but including storage for the right-hand-side vector and the solution).

4. NUMERICAL EXPERIMENTS

In this section we present numerical examples to compare the numerical behavior
of IDR(s)-proto and IDR(s)-biortho. For another evaluation of the performance of the
two IDR(s) variants, based on selected test matrices from the Florida Sparse Matrix
Collection [Davis and Hu 2010], we refer to Onoue et al. [2009]. We also present
experiments to evaluate the performance of the biortho variant of IDR(s) in comparison
with a number of state-of-the-art Krylov methods. Other performance comparisons can
be be found in Sonneveld and van Gijzen [2008], van Gijzen and Sonneveld [2008], and
in Onoue et al. [2008]; the latter reference uses a test set from the University of Florida
Sparse Matrix Collection. In these three references the IDR(s)-proto variant is used.

The experiments that are presented in this section have been performed on a stan-
dard desktop computer with an Intel Core 2 duo processor and 4Gb of RAM using
MatLab 7.5.

In all our experiments we take for p1, . . . , ps the orthogonalization of s normally
distributed random vectors, with mean 0 and standard deviation 1.

4.1. Mathematical Equivalence of IDR(s)-Proto and IDR(s)-Biortho

The first numerical example validates that IDR(s)-proto and IDR(s)-biortho (in exact
arithmetic) yield the same residual at every (s + 1)-st iteration. This property is shown
to be true under mild conditions in Sonneveld and van Gijzen [2008, Section 5.1]. To
investigate this numerically we consider the the ADD20 matrix and corresponding
right-hand-side vector from the MATRIX MARKET collection. The parameter ω j is
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Fig. 3. Convergence of IDR(s)-proto and IDR(s)-biortho for ADD20.

computed via the “maintaining the convergence” strategy of Sleijpen and Van der
Vorst [1995].

Figure 3(a) shows the convergence of the two IDR(s) variants for s = 4. The itera-
tive processes are terminated if ‖ri‖/‖b‖ < 10−4. Clearly, the convergence of the two
variants is quite similar for this well-conditioned problem.

The mathematical equivalence of the two variants is confirmed by the convergence
curves for the first 25 iterations, that are presented in the Figure 3(b). The residual
norms coincide at the crucial iterations 5, 10, 15, . . . .

4.2. Numerical Stability of IDR(s)-Proto and IDR(s)-Biortho for Large Values of s

In order to investigate the accuracy of the two IDR(s) variants for increasingly large
values of s, we consider a test problem that is taken from Gutknecht [1993] and Zhang
[1997]. The system matrix of this test problem is a complex Toeplitz matrix of order
200 and given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 0 1 0.7

γ i
. . . . . . . . . . . .
. . . . . . . . . . . . 0.7

. . . . . . . . . 1
. . . . . . 0

γ i 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the right-hand-side vector by b = (i, i, . . . , i)T . Here, i is the imaginary unit number.
For γ we take the value 3.6. The system is solved with the two IDR(s) variants with
values for the parameter s ranging from 1 to 50. The iterative process is stopped if the
norm of the scaled recursively computed residual drops below 10−12.

In the first experiments we use the minimal residual strategy for ω j . Figure 4(a)
shows the norm of the final true residual divided by the norm of the right-hand-side
vector as a function of s. Both methods yield an accurate solution for small values
of s. For large values of s, however, the IDR(s)-proto method produces an inaccurate
solution. The reason is that the g-vectors in the original method are computed in a
power-method-like way. As a result, the matrix Gn becomes ill conditioned and the
solution of the systems P H Gnc = P H rn inaccurate. The additional orthogonalizations
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Fig. 4. Accuracy and number of iterations for the two IDR(s) variants with “minimal residual” choice for ω.

