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Program September 11

• Overview of the course

• Useful references

• A motivating example

• Review of basic linear algebra concepts

• Inner products, vector norms and matrix norms

• Condition number, finite precision arithmetic
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Goals of the course

To provide theoretical insight and to develop practical skills for

solving numerically large scale linear algebra problems.

Particular emphasis lies on large-scale linear systems and on

eigenvalue problems.

At the end of the course you will

• understand the principles behind modern solution

techniques for linear algebra problems;

• be able to implement them and to understand their

behaviour;

• and you will be able to select (and adapt) a suitable method

for you problem.
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Topics per day

• September 11, 18: review of linear algebra

• September 25: direct solution methods

• October 2: basic iterative methods for linear systems and

eigenvalue problems

• October 9, 16, 23, 30, November 6: Krylov methods for

linear systems and eigenvalue problems

• November 20, 27: Multigrid, preconditioning, parallel

implementation

• December 4, 11, 18: Eigenvalue problems, special topics

• Note: no lecture on November 13
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Examination

• On September 25: mandatory linear algebra review test

• Every three weeks: homework assignment, to be handed in.

The homework assignment must be made individually.

• December 18: final project assignment You are allowed to

do the homework assignment in pairs. The report has to be

handed in on January 31, 2008 at the latest. After handing it

in you have to make an appointment to defend your report.
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Recommended literature

• Gene H. Golub and Charles F. Van Loan. Matrix

Computations. 3rd ed. The Johns Hopkins University Press,

Baltimore, 1996.

• Henk van der Vorst, Iterative methods for large linear

systems. Cambridge press, 2003

• Richard Barrett et al. Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods. 2nd edition,

SIAM, 1994.

• Zhaojun Bai et al. Templates for the Solution of Algebraic

Eigenvalue Problems 1st edition, SIAM, 2000
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Useful webpages

• http://www.netlib.org/: a wealth of information to numerical

software and other information, e.g.

• LAPACK, BLAS: dense linear algebra

• NETSOLVE: grid computing

• TEMPLATES: the book plus software

• MATRIX MARKET: matrices

• http://www.math.uu.nl/people/vorst/: manuscript of the book,

software

• http://www-math.mit.edu/ gs/: Gilbert Strang’s homepage:

video course, demos ...
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Motivation of the course

Many applications give rise to large linear algebra problems.

Typically these problems involve matrices that are

• Large, 108 unknowns are not exceptional anymore;

• Sparse, only a fraction of the entries of the matrix is

nonzero;

• Structured, the matrix often has a symmetric pattern and is

banded.

Moreover, the matrix can have special numerical properties, e.g it

may be symmetric, Toeplitz, or the eigenvalues may all be in the

right-half plane.
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An application: ocean circulation (1)

Physical model: balance between

• Wind force

• Coriolis force

• Bottom friction.
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An application: ocean circulation (2)

Mathematical model

r∇2ψ + β
∂ψ

∂x
= ∇× F in Ω,

• ψ: streamfunction

• r: bottom friction parameter

• β: Coriolis parameter

• F: Wind stress
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An application: ocean circulation (3)

Numerical model: discretisation with FEM
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An application: ocean circulation (4)
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The nonzero pattern of the resulting matrix A
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Solving the resulting system

In order to be able solve this problem you have to consider many

questions:

• How can you exploit the sparsity of the matrix?

• Can you make use of the arrow structure?

• Is the matrix symmetric? Can you exploit this?

• Is the matrix close to singular? Is your solution algorithm

sensitive to (numerical) errors?

• Can your solution method exploit the available (parallel)

hardware?

• ...
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Solving the resulting system

In order to be able solve this problem you have to consider many

questions:

• How can you exploit the sparsity of the matrix?

• Can you make use of the arrow structure?

• Is the matrix symmetric? Can you exploit this?

• Is the matrix close to singular? Is your solution algorithm

sensitive to (numerical) errors?

• Can your solution method exploit the available (parallel)

hardware?

• ...
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Assignment 1a

The matrix










1 −1 0

−1 2 −1

0 −1 1











is the discretisation of d2y
dx2 , with bc dy

dx(0) = dy
dx(1) = 0.

List as many characteristics of this matrix as possible.
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Assignment 1a

The matrix










1 −1 0

−1 2 −1

0 −1 1











is the discretisation of d2y
dx2 , with bc dy

dx(0) = dy
dx(1) = 0.

List as many characteristics of this matrix as possible.

• Symmetry? Positive definite?

• Rank? Range? Nullspace?

• Eigenvalues? Eigenvectors?
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Assignment 1b

The matrix














1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1















is the (upwind) discretisation of dy
dx , with bc y(0) = 0.

