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Article

Fast iterative solution of large
sparse linear systems on
geographically separated clusters

TP Collignon and MB van Gijzen

Abstract
Parallel asynchronous iterative algorithms exhibit features that are extremely well-suited for Grid computing, such as lack
of synchronization points. Unfortunately, they also suffer from slow convergence rates. In this paper we propose using
asynchronous methods as a coarse-grained preconditioner in a flexible iterative method, where the preconditioner is
allowed to change in each iteration step. A full implementation of the algorithm is presented using Grid middleware that
allows for both synchronous and asynchronous communication. Advantages and disadvantages of the approach are dis-
cussed. Numerical experiments on heterogeneous computing hardware demonstrate the effectiveness of the proposed
algorithm on Grid computers, with application to large 2D and 3D bubbly flow problems.

Keywords
asynchronous iterative methods, bubbly flows, flexible iterative methods, geographically separated clusters, Grid
computing, linear systems of equations

1 Introduction

This paper describes an efficient iterative method for

solving large linear systems on geographically separated

computational resources. The algorithm uses an asynchro-

nous iterative method as a preconditioner in a synchronous

flexible method, where the preconditioner is allowed to

vary in each iteration step.

The parallel solution of linear systems using asynchronous

iterative methods has been studied in several papers, for

example in Bertsekas and Tsitsiklis (1989), Bahi et al.

(2002, 2005) and Couturier et al. (2008). For a comprehen-

sive overview paper and more references on asynchronous

iterative methods, see Frommer and Szyld (2000).

However, asynchronous methods have never gained

widespread popularity. The main reason is that the slow

convergence rates limit the applicability of these methods.

Nevertheless, the lack of global synchronization points in

these methods is a highly favourable property in parallel

computing. This is even more the case in Grid computing,

where synchronization between geographically separated

clusters is the bottleneck operation.

Although Krylov subspace methods such as the

Conjugate Gradient (CG) method (Hestenes and Stiefel,

1952) offer significantly improved convergence rates, the

global synchronization points induced by the inner

product operations in each iteration step limit the applic-

ability. By using an asynchronous iterative method as a

preconditioner in a (flexible) Krylov subspace method,

the best of both worlds can be combined. It will be shown

in this paper that the combination of a slow but asynchro-

nous inner iteration with a fast but synchronous outer itera-

tion results in high convergence rates on heterogeneous

networks of computers. To the best of our knowledge, the

idea of using an asynchronous preconditioner in a flexible

method is an algorithmic innovation that has not been

investigated in the context of Grid computing before.

In the proposed inner–outer algorithm, the asynchronous

preconditioning iteration is performed on heterogeneous

computational resources and for a fixed amount of time.

As a result, the preconditioner varies in each outer iteration

step, which requires the use of a flexible subspace method

as the outer iteration.

The target hardware consists of the DAS-3 Grid computer

(Seinstra and Verstoep, 2007), which is a cluster of five geo-

graphically separated clusters spread over four academic

institutions in the Netherlands. The DAS-3 is designed for
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dedicated parallel computing and, although each separate

cluster is relatively homogeneous, the system as a whole

can be considered heterogeneous.

The algorithm is applied to a bubbly flow problem,

which is an important and difficult application from com-

putational fluid dynamics in two-phase fluid flow (Tang

and Vuik, 2007a). This application involves the solution

of large sparse symmetric and positive definite systems,

which leaves the flexible Conjugate Gradient method

(Axelsson, 1994; Notay, 2000) as the method of choice for

the outer iteration. Nevertheless, the proposed approach

can be used for non-symmetric systems as well by using

a flexible method such as Generalized Conjugate Residual

(GCR) (Eisenstat et al., 1983; van der Vorst and Vuik,

1994) as the outer iteration (Collignon and van Gijzen, 2010).

In this paper, both the outer iteration and the precondi-

tioning iteration are performed on the same set of dedicated

computing nodes. A different strategy is used in Collignon

and van Gijzen (2010), where these two iteration processes

are physically decoupled. That is, the GCR method is used

as the outer iteration on the user machine, while the precon-

ditioning iteration is performed on a cluster of non-dedi-

cated computers. By physically decoupling the two

iterations, an algorithm is obtained that is partially fault-

tolerant. Section 3.2 contains further details on this issue.

The algorithm is implemented using the Communications

Routines for Asynchronous Computations (CRAC) library,

which was developed within the GREMLINS project

(Couturier and Domas, 2007; Couturier et al., 2008).

The aim of this project is to design efficient iterative

algorithms for solving large sparse linear systems on geo-

graphically separated computational resources. The CRAC

library can be used to easily implement (partially) asyn-

chronous iterative algorithms on such systems.

The experimental results on the DAS-3 multi-cluster

demonstrate that the proposed algorithm is highly effective

in the context of loosely coupled networks of computers.

Furthermore, the results show that the algorithm can adapt

to a computational environment in which the network is

heavily loaded.

The remainder of the paper is organized as follows.