Table II. Sherman 2: Iterations and Final Accuracy for Increasing s

Method Iterations ‖b− Ax‖/‖b‖ Method Iterations ‖b− Ax‖/‖b‖
IDR(20)-proto 2160 3.5 · 10−2 IDR(20)-biortho 2160 1.5 · 10−3

IDR(40)-proto 1501 1.5 · 10−1 IDR(40)-biortho 969 8.2 · 10−5

IDR(60)-proto 1791 6.6 · 10−2 IDR(60)-biortho 945 9.8 · 10−5

IDR(80)-proto 1684 5.1 · 10−1 IDR(80)-biortho 883 9.8 · 10−5

IDR(100)-proto 2145 9.3 · 10−1 IDR(100)-biortho 536 9.8 · 10−5

IDR(120)-proto 1480 5.7 · 10−1 IDR(120)-biortho 473 8.2 · 10−5

IDR(140)-proto 2028 1.7 · 10−1 IDR(140)-biortho 166 7.6 · 10−5

in the new variant clearly improve the accuracy of the algorithm: the required accuracy
for IDR(s)-biortho is always achieved.

Figure 4(b) shows the number of iterations to achieve the required tolerance. We
have repeated the same experiments with the “maintaining the convergence” choice
for ω j . The most striking difference with the experiments with the “minimum residual
choice” for ω j is that the IDR(s)-proto algorithm remains accurate for much larger s.
Only for s larger than 27 the accuracy is lower than expected, whereas for the minimum
residual choice for ω j the accuracy is lower than the expected level for s larger than 12.
Again the final accuracy for the IDR(s)-biortho algorithm always satisfies the required
tolerance.

This figure shows that for s small, say up to s = 10, the number of iterations drops
significantly with increasing s. However, for larger values of s no gain can be obtained.
This observation, that we have often made for reasonably well-conditioned problems,
has recently been explained in Sonneveld [2010].

4.3. A Problem that Requires a Large Value for s

For most problems, it is for efficiency reasons advisable to take a small value for s, for
example, s = 4. Problems with an ill-conditioned system matrix, however, may require
a large value for s. The following example, the matrix SHERMAN2 from the MATRIX-
MARKET collection with corresponding right-hand-side vector, is such a problem. We
solve this problem with the two IDR(s) variants, with values of s ranging from 20 to
140. The required tolerance is ‖ri‖/‖b‖ < 10−4. The norm of the recursively updated
residual is used in the termination criterion. Table II gives for the two IDR(s) variants
the number of iterations and the accuracy that is reached (the norm of the true residual
divided by the norm of the right-hand-side vector b) for the different values of s. The
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Fig. 5. Accuracy and number of iterations for the two IDR(s) variants with “maintaining the convergence”
choice for ω.

maximum number of iterations is set to 2160, which is two times the problem size of
1080.

The table shows that IDR(s)-proto never achieves the required accuracy. IDR(s)-
biortho, on the other hand, satisfies the accuracy for all the tested values for s, except
for s = 20. We remark that the MatLab built-in methods Bi-CGSTAB, QMR, Bi-CG,
and CGS do not converge for this problem. Full GMRES converges after 119 iterations.

4.4. A Problem for which IDR(s)-Proto is Inaccurate for Small s

The next example that we consider shows a rare case where IDR(s)-proto does not
converge for small s, whereas IDR(s)-biortho converges as expected. The example is an
extreme case where IDR(s)-proto stagnates at a certain level, after which it gradually
starts to diverge. We have observed this phenomenon more often if very high accuracy
(close to machine precision) is required. In this example, however, stagnation of IDR(1)-
proto and IDR(2)-proto occurs at a much higher level.

The example is the finite difference discretization of the following convection-
diffusion-reaction equation with homogeneous Dirichlet boundary conditions on the
unit cube.

−ε�u + 	β · ∇u − ru = F

The right-hand-side vector F is defined by the solution u(x, y, z) = x(1 − x)y(1 − y)z(1 −
z). The problem is discretized using central differences with as grid size h = 0.025.
The resulting linear system consists of approximately 60,000 equations. We take the
following values for the parameters: ε = 1 (diffusion), 	β = (0/

√
5 250/

√
5 500/

√
5)T

(convection), and r = 400 (reaction). The resulting matrix is highly nonsymmetric and
indefinite, properties that make the resulting system difficult to solve with an iterative
solver.

