
1

National Master Course
Delft University of Technology

Numerical Linear Algebra
Preconditioning, numerical software
and parallelisation

Gerard Sleijpen and Martin van Gijzen

November 27, 2007

November 27, 2007 2

National Master Course

Program November 27

• Preconditioning

• Diagonal scaling, Gauss-Seidel, SOR and SSOR

• Incomplete Choleski and Incomplete LU

• Numerical software

• Parallelisation

• Shared memory versus distributed memory

• Domain decomposition

November 27, 2007 3

National Master Course

Introduction

We already saw that the performance of iterative methods can

be improved by applying a preconditioner. Preconditioners are a

key to successful iterative methods. In general they are very

problem dependent.

Today we will discuss some standard preconditioners and some

ideas behind advanced preconditioning techniques.

We will also discuss some efforts to standardise numerical

software.

Finally we will discuss how to perform scientific computations on

a parallel computer.

November 27, 2007 4

National Master Course

Preconditioning (1)

A preconditioned iterative solver solves the system

M−1Ax = M−1b .

The matrix M is called the preconditioner.

The preconditioner should satisfy certain requirements:

• Convergence should be much faster for the preconditioned

system than for the original system. Normally this means

that M is constructed as an easily invertible approximation

to A. Note that if M = A any iterative method converges in

one iteration.

• Operations with M−1 should be easy to perform ("cheap").

November 27, 2007 5

National Master Course

Preconditioning (2)

Of course the matrix M−1A is not explicitly formed. The

multiplication u = M−1Av can simply be carried out by the

operations

t = Av; u = M−1t

November 27, 2007 6

National Master Course

Preconditioning (3)

Preconditioners can be applied in different ways:

From the left

M−1Ax = M−1b ,

centrally

M = LU ; L−1AU−1y = L−1b; x = U−1y ,

or from the right

AM−1y = b; x = M−1y .

November 27, 2007 7

National Master Course

Preconditioning (4)

Left, right and central preconditioning gives the same spectrum.

Yet there are other differences:

• Left preconditioning is most natural: no extra step is

required to compute x;

• Central preconditioning preserves symmetry;

• Right preconditioning does not affect the residual norm.

November 27, 2007 8

National Master Course

Why preconditioners?

0
2

4
6

8
10

12
14

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

Information after 1 iteration

November 27, 2007 8

National Master Course

Why preconditioners?

0
2

4
6

8
10

12
14

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

Information after 7 iterations

November 27, 2007 8

National Master Course

Why preconditioners?

0
2

4
6

8
10

12
14

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

Information after 21 iterations

November 27, 2007 9

National Master Course

Why preconditioning?

From the previous pictures it is clear that we need

O(1/h) = O(
√

n) iterations to move information from one end to

the other end of the grid.

So at best it takes O(n3/2) operations to compute the solution

with an iterative method.

In order to improve this we need a preconditioner that enables

fast propagation of information through the mesh.

November 27, 2007 10

National Master Course

Clustering the spectrum

In lesson 7 we saw that CG performs better when the spectrum

of A is clustered.

Therefore, a good preconditioner clusters the spectrum.

0 1 2 3 4
−1

−0.5

0

0.5

1

0 1 2 3 4
−1

−0.5

0

0.5

1

November 27, 2007 11

National Master Course

Diagonal scaling

Diagonal scaling or Jacobi preconditioning uses

M = diag(A)

as preconditioner. Clearly, this preconditioner does not enable

fast propagation through a grid. On the other hand, operations

with diag(A) are very easy to perform and diagonal scaling can

be useful as a first step, in combination with other techniques.

November 27, 2007 12

National Master Course

Gauss-Seidel, SOR and SSOR
The Gauss-Seidel preconditioner is defined by

M = L + D

in which L is the strictly lower-triangular part of A and

D = diag(A). By introducing a relaxation parameter, we get the

SOR-preconditioner.

For symmetric problems it is wise to take a symmetric

preconditioner. A symmetric variant of Gauss-Seidel is defined

by

M = (L + D)D−1(L + D)T

By introducing a relaxation parameter we get the so called

SSOR-preconditioner.