Section 2 describes the complete algorithm, including a

discussion of the various advantages and disadvantages of

the proposed method. In Section 3 various details pertain-

ing to the parallel implementation of the algorithm are

discussed, such as the employed Grid middleware CRAC

and the data distribution. In Section 4 extensive numerical

experiments are performed using the DAS-3 multi-cluster

and Section 5 contains concluding remarks.

2 Iterative solvers in Grid computing

This section starts by exposing the key bottleneck in

iteratively solving large linear systems on Grid hardware:

expensive synchronization. Section 2.2 describes asynchro-

nous parallel iterative methods, which exhibit several char-

acteristics that are extremely suitable for Grid computing.

Unfortunately, they also suffer from slow convergence

rates. Section 2.3 explains how asynchronism can be

introduced into fast but fine-grained subspace methods.

The key idea is that by using an asynchronous method as

a preconditioner in a flexible subspace method, the best

of both worlds can be combined.

2.1 The problem

The goal is to solve, iteratively and efficiently, large sparse

linear systems,

Ax ¼ b; A 2 �n�n; x; b 2 �n; ð1Þ

on large, heterogeneous, and geographically separated

computational resources. The key characteristic of iterative

methods is that at each iteration step, information from one

or more previous iteration steps is used to find an increas-

ingly accurate approximation to the solution.

In distributed memory computing, each processor

operates on its local memory. For many parallel iterative

methods this implies that at some point in time a form of

synchronization has to be performed. For extremely large

problem sizes, the potentially high number of iteration

steps and the high cost of a synchronization operation pose

significant efficiency issues in the context of iterative solvers

and heterogeneous computing environments.

Algorithm 1 (A)synchronous block Jacobi iteration without overlap

on p processors.

1: Choose xð0Þ;

2: for k ¼ 1; 2; . . . ; until convergence do

3: for i ¼ 1; 2; . . . ; p do

4: (i.) Solve

Aiix
ðkÞ
i ¼ bi �

Xp

j¼1; j 6¼i

Aijx
ðk�1Þ
j ; == synchronous iterations

5: (ii.) Solve

Aiix
ðnewÞ
i ¼ bi �

Xp

j¼1; j 6¼i

Aijx
ðoldÞ
j ; == asynchronous iterations

6: end for

7: end for

2.2 Asynchronous iterations

There exists a class of parallel iterative methods which lack

synchronization points (in theory), making them excellent

candidates for heterogeneous computing environments as

found in Grid computing. These methods generalize simple

iterative methods such as the classical block Jacobi itera-

tion (Saad, 2003). To compute the solution of the linear

system Ax ¼ b using p processors, the coefficient matrix

A, the solution vector x, and the right-hand side vector b are

partitioned into non-overlapping blocks as follows:

A ¼

A11 A12 � � � A1p

A21 A22 � � � A2p

..

. ..
. . .

. ..
.

Ap1 Ap2 � � � App

2
6664

3
7775; x ¼

x1

x2

..

.

xp

2
6664

3
7775; and b ¼

b1

b2

..

.

bp

2
6664

3
7775: ð2Þ
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Algorithm 1 lists the (a)synchronous block Jacobi

method for solving this system. In the standard block Jacobi

iteration, at iteration step k each processor independently

solves a linear subsystem – either iteratively or directly –

followed by a synchronization point where information is

exchanged between the processors (see line 4). Instead of syn-

chronizing at each iteration step k, an asynchronous variant of

Algorithm 1 performs their local iterations based on infor-

mation that is available at that particular time (see line 5).

In asynchronous iterations, at the end of an iteration step

of a particular process, locally updated information is sent

to its neighbour(s). Vice versa, new information may be

received multiple times during an iteration. However, only

the most recent information is included at the start of the

next iteration step. Other kinds of asynchronous communi-

cation are possible (Baz, 1996; Baz et al., 1996; Frommer

and Szyld, 1998; Miellou et al., 1998; Couturier et al.,

2008). For example, asynchronous iterative methods exist

where newly received information is immediately incorpo-

rated by the iteration processes.

In other words, the execution of the processes does not

halt while waiting for new information to arrive from other

processes. As a result, it may occur that a process does not

receive updated information from one of its neighbours.

Another possibility is that received information is outdated

in some sense. Also, the duration of each iteration step may

vary significantly, caused by heterogeneity in computer

hardware and network capabilities, and fluctuations in

processor workload and problem characteristics.

The main advantages of parallel asynchronous algorithms

are summarized in the following list:

� Reduction of the global synchronization penalty. No

global synchronizations are performed, an operation

that may be extremely expensive in a heterogeneous

environment.

� Efficient overlap of communication with computation.

Erratic network behaviour may induce complicated

communication patterns. Computation is not stalled

while waiting for new information to arrive and more

Jacobi iterations can be performed.

� Coarse-grained. Techniques from domain decomposi-

tion can be used to effectively divide the computational

work, and the lack of synchronization results in a highly

favourable computation/communication ratio.