The ω j ’s are again computed using the “maintaining the convergence” strategy (Fig-
ure 5). The required tolerance is ‖ri‖/‖b‖ < 10−10. The maximum number of matrix-
vector multiplications is set to 650.

Figure 6(a) shows the convergence for IDR(s)-proto, for s = 1, 2, 4, and 8, together
with the convergence for GMRES (optimal). For comparison we have also included the
convergence of Bi-CGSTAB (MatLab implementation). We remark that IDR(1) and
the MatLab implementation of Bi-CGSTAB are not mathematically equivalent due to
the different choice for p1 (random in IDR(1) and p1 = r0 in Bi-CGSTAB), and because
of the different strategy for computing ω j (“maintaining the convergence” in IDR(1)
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Fig. 6. Accuracy and number of iterations for the two IDR(s) variants, minimal residual choice for ω.

Table III. Convection-Diffusion-Reaction Problem: Iterations and Final Accuracy for
Increasing s

Method MATVECS ‖b− Ax‖/‖b‖ Method MATVECS ‖b− Ax‖/‖b‖
IDR(1)-proto 650 1.4 · 10+6 IDR(1)-biortho 321 9.3 · 10−11

IDR(2)-proto 650 1.7 · 10+3 IDR(2)-biortho 220 5.4 · 10−11

IDR(4)-proto 650 1.0 · 10−4 IDR(4)-biortho 172 8.6 · 10−12

IDR(8)-proto 650 1.8 · 10−7 IDR(8)-biortho 149 5.7 · 10−11

GMRES 129 6.6 · 10−11 Bi-CGSTAB 593 5.1 · 10−11

and “minimum residual” in Bi-CGSTAB). These choices are standard for Bi-CGSTAB.
As can be seen, the initial convergence of all IDR(s) variants is satisfactory, for larger
s the convergence is close to the optimal GMRES convergence, and the convergence
is significantly faster than for Bi-CGSTAB. However, the convergence stagnates for
all IDR(s) variants above the required, quite strict tolerance. Once stagnation occurs,
IDR(s)-proto gradually starts to diverge. For the higher values of s the required toler-
ance is almost achieved, but for small s the stagnation occurs at a level that is much
higher than to be expected.

Figure 6(b) shows the convergence for IDR(s)-biortho. Now, no stagnation and subse-
quent divergence occurs. Also, the difference in rate of convergence with Bi-CGSTAB
is quite striking. The convergence of IDR(4) is close to the optimal GMRES conver-
gence, while the convergence of Bi-CGSTAB lags considerably behind. Such behavior
is typical for difficult (nonsymmetric indefinite) problems.

Table III shows for all methods the different the number of matrix-vector multiplica-
tions methods and the final accuracy. The table shows that IDR(s)-biortho is accurate:
the required tolerance is always achieved. In terms of matrix-vector multiplications,
IDR(s)-biortho is much faster than Bi-CGSTAB for all values of s, and almost as fast
as GMRES for s = 4 and s = 8. Note that we use full GMRES, which is optimal with
respect to the number of matrix-vector multiplications, at the expense of a large over-
head in vector operations and high storage requirements. The resulting CPU-times
are also much lower for IDR(s)-biortho: 1.2s for IDR(4) against 10.6s for GMRES and
6.0s for Bi-CGSTAB. For completeness we also give the time for MatLab’s sparse direct
solve (“\”), which takes 10.2s for this example.
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4.5. A Performance Comparison for a Navier-Stokes Problem Using IFISS

IFISS is a MatLab open-source package associated with the book Elman et al. [2005] by
Elman, Silvester and Wathen.2 IFISS can be used to model a range of incompressible
fluid flow problems and provides an ideal testing environment for iterative solvers and
preconditioners.