List as many characteristics of this matrix as possible.
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Inner products

The inner product is a function (.,.): C
n × C

n → C that satisfies

the following properties:

i) (x, y) = (y, x) x, y, z ∈ C
n ,

ii) (x+ y, z) = (x, z) + (y, z), x, y, z ∈ C
n ,

and (αx, y) = α(x, y), α ∈ C, x, y ∈ C
n,

iii) (x, x) ≥ 0, , (x, x) = 0 ⇐⇒ x = 0, x ∈ C
n .
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Vector norms (1)

A vector norm on C
n is a function ‖.‖ : C

n → R that satisfies the

following properties:

i) ‖x‖ ≥ 0 x ∈ C
n , and

‖x‖ = 0 ⇐⇒ x = 0,

ii) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ x, y ∈ C
n ,

iii) ‖αx‖ = |α| ‖x‖ α ∈ C , x ∈ C
n.
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Vector norms (2)

An important class of vector norms are the so-called p-norms

(Hölder norms) defined by

‖x‖p = (|x1|
p + . . .+ |xn|

p)1/p p ≥ 1.

The 1,2, and ∞ norms are the most commonly used

‖x‖1 = |x1| + . . .+ |xn|

‖x‖2 = (|x1|
2 + . . .+ |xn|

2)1/2 = (xHx)1/2

‖x‖∞ = max
1≤i≤n

|xi|.
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Assignment 2

Let the matrix A be Hermitian and Positive Definite.

• Is (x, y)A = xHAy an inner product?

• Is the norm that is induced by this inner product a proper

norm? Here xH denotes the conjugate transpose of x.
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Orthogonality

Two vectors x and y are orthogonal with respect to an inner

product if

(x, y) = 0.

The notation x ⊥ y means that x and y are orthogonal.

If the inner product is not specified the standard inner product

(p = 2) is assumed.

Two space U and V are orthognal if for every u ∈ U and v ∈ V

we have

(u, v) = 0
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Orthogonal matrices

A matrix is called orthogonal if

• All columns of the matrix are orthogonal (with respect to the

standard inner product),

• and the columns are normalised.

Hence for an orthogonal matrix Q we have QHQ = I, with I the

identity matrix.
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Matrix norms (1)

The analysis of matrix algorithms frequently requires use of

matrix norms.

For example, the quality of a linear system solver may be poor if

the matrix of coefficients is "nearly singular".

To quantify the notion of near-singularity we need a measure of

distance on the space of matrices. Matrix norms provide that

measure.
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Matrix norms (2)

A matrix norm on C
m×n is a function ‖.‖ : C

m×n → R that

satisfies the following properties:

i) ‖A‖ ≥ 0 A ∈ C
m×n , and

‖A‖ = 0 ⇐⇒ A = 0,

ii) ‖A+B‖ ≤ ‖A‖ + ‖B‖ A,B ∈ C
m×n ,

iii) ‖αA‖ = |α| ‖A‖ α ∈ C , x ∈ C
m×n.

The most commonly used matrix norms are the p-norms induced

by the vector p-norms.

‖A‖p = sup
x 6=0

‖Ax‖p

‖x‖p
= max

‖x‖p=1

‖Ax‖p p ≥ 1.
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Matrix norms (3)

Below we list some properties of vector and matrix p-norms

- ‖AB‖p ≤ ‖A‖p‖B‖p A ∈ C
m×n , B ∈ C

n×q

- ‖A‖1 = max
1≤j≤n

m
∑

i=1

|aij | A ∈ C
m×n

- ‖A‖∞ = max
1≤i≤m

n
∑

j=1

|aij | A ∈ C
m×n

- ‖A‖2 is equal to the square root of the largest eigenvalue of

AHA.

- All norms are equivalent, meaning that the are m,M > 0

such that m‖A‖p ≤ ‖A‖q ≤M‖A‖p.
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Matrix norms (4)

Matrix norms that are not induced by a vector norm also exist.

One of the best known is the Frobenius norm. The Frobenius

norm of an m× n matrix A is given by

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

i=1

‖aij |2

This is equal to

‖A‖F =
√

Tr(AAH)

In which Tr(A) is the trace of A, which is the sum of the main

diagonal elements.
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Condition number (1)

The condition number plays in important role in numerical linear

algebra since it gives a measure how perturbations in A and b

affect the solution x.

The condition number Kp(A), for a nonsingular matrix A, is

defined by

Kp(A) = ‖A‖p‖A
−1‖p.

A low condition number means that small perturbations in the

matrix or right-hand side give small changes in the solution.

A large condition number means that a small perturbation in the

problem may give a large change in the solution.