In extremely heterogeneous computing environments,

these properties can potentially result in improved parallel

performance. However, no method is without its disadvan-

tages and asynchronous algorithms are no exception.

The following list gives some idea of the various difficulties

and potential bottlenecks:

� Suboptimal convergence rates. Block Jacobi-type

methods exhibit slow convergence rates. Furthermore,

if no synchronization is performed whatsoever, processes

perform their iterations based on potentially outdated

information. Consequently, it is conceivable that

important characteristics of the solution propagate

slowly throughout the domain. Furthermore, the itera-

tions may even diverge in some cases.

� Non-trivial convergence detection. Although there are

no inherent synchronization points, knowing when to

stop may require a form of global communication at

some point.

� Partial fault tolerance. If a particular Jacobi process is

killed, the complete iteration process will effectively

break down. On the other hand, a process may become

unavailable due to temporary network failure. Although

this would delay convergence, the complete conver-

gence process would eventually finish upon reinstate-

ment of the failed process.

Algorithm 2 Flexible Conjugate Gradients (pure truncation strategy).

INPUT: Parameters mmax;ein;Tmax; Set mk¼minðk;mmaxÞ; Initial

guess x0; Set r0¼b�Ax0.

1: for k ¼ 0; 1; . . . ; until convergence do

2: Evaluate u ¼Mðrk ; ein; TmaxÞ; // Preconditioning

step: see Algorithm 3

3: Compute uk ¼ orthonormðu; ci; ui; k;mkÞ; // Orthogonalization

step: see Algorithm 4

4: Compute ck ¼ Auk ; // Matrix–vector multiplication

5:
Compute ak ¼

uT
k rk

uT
k ck

;

6: Update xkþ1 ¼ xk þ akuk ;

7: Update rkþ1 ¼ rk � akck ;

8: end for

� Importance of load balancing. In the context of

asynchronism, dividing the computational work effi-

ciently may appear less important. However, significant

desynchronization of the iteration processes may

negatively impact convergence rates. Therefore, some

form of (resource-aware) load balancing could still be

appropriate.

2.3 Best of both worlds

The key disadvantage of block Jacobi-type methods – both

synchronous and asynchronous – is that they suffer from

slow convergence rates and that they only converge under

certain strict conditions (Bertsekas and Tsitsiklis, 1989).

Krylov subspace methods are a class of iterative methods

that exhibit significantly improved convergence rates. The

main characteristic of these methods is that (non-standard)

projections are used to extract a new approximation to the

solution from a Krylov subspace. This implies that inner

products need to be computed, which introduces global

synchronization points in each iteration step.

The potentially large number of synchronization points

in Krylov methods make them less suitable for Grid com-

puting. Vice versa, the improved parallel performance of

asynchronous algorithms make them perfect candidates.

To reap the benefits of both techniques, we propose to use

442 The International Journal of High Performance Computing Applications 25(4)
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an asynchronous iterative method as a preconditioner in a

flexible iterative method, where the preconditioner is

allowed to change in each iteration step. The goal is to

achieve high convergence rates on Grid computers by com-

bining a slow but coarse-grained asynchronous precondi-

tioning iteration with a fast but fine-grained outer iteration.

As mentioned before, the application considered in this

paper involves solving a large symmetric positive (semi-)

definite system. This suggests that the Flexible Conjugate

Gradient (FCG) method is the method of choice for the

outer iteration (Axelsson, 1994; Notay, 2000).

Algorithm 3 Asynchronous block Jacobi iteration for task i.

FUNCTION: ui ¼Mðri; ein; TmaxÞ
1: Wait until ri is updated; Set ui ¼ 0;

2: while telapsed < Tmax do

3: Compute vi ¼ ri �
P

j Aijuj;

4: Solve Aiipi ¼ vi with accuracy ein;

5: Update ui  ui þ pi;

6: Exchange ui asynchronously with neighbours;

7: end while

Listed in Algorithm 2 is the FCG method. Three main

phases can be distinguished: the preconditioning step (line

2), the orthogonalization step (line 3), and the remaining oper-

ations such as the matrix–vector multiplication (line 4) and

the vector updates. These phases will be discussed separately.

Asynchronous preconditioning In standard precon-

ditioned CG, the preconditioner is a fixed symmetric and

positive definite matrix M such that solving the residual

equation Mu ¼ r is ‘cheap’ in some sense. In the proposed

algorithm, the preconditioning operation in line 2 of Algo-

rithm 2 consists of an asynchronous iterative method

applied to the system Au ¼ rk and is performed for a fixed

amount of time Tmax. The local systems within the asyn-

chronous method are solved iteratively and with accuracy

ein. In other words, the preconditioning step consists of a

random (typically nonlinear) process,

u ¼Mðrk ; ein; TmaxÞ; M : �n ! �n; ð3Þ

which differs from one iteration step k to the next. In Algo-

rithm 3 the specific steps are shown that are performed by

the asynchronous preconditioning iteration processes.