We compare the performance of IDR(s)-biortho with Bi-CGstab(�), and with full
GMRES. We have performed our experiments with version 3.0 of IFISS, which has
implementations of all three methods. We also report on results for Bi-CGSTAB, which
were actually obtained for the mathematically equivalent method BiCGstab(1).

The test problem that we consider describes flow over a step (see Elman et al. [2005,
Example 7.1.2]), which is modeled as a Navier-Stokes problem with zero forcing term.
The steady-state Navier-Stokes equations are given by

−η∇2u+ u · ∇u+ ∇ p = 0,

∇ · u = 0,

where η > 0 is a given constant called the kinematic viscosity. The domain is L-shaped.
The x- coordinate ranges from −1 to 5. The y-coordinate ranges from 0 to 1 for x between
−1 and 0, and between −1 and 1 elsewhere: there is a step in the domain at x = 0. A
Poiseuille flow profile is imposed on the inflow boundary x = −1, 0 ≤ y ≤ 1 and a zero
velocity condition on the walls. The Neumann condition

η
∂ux

∂x
− p = 0

∂uy

∂x
= 0

is applied at the outflow boundary x = 5,−1 ≤ y ≤ 1. The problem is discretized with
biquadratic Q2 elements for the velocities and bilinear Q1 elements for the pressures.
The resulting nonlinear system can be solved with Newton’s method, which implies that
in every iteration a linear system has to be solved to compute the Newton updates. This
system has the following form.(

F BT

B O

) (
�u
� p

)
=

(
f
g

)
Here, the submatrix F is nonsymmetric, and becomes increasingly more nonsymmetric
if η is decreased.

As a test problem we consider the linear system after one Newton iteration. A block-
triangular preconditioner of the form(

F BT

O −Ms

)
is applied to speed-up the convergence of the iterative methods. Here, Ms is an ap-
proximation to the Schur complement S = BF−1 BT . The specific preconditioner we
have selected for our experiments is the modified pressure-correction preconditioner
[Elman et al. 2005]. Each application of this preconditioner requires three solves of
subsystems: one solve with F and two solves with the approximate Schur complement
Ms. These solves are approximately done with one sweep of the AMG solver of IFISS.

In the numerical experiments, we have taken a mesh size h = 2−6, which yields a
system of 102,659 equations. We have performed experiments with increasing Reynolds
numbers Re. The Reynolds number is related to the kinematic viscosity by Re = 2/η.
All systems are solved to a tolerance (= reduction of the residuals norm) of 10−6.

2The open source-code is described in Elman et al. [2007], and can be downloaded from http://www.
manchester.ac.uk/ifiss and http://www.cs.umd/ elman/ifiss.html.
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Table IV. Navier-Stokes Test Problem: Matrix-Vector Multiplications and Computing Times

Re GMRES Bi-CGSTAB BiCGstab(2) IDR(4) IDR(8)
100 59 (21.8s) 106 (36.8s) 92 (32.0s) 72 (24.9s) 71 (25.1s)
200 76 (31.9s) 142 (57.2s) 144 (56.2s) 97 (37.8s) 92 (37.1s)
400 114 (52.2s) 280 (115.9s) 272 (113.6s) 156 (65.1s) 143 (60.6s)
800 181 (100.0s) 486 (284.6s) 652 (317.7s) 284 (138.6s) 231 (114.3s)

Table V. Atmospheric Model Problems: Matrix-Vector Multiplications and Computing Times

Iterative\Matrix ATMOSMODD ATMOSMODJ ATMOSMODL ATMOSMODM
Method\Size N = 1270432 N = 1270432 N = 1489752 N = 1489752
GMRES(50) 690 (980s) 1069 (1515s) 64 (95s) 38 (50s)
Bi-CGSTAB 479 (145s) 439 (131s) 89 (35s) 78 (28s)
CGS No convergence No convergence No convergence No convergence
Bi-CG 448 (79s) 430 (75s) 112 (24s) 76 (16s)
QMR 446 (94s) 436 (91s) 112 (28s) 76 (19s)
IDR(1) 520 (45s) 550 (48s) 106 (11s) 78 (9s)
IDR(2) 351 (40s) 311 (36s) 83 (12s) 59 (8s)
IDR(4) 268 (48s) 267 (48s) 69 (15s) 49 (11s)
IDR(8) 247 (80s) 248 (80s) 63 (25s) 43 (18s)