September 11, 2007 29

National Master Course

Condition number (2)
Suppose Ax = b, A ∈ R

n×n and A is nonsingular, 0 6= b ∈ R
n,

and A(x+ ∆x) = b+ ∆b, then

‖∆x‖p

‖x‖p
≤ Kp(A)

‖∆b‖p

‖b‖p
.
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Condition number (2)
Suppose Ax = b, A ∈ R

n×n and A is nonsingular, 0 6= b ∈ R
n,

and A(x+ ∆x) = b+ ∆b, then

‖∆x‖p

‖x‖p
≤ Kp(A)

‖∆b‖p

‖b‖p
.

Proof: From the properties of the norms it follows that

‖b‖p = ‖Ax‖p ≤ ‖A‖p‖x‖p, so
1

‖x‖p
≤ ‖A‖p

1

‖b‖p
.

We know that A∆x = ∆b, so ∆x = A−1∆b. Furthermore

‖∆x‖p = ‖A−1∆b‖p ≤ ‖A−1‖p‖∆b‖p.

Combination of these inequalities proves the theorem.
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Condition number (3)
Suppose you want the solution x of

Ax = b, A ∈ C
n×nnonsingular, 0 6= b ∈ C

n

You actually solve the perturbed system

(A+ ∆A)(x+ ∆x) = b+ ∆b, ∆A ∈ C
n×n, ∆b ∈ C

n

with ‖∆A‖p ≤ δ‖A‖p and ‖∆b‖p ≤ δ‖b‖p.

When has this system a (unique) solution?
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Condition number (3)
Suppose you want the solution x of

Ax = b, A ∈ C
n×nnonsingular, 0 6= b ∈ C

n

You actually solve the perturbed system

(A+ ∆A)(x+ ∆x) = b+ ∆b, ∆A ∈ C
n×n, ∆b ∈ C

n

with ‖∆A‖p ≤ δ‖A‖p and ‖∆b‖p ≤ δ‖b‖p.

When has this system a (unique) solution?

If Kp(A)δ = r < 1 then A+ ∆A is nonsingular and

‖∆x‖p

‖x‖p
≤

2δ

1 − r
Kp(A).

Proof: see Golub and Van Loan, p.83.
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Finite precision arithmetic

A computer stores real numbers as

f = ±0.d1d2...dt · β
e d1 > 0 0 ≤ di < β, L ≤ e ≤ U

f is called a floating point number, and F is the set of floating

point numbers.

- β: base

- t: precision

- [L,U ]: exponent range

1 2 3 4−1−2−3−4 0

Note: floating point numbers are not equally spaced
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Computing with floating point numbers

Each nonzero f ∈ F satisfies

m ≤ |f | ≤M where m = βL−1 and M = βU (1 − β−t).

To have a model of computer arithmetic the set G is defined by

G = {x ∈ R|m ≤ |x| ≤M} ∪ {0} ,

and the operator fl(oat): G→ F , where fl maps a real number

from G to a floating point number. The fl operator satisfies

fl(x) = x(1 + ǫ), |ǫ| ≤ u, x ∈ G,

where u (unit roundoff) is defined by u = 1

2
β1−t
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Overflow and underflow

Let a and b be elements of F . If |a ∗ b| 6∈ G then an arithmetic

fault occurs if:

• |a ∗ b| > M : overflow, or

• 0 < |a ∗ b| < m: underflow.

If a ∗ b ∈ G then we assume that the computed version of a ∗ b is

given by fl(a ∗ b) which is equal to (a ∗ b)(1 + ǫ) with |ǫ| < u.
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Roundoff in basic operations

The following result for α,A ∈ F is easy to show

fl(αA) = αA+ E |E| ≤ u|αA|

Here B = |A| means bij = |aij | , i = 1, . . . ,m , j = 1, . . . , n.

Similarly we have

fl(A+B) = (A+B) + E |E| ≤ u|A+B|

and for the scaled vector update (called GAXPY) we get

fl(αx+ y) = αx+ y + e |e| ≤ u(2|αx| + |y|) +O(u2)

Similar results exist for all basic matrix and vector operations.
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Forward and backward error analysis

The previous results are obtained using a forward error analysis,

which determines the error in the solution as a result of

perturbations in the data. For the analysis of algorithms one

commonly uses a backward error analysis. In this approach the

solution is considered the exact solution of a perturbed problem,

and the question is how big the perturbations are. For example,

an algorithm for solving the linear system Ax = b yields a

solution x̃.

Forward analysis: what is an upperbound for ‖e‖ = ‖x− x̃‖?

Backward analysis: x̃ is solution of (A+ ∆A)x̃ = (b+ ∆b).

What are ∆A and ∆b?
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Concluding remarks

Today we saw some of the concepts that will allows us to answer

questions like:

• How sensitive is my problem to perturbation?

• What is the effect of finite precision arithmetic? How

sensitive is my algorithm for finite precision calculations?

• How accurate is my solution?

In the following lessons these and similar questions will play a

crucial role.

Further reading: Golub and van Loan, Page 48 - 68
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