If a fixed amount of time is devoted to each precondi-

tioning step, there is no need for a – possibly complicated

and expensive – convergence detection algorithm for the

asynchronous preconditioning iteration. Convergence

detection can be performed in the outer iteration.

The nonlinearity of the preconditioning step implies that

the operator M does not correspond to some symmetric

positive definite matrix M . To minimize the number of

expensive (outer) synchronizations, the bulk of the

computational work is to be performed by the preconditioner.

Note that the standard block Jacobi preconditioner cor-

responds to a single iteration step of the synchronous block

Jacobi iteration from Algorithm 1 with initial guess

xð0Þ � 0. In contrast, the preconditioning step from (3) con-

sists of multiple asynchronous block Jacobi iteration steps.

These two types of preconditioning will be compared in the

numerical experiments.

Algorithm 4 Modified Gram–Schmidt.

FUNCTION: uk ¼ orthonormðu; ci; ui; k;mkÞ;

1: Set u
ðk�mkÞ
k ¼ u;

2: for i ¼ k � mk ; . . . ; k � 1 do

3: Compute bi ¼
cT

i u
ðiÞ
k

cT
i ui

;

4: Set u
ðiþ1Þ
k ¼ u

ðiÞ
k � biui;

5: end for

6: Set uk ¼ u
ðkÞ
k ;

Orthogonalization The main difference with standard

preconditioned CG are the additional orthogonalizations in

line 3 of Algorithm 2. The newly obtained search direction

vector u has to be orthogonalized with respect to the A-inner

product (hx; yiA :¼ xTAy) against a number of previous

search directions.

For practical implementations of flexible methods a

truncation or restart strategy has to be applied. In this paper

a pure truncation strategy is employed, which basically

means that the new search direction vector is orthogona-

lized against mmax previous vectors, subsequently replacing

the oldest search direction vector. This variant will be

denoted by FCGðmmaxÞ. Other truncation or restart strate-

gies are possible (Notay, 2000).

In the context of heterogeneous computing environments,

choosing an appropriate orthogonalization procedure

becomes critically important. Naturally, the (numerically sta-

ble) Modified Gram–Schmidt (MGS) procedure introduces

expensive global synchronization points. It is hoped that a low

truncation parameter mmax is sufficient, thus keeping the

number of expensive synchronizations to a minimum.

Vice versa, the classical Gram–Schmidt algorithm has

excellent parallel properties. Although it may suffer from

numerical instabilities, this may be remedied by using a

(relatively complicated) selective reorthogonalization

procedure (Björck, 1967; Daniel et al., 1976).

Since it is the intention to devote the bulk of the compu-

tational effort to preconditioning, the number of expensive syn-

chronizations induced by the MGS procedure will not pose a

significant bottleneck. Therefore, the MGS algorithm is chosen

as the orthogonalization procedure; it is listed in Algorithm 4.

The vector updates do not require any communication,

while the matrix–vector multiplication only requires

synchronous nearest-neighbour communication.

3 Parallel implementation details

3.1 Brief description of CRAC

The algorithm is implemented using the CRAC library,

which was developed at the Laboratoire d’Informatique
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de Franche-Comté (LIFC) and is specifically designed for

efficient implementation of parallel asynchronous iterative

algorithms (Couturier and Domas, 2007; Couturier et al.,

2008). It allows for direct communication between the pro-

cesses, both synchronous and asynchronous. The middle-

ware employs a small set of simple communication

primitives, which greatly facilitates the implementation of

(partially) asynchronous iterative algorithms.

The CRAC library is primarily intended for dedicated

parallel hardware consisting of geographically separated

computational resources. For this reason there are no facil-

ities for detecting properties like varying workload or other

types of heterogeneity in computational hardware. How-

ever, the object-oriented approach of the software ensures

that such functionalities can be incorporated easily.

In the context of asynchronous iterative algorithms and

heterogeneous environments, messages do not necessarily

arrive in the same order as they were sent. Furthermore,

iteration processes can desynchronize considerably and it

may happen that updated information is received multiple

times during a local iteration step. To properly handle these

events, CRAC employs so-called message crunching,

which is a technique to ensure that a process always

operates on the most recent local data.

In the current version of CRAC (v1.0, May 2008),

resources that fail completely will cause the complete

application to abort. On the other hand, a resource that is

temporarily unavailable might not necessarily destroy the

iteration process. It is the responsibility of the programmer

to make sure that such an event does not result in stagna-

tion. Furthermore, it is not yet possible to add or remove

computational resources during an iteration process.

Although MPI-2 has support for handling asynchronous

and non-blocking communication, it lacks specific features

such as message crunching (Gropp et al., 1999).

3.2 Coupled/decoupled inner–outer iterations

The fact that there are essentially two separate iteration

processes opens up a whole range of possibilities with

respect to the algorithm, implementation, target hardware

and application.

The DAS-3 multi-cluster is designed for dedicated par-

allel computing and in order to preserve data locality, the

outer iteration and preconditioning iteration are performed

on the same set of nodes. With respect to the CRAC library,

the possibility of having both synchronous and asynchro-

nous communication allows for straightforward implemen-

tation of both iteration processes.