Table IV gives the numbers of matrix-vector multiplications, and in between brackets
the computing times. In comparison with Bi-CGSTAB and BiCGstab(2), IDR(4), and
especially IDR(8) are considerably faster, in particular for large Reynolds numbers.
The difference in solution time for the higher Reynolds numbers is a factor of two to
three.

The preconditioner described earlier is quite effective in reducing the number of
iterations, but is expensive to apply. This makes the preconditioned matrix-vector
multiplication expensive. As a result, the time per iteration is basically determined by
the preconditioned matrix-vector multiplication, and overhead for vector operations is
small compared to the cost of the preconditioned matrix-vector multiplications. This
situation is particularly advantageous for GMRES, since this method gives an optimal
reduction of the residual norm for a given number of iterations (= preconditioned
matrix-vector multiplications).

The computing times for GMRES are slightly lower than for IDR(s). However, this
comes at the price of a much higher memory consumption: for every iteration an extra
vector of dimension N has to be stored, whereas the storage costs for IDR(s) are fixed.
For comparison: for the test problem with Re = 800, GMRES requires the storage of
184 vectors, IDR(4) of 16 vectors, and IDR(8) of 28.

4.6. A Performance Comparison for Large Atmospheric Test Problems
Using Built-In MatLab Routines

The final set of test problems is part of the University of Florida Sparse Matrix Collec-
tion [Davis and Hu 2010]. The four test problems come from numerical weather predic-
tion and (three-dimensional) atmospheric modeling. The systems are large, in excess
of a million of equations, and have a block tridiagonal structure with seven nonzero
diagonals. The matrices are mildly nonsymmetric, and strictly diagonally dominant. As
a result of these properties, the systems are well suited for iterative solution methods.

In the experiments we do not apply a preconditioner. This is realistic for this type
of applications, where the matrix is normally not explicitly available. We compare the
performance of IDR(s) with that of the built-in MatLab routines Bi-CGSTAB, CGS
[Sonneveld 1989], Bi-CG [Fletcher 1976], QMR [Freund and Nachtigal 1991], and
restarted GMRES, with restarts every 50th iteration. The systems are solved to a
tolerance (= reduction of the residuals norm) of 10−8. Table V gives the number of
matrix-vector products that each of the methods requires, and in between brackets the
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required CPU times. The results show that IDR(2) and IDR(4) are both considerably
faster than all the other methods, both in terms of matrix-vector multiplications and
in terms of CPU-time. The preceding problems cannot be solved on our computer with
the MatLab direct solution method due to insufficient memory.

5. CONCLUDING REMARKS

We have presented a new variant of IDR(s), called IDR(s)-biortho, that is slightly less
expensive in vector overhead and according to our experiments more accurate and more
stable than the original IDR(s), in particular for large s.

For most problems it is not necessary to choose the parameter s large. In our experi-
ence s = 4 is a good default value. For this value there is normally little difference in
numerical behavior between IDR(s)-biortho and IDR(s)-proto. However, some problems
require larger values of s, such as the ill-conditioned problem SHERMAN2 that we have
presented in the numerical examples. In particular for such cases we consider the new
IDR(s) variant an important improvement. In rare cases there is also a difference in
numerical behavior between IDR(s)-proto and IDR(s)-biortho for small values of s. We
have presented such an example for which IDR(s)-proto failed to converge up to the
required accuracy for small values of s, whereas IDR(s)-biortho reached the required
accuracy for all the tested values of s.

We have also compared the performance of IDR(s)-biortho with state-of-the-art
Krylov methods like GMRES, Bi-CGSTAB, and BiCGstab(�). These experiments con-
firm that IDR(s) is quite competitive and outperforms the other methods for important
problem classes.
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