A disadvantage of this approach is that every single task

should be performed on reliable and stable hardware, which

may be an unacceptable restriction in the context of Grid

computing. In the worst case, should any of the tasks fail,

it is not unlikely that important intermediate information

is lost, halting the entire iteration process. If a particular

node merely becomes temporarily unavailable, the iteration

process would be able to continue when this node becomes

available again.

Collignon and van Gijzen (2010) used the Grid middle-

ware GridSolve (Yarkhan et al., 2006), which allows for a

natural decoupling of the inner and outer iteration processes.

Here, the GCR method is used as the outer iteration and the

asynchronous preconditioning is performed on a local clus-

ter of non-dedicated computers used daily by employees.

By physically decoupling the outer iteration and the pre-

conditioning iteration, it becomes feasible to perform the

inner iteration on unreliable (heterogeneous and distant) com-

putational resources, while the outer iteration is performed on

more stable (homogeneous and local) hardware, resulting

in a partially fault-tolerant algorithm. Despite the inherent

limitations of the employed middleware GridSolve and the

extremely volatile nature of the computational resources,

encouraging experimental results are obtained.

This decoupled iteration approach is somewhat unna-

tural in the context of CRAC and the DAS-3 multi-

cluster. The two main reasons are that the current version

of CRAC cannot properly handle resources that fail com-

pletely and that the synchronization primitives in CRAC

are global operations. Synchronization of a subset of pro-

cesses is possible, but relatively complicated. The CRAC

middleware is more suited for dedicated computational

hardware where network connections between nodes may

become temporarily unavailable. Thus, for the purpose of

this paper the coupled iteration approach is used.

3.3 Data distribution

In theory, the matrix distribution used in the outer iteration

may differ from the matrix distribution used in the precon-

ditioning iteration. A disadvantage of this approach is that

exchanging the new search direction and updated residual

between the outer iteration and the preconditioning itera-

tion becomes non-trivial.

In the preconditioning iteration, a (block and/or hetero-

geneous) row distribution may be sufficient, due to the

specific structure of the matrix. In the outer iteration, a

square matrix distribution may be employed (i.e. produced

by some (hyper)graph partitioning algorithm). However,

this is specifically designed to optimize the matrix–vector

multiplication, which is not the bottleneck operation for

this application. For Laplacian matrices a simple row distri-

bution is sufficient. This also greatly simplifies the exchange

of information between the inner and outer iterations when

using a decoupled iteration approach.

When using the coupled iteration approach, it is natural to

use the same data distribution for both the outer iteration and

the preconditioning iteration in order to maintain data locality.

4 Numerical experiments

4.1 Motivation

Our main goal is to simulate general moving boundary

problems on Grid computers. Examples of such problems

444 The International Journal of High Performance Computing Applications 25(4)
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are the swimming of fish, airflow around wind turbine

blades, and bubbly flows. These simulations involve sol-

ving the governing fluid equations on structured grids,

where the most expensive part consists of solving a large

sparse linear system at each time step. When using a

pressure-correction method (van Kan, 1986) to solve the

governing equations for bubbly flows on a highly refined

mesh, such a large sparse linear system arises from a finite

difference discretization of the following Poisson equation

with discontinuous coefficients and Neumann boundary

conditions:

�r � 1
rðxÞ rpðxÞ
� �

¼ f ðxÞ; x 2 O;
q
qx

pðxÞ ¼ gðxÞ; x 2 qO;

(
ð4Þ

for given functions f and g. Here, O and qO denote the

computational domain and boundary respectively, while

p and r represent the pressure and density. In this paper the

test problem from van der Pijl et al. (2005) and Tang and

Vuik (2007b) is considered. It is a two-phase bubbly flow

problem with two separate fluids G0 and G1, representing

water (high-density phase) and vapour (low-density phase)

respectively. The corresponding density function has a

jump defined by

rðxÞ ¼ 1; x 2 G0;
t; x 2 G1;

�
ð5Þ

where typically t ¼ 10�3. Such a discontinuity in the

coefficient results in a highly ill-conditioned linear system,

making it a difficult problem for iterative methods. For the

purpose of this paper a unit domain is used containing a

single bubble with radius 1
4

located at the centre. For more

details on applying the pressure-correction method to bubbly

flows the reader is referred to van der Pijl et al. (2005).

Both 2D and 3D experiments will be performed.

Applying standard finite differences to (4) on a structured

nx � ny or nx � ny � nz mesh results in the linear system

Ax ¼ b where A 2 �n�n is a penta- or hepta-diagonal

symmetric positive semi-definite (SPSD) sparse matrix

with n ¼ nxny or n ¼ nxnynz.

Note that this implies that the solution x is determined

up to a constant. It can be shown that this does not pose any

problems for the iterative solver (Tang and Vuik, 2007a).

4.2 Target hardware and experimental setup

The Distributed ASCI Supercomputer 3 (DAS-3) is a multi-

cluster consisting of five clusters, located at four academic

institutions across the Netherlands (Seinstra and Verstoep,

2007). The five sites are connected through SURFnet,

which is the academic and research network in the Nether-

lands. Four of the five local clusters are equipped with both

Gigabit Ethernet interconnect and high speed Myri-10G

interconnect. The TUD site only employs Gigabit Ethernet

interconnect.

More specific details on the five sites are given in

Table 1, while Table 2 lists average roundtrip measurements

between several DAS-3 sites on a lightly loaded network.

These facts show that a large amount of heterogeneity exists

between the sites with respect to the computational resources

and network capabilities, making the DAS-3 a perfect testbed

for Grid computing. Note that in this case the preconditioning

iteration and the outer iteration are performed using the same

computational hardware.

The matrix is partitioned using a homogeneous one-

dimensional block–row distribution, both in the precondi-

tioning iteration and in the outer iteration. The vectors are

distributed accordingly. The preconditioning step in each

outer iteration is performed for a fixed number of Tmax

seconds and the local systems are solved (inexactly) with

relative tolerance ein ¼ 10�1 using standard CG precondi-

tioned with Incomplete Cholesky.

Experiments reveal that solving the local subdomains

more accurately does not result in improved convergence

rates. A possible explanation is that the asynchronous block

Jacobi iteration is an inherently slow process, which makes

the accurate solution of the inner systems ineffectual.

The complete linear system is solved with relative tolerance

eouter ¼ 10�8.

In the context of Grid computing, it is natural to fix the

problem size per node and investigate the scalability of the

algorithm by adding nodes in order to solve bigger

problems. The nodes are evenly divided between the five

Table 2. Average roundtrip measurements (in ms) between
several DAS-3 sites, with the exception of the TUD site.

VU LU UvA UvA-MN

VU – 1.919 0.708 –
LU 1.920 – 1.246 –
UvA 0.707 1.242 – 0.039
UvA-MN – – 0.029 –

Table 1. Specific details on the five DAS-3 sites.

Site Nodes Type Speed Network

Vrije Universiteit (VU) 85 Dual 2.4 GHz Myri-10G/GbE
Leiden University (LU) 32 Single 2.6 GHz Myri-10G/GbE
University of Amsterdam (UvA) 41 Dual 2.2 GHz Myri-10G/GbE
Delft University of Technology (TUD) 68 Single 2.4 GHz GbE
MultimediaN (UvA-MN) 46 Single 2.4 GHz Myri-10G/GbE
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clusters with increments of five nodes, starting with a

single node on each cluster.

In each 3D experiment, nx, ny; and nz are chosen such

that the number of equations of unknowns on each node

is approximately 500; 000. The largest experiments are

performed using 100 nodes, which implies that the largest

3D problem solved consists of approximately fifty million

degrees of freedom. In the 2D experiments the number of

unknowns on each node is approximately 250; 000.

Since the DAS-3 is solely intended for research pur-

poses, the maximum allowed time for a single job is

sixty minutes. All the timing results shown are wall

clock times. For comparison studies, fully synchronous

preconditioning is also performed, which involves per-

forming a single block Jacobi iteration step per precon-

ditioning phase with zero initial guess. This corresponds

to the standard block Jacobi preconditioner. The effective-

ness of the asynchronous preconditioner depends on

multiple (and random) factors, so these experiments are

performed three times and the average execution times are

given.

To justify the use of a flexible method, results for a

representative experiment using different values of mmax are

given in Table 3. The number of vectors that needs to be

stored for FCG(mmax), 2mmax þ 4, is also given. Note that

FCGð0Þ is a Richardson iteration preconditioned with an

asynchronous iterative method. In other words, this

corresponds to the (for all intents and purposes) completely

asynchronous Jacobi iteration, and Table 3 shows that such

a fully asynchronous method is impractical for this applica-

tion. For mmax ¼ 1, the method corresponds to standard

preconditioned CG, which also does not perform well. For

mmax > 1, the performance of the method starts to improve

significantly. The results show that the use of a flexible

method is fully justified and that choosing mmax ¼ 5 results

in a good trade-off between efficiency and memory

requirements.

4.3 Experimental results

In order to properly investigate the effectiveness of the

proposed algorithm on Grid hardware, the experiments

consist of two distinct parts:

1. Experiments using a 3D test problem and where the

network load is varied, to show that asynchronous

preconditioning adapts to a heterogeneous network

environment.

2. Experiments using a 2D test problem and varying

network load, to show that asynchronous

Table 3. Influence of parameter m (Tmax ¼ 5 s, five nodes, 2D problem).

FCGðmmaxÞ Wall clock time (s) Iterations Memory requirements (vectors)

0 > 1000 > 100 4
1 > 1000 > 100 6
3 839 87 10
5 636 68 14
10 572 62 24
15 515 61 34
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Figure 1. Total execution time (3D problem). (a) Lightly loaded network (b) Heavily loaded network.
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preconditioning can outperform synchronous precon-

ditioning independent of the amount of network

activity.

3D experiments

Figure 1(a) shows the total execution time until conver-

gence for different values of Tmax 2 f5; 10; 15; 20g on an

lightly loaded network. For comparison, results using both

asynchronous and synchronous preconditioning are shown.

In every experiment, synchronous preconditioning outper-

forms asynchronous preconditioning. A key observation

is that the amount of asynchronous preconditioning does

not seem to have a significant impact on the total comput-

ing time.

Figure 1(b) shows the total execution time until conver-

gence using up to 100 nodes for different values

of Tmax 2 f5; 10; 15; 20g on a heavily loaded network.

To simulate a loaded network, a special parallel application

is used that continuously sends massive amounts of data

from all processes to all processes. Again for comparison,

results using synchronous and asynchronous

preconditioning are given. In this case, the total execution

time for synchronous preconditioning increases signifi-

cantly when using more than approximately 60 nodes.

However, asynchronous preconditioning remains highly

effective. These results can be explained by the following

two observations:

(i) Time per outer iteration Keeping the problem

size per node fixed implies that – in the ideal case where

communication overhead is negligible – the execution time

per outer iteration is constant. Figure 2 shows the relative

increase of the average times per outer iteration for both

the single and the multi-cluster case. To be more precise,

it shows the increase in time per iteration relative to the

time per iteration on 10 nodes.

The results given in Figure 2(a) for a lightly loaded net-

work show almost constant average times per outer iteration

for both synchronous and asynchronous preconditioning.

This indicates that in this case communication overhead is

relatively small, which is not surprising.

As for the loaded network results, Figure 2(b) shows that

the relative increase in time per outer iteration for synchronous

preconditioning is far greater than with asynchronous

preconditioning.

(ii) Number of outer iterations Table 4 lists the total

number of outer iterations for synchronous and asynchro-

nous preconditioning with Tmax ¼ 15s. For asynchronous

preconditioning, results for a lightly loaded and a heavily

loaded network are given. The table shows that when using

synchronous preconditioning, the number of outer itera-

tions is relatively large. Combined with the relatively large

increase in time per outer iteration when using a loaded net-

work, this explains the major increase in total execution

time as seen in Figure 1(b).

Vice versa, the relatively small number of outer iterations

using asynchronous preconditioning – for both a lightly

loaded and a heavily loaded network – combined with the

relatively small increase in time per outer iteration result
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Figure 2. Relative increase of time per outer iteration step (3D problem). (a) Lightly loaded network (b) Heavily loaded network.

Table 4. Outer iterations for synchronous and asynchronous
preconditioning (3D problem).

Asynchronous

Number of nodes Synchronous Lightly loaded Heavily loaded

10 219 30 31
20 338 39 36
30 371 44 41
40 376 56 52
50 511 61 58
60 561 64 62
70 653 84 55
80 743 70 66
90 665 71 71
100 715 80 80
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in significantly improved parallel performance in a hetero-

geneous network environment. Again, the total execution

time is not significantly affected by the amount of asynchro-

nous preconditioning.

2D experiments

In Figure 3 results are given using a 2D test problem for

Tmax 2 f5; 10g on both a lightly loaded network and a

heavily loaded network. Again, synchronous precondition-

ing is also included. Note that in this case there is less com-

munication between the subdomains.

The numerical results show that even when the network

is lightly loaded (i.e. Figure 3(a)), synchronous precondi-

tioning is outperformed by asynchronous preconditioning

when using more than 40 nodes. For 100 nodes, the total

execution time for synchronous preconditioning is almost

twice as long as for asynchronous preconditioning on a

lightly loaded network. Not surprisingly, on a heavily loaded

network the synchronous preconditioning performs even

worse (i.e. Figure 3(b)). Similar to the 3D experiments, the

effectiveness of the asynchronous preconditioning is practi-

cally unaffected by the increased network activity.

Figure 4 gives the relative increase in time per outer

iteration step. This shows that despite the fact that synchro-

nous preconditioning does not show a relatively large

increase in time per outer iteration, it is still outperformed

by asynchronous preconditioning. This can be explained by

examining the number of outer iterations, which are shown

in Table 5 for a lightly and heavily loaded network.

For synchronous preconditioning, using twice the num-

ber of nodes almost doubles the number of outer iterations.

In contrast, using asynchronous preconditioning increases

the number of outer iterations merely by a factor of

approximately 1:4 for both a lightly loaded and heavily
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Figure 3. Total execution time (2D problem). (a) Lightly loaded network (b) Heavily loaded network.
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Figure 4. Relative increase of time per outer iteration step (2D problem). (a) Lightly loaded network (b) Heavily loaded network.
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loaded network. As a result, asynchronous preconditioning

is also highly effective for this test case.

4.4 Discussion

Increasing the problem size by adding nodes has the following

adverse consequences:

1. the coefficient matrix becomes increasingly ill-

conditioned; and

2. the number of subdomains in asynchronous block

Jacobi increases.

Both these effects have a negative impact on the number

of outer iterations. The first consequence is inherent to the

problem and the second effect applies to all block Jacobi-type

preconditioners. A possible third consequence is that the aver-

age number of Jacobi iteration steps per node decreases due to

increased communication. However, this was not observed in

the experiments. Also, factors that may have a large impact on

the effectiveness of the preconditioner are the heterogeneity

of the hardware and the variations in network activity.

Despite these unfavourable conditions the experimental

results show a fairly limited increase in total computing

time for increasing number of nodes, which suggests that

the asynchronous iterative method is an effective precondi-

tioner in the context of Grid computing.

5 Concluding remarks

The efficient iterative solution of large sparse linear sys-

tems on Grid computers is a difficult problem. The induced

heterogeneity and volatile nature of the aggregated compu-

tational resources present numerous algorithmic challenges.

Synchronization is the critical bottleneck of parallel sub-

space methods in the context of loosely coupled networks

of computers. By using an asynchronous iterative method

as a preconditioner in a synchronous subspace method, the

number of expensive synchronizations can be reduced

significantly.

Extensive numerical experiments using approximately

100 nodes divided between five geographically separated

clusters show that:

1. Using the partially asynchronous algorithm is more

efficient than using (i.) a fully synchronous method,

or using (ii.) a fully asynchronous method;

2. The asynchronous preconditioner adapts to a computa-

tional environment in which the network is heavily

loaded.

Therefore, the proposed partially asynchronous algorithm

is highly effective in iteratively solving large-scale linear

systems within the context of heterogeneous networks of

computers.

The ideas presented in this paper were applied in the

context of Grid computing. However, the asynchronous

preconditioning approach may also be of interest for

parallel computing with multi-core processors, where

connections between cores on the same processor are much

faster than connections between the processors. We have

not yet evaluated our algorithm on such architectures.
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Frommer A and Szyld DB (2000) On asynchronous iterations. Jour-

nal of Computational and Applied Mathematics 123: 201–216.

Gropp W, Lusk E and Thakur R (1999) Using MPI-2: Advanced

Features of the Message-Passing Interface. Cambridge, MA:

MIT Press.

Hestenes MR and Stiefel E (1952) Methods of conjugate gradients

for solving linear systems. Journal of Research of National

Bureau Standards 49: 409–436.

Miellou JC, Baz DE and Spiteri P (1998) A new class of asynchro-

nous iterative algorithms with order intervals. Mathematics of

Computation 67: 237–255.

Notay Y (2000) Flexible conjugate gradients. SIAM Journal on

Scientific Computing 22: 1444–1460.

Saad Y (2003) Iterative Methods for Sparse Linear Systems.

Philadelphia, PA: Society for Industrial and Applied Mathematics.

Seinstra FJ and Verstoep K (2007) DAS-3: The distributed ASCI

supercomputer 3. http://www.cs.vu.nl/das3/

Tang JM and Vuik C (2007a) Efficient deflation methods applied

to 3-D bubbly flow problems. Electronic Transactions on

Numerical Analysis 26: 330–349.

Tang JM and Vuik C (2007b) On deflation and singular

symmetric positive semi-definite matrices. Journal of Compu-

tational and Applied Mathematics 206: 603–614.

van der Pijl S, Segal A, Vuik C and Wesseling P (2005) A mass-

conserving Level-set method for modelling of multi-phase

flows. International Journal for Numerical Methods in Fluids

47: 339–361.

van der Vorst HA and Vuik C (1994) GMRESR: a family of

nested GMRES methods. Numerical Linear Algebra with

Applications 1: 369–386.

van Kan J (1986) A second-order accurate pressure correction

scheme for viscous incompressible flow. SIAM Journal on

Scientific and Statistical Computing 7: 870–891.

YarKhan A, Seymour K, Sagi K, Shi Z and Dongarra J (2006)

Recent developments in GridSolve. International Journal of

High Performance Computing Applications 20: 131–141.

Author’s Biographies

Tijmen P Collignon obtained his MSc degree in scientific

computing at Utrecht University in 2006. Currently he is

a PhD student in the numerical analysis research group of

the Delft Institute of Applied Mathematics at Delft Univer-

sity of Technology in the Netherlands. His main research

areas are numerical linear algebra and grid computing.

Martin B van Gijzen received his MSc degree in applied

mathematics in 1989, and his PhD degree in 1994, both from

the Delft University of Technology in the Netherlands. From

1994 until 1996 he was a research associate at Utrecht

University, and from 1997 until 2001 he was a project leader

of several European research projects on underwater com-

munication at the TNO Physics and Electronics Laboratory.

In 2001 he moved to France to become a senior scientist in

the parallel computing group at CERFACS in Toulouse.

In 2004 he returned to the Delft University of Technology,

where he is an associate professor. His research areas are

numerical linear algebra and high performance computing.

450 The International Journal of High Performance Computing Applications 25(4)

 at Bibliotheek TU Delft on December 14, 2011hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