November 27, 2007 13

National Master Course

ILU-preconditioners (1)

ILU-preconditioners are the most popular ’black box’

preconditioners. They are constructed by making a standard

LU-decomposition

A = LU .

However, during the elimination process some nonzero entries in

the factors are discarded. This can be done on basis of two

criteria:

• Sparsity pattern: e.g. an entry in a factor is only kept if it

corresponds to a nonzero entry in A;

• Size: small entries in the decomposition are dropped.

November 27, 2007 14

National Master Course

ILU-preconditioners (2)

The number of nonzero entries that is maintained in the

LU-factors is normally of the order of the number of nonzeros in

A.

This means that operations with the ILU-preconditioner are

approximately as costly as multiplications with A.

For A Symmetric Positive Definite a special variant of ILU exists,

called Incomplete Choleski. This preconditioner is based on the

Choleski decomposition A = CCT .

November 27, 2007 15

National Master Course

Numerical software
To promote the use of good quality software several efforts have

been made in the past. We mention:

• Eispack: Fortran 66 package for eigenvalue computations.

• Linpack: F77 package for dense or banded linear systems.

• BLAS: standardisation of basic linear algebra operations.

Available in several languages.

• LAPACK: F77 package for dense eigenvalue problems and

linear systems. Builds on BLAS and has replaced Eispack

and Linpack. F90 and C++ versions also exist.

The above software can be downloaded from

http://www.netlib.org.

November 27, 2007 16

National Master Course

BLAS

The BLAS libraries provide a standard for basic linear algebra

subroutines. The BLAS library is available in optimised form on

many (super)computers. Three versions are available:

• BLAS 1: vector-vector operations;

• BLAS 2: matrix-vector operations;

• BLAS 3: matrix-matrix operations;

November 27, 2007 17

National Master Course

BLAS 1

Examples of BLAS 1 routines are:

• Vector update: daxpy

• Inner product: ddot

• Vector scaling:dscal

November 27, 2007 18

National Master Course

Cache memory

Computers normally have small, fast memory close to the

processor, the so called cache memory.

For optimal performance data in the cache should be reused as

much as possible.

Level 1 BLAS routines are for this reason not very efficient: for

every number that is loaded into the cache only one calculation

is made.

November 27, 2007 19

National Master Course

BLAS 2 and 3

An example of a BLAS 2 routine is the matrix-vector

multiplication routine dgemv.

An example of a BLAS 3 routine is the matrix-matrix

multiplication routine dgemm.

BLAS 2 and in particular BLAS 3 routines make much better use

of the cache than BLAS 1 routines.

November 27, 2007 20

National Master Course

Paralllel computing

Modern supercomputers may contain many thousands of

processors. Another popular type of parallel computer is the

cluster of workstations connected via a communication network.

Paralllel computing poses special restrictions on the numerical

algorithms. In particular, algorithms that rely on recursions are

difficult to parallelise.

November 27, 2007 21

National Master Course

Shared versus distributed memory

An important distinction in computer architecture is the memory

organisation.

Shared memory machines have a single address space: all

processors read from and write to the same memory. This type

of machines can be parallelised using fine grain, loop level

parallelisation techniques.

On distributed memory computers every processors has its own

local memory. Data is exchanged via a message passing

mechanism. Parallelisation should be done using a coarse grain

approach. This is often achieved by making a domain

decomposition.

November 27, 2007 22

National Master Course

Domain decomposition

A standard way to parallelise a grid-based computation is to split

the domain into p subdomains, and to map each subdomain on a

processor.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-4 -3 -2 -1 0 1 2 3 4

Simple Mesh

November 27, 2007 23

National Master Course

Domain decomposition (2)

The domain decomposition decomposes the system Ax = b into

blocks. For two subdomains one obtains

A =





A11 A12

A21 A22









x1

x2



 =





b1

b2



 ,

x1 and x2 represent the subdomain unknowns, A11 and A22 the

subdomain discretization matrices and A12 and A21 the coupling

matrices between subdomains.

November 27, 2007 24

National Master Course

Parallel matrix-vector multiplication

For the multiplication u = Av the operations u1 = A11v1 + A12v2

and u2 = A22v2 + A21v1 can be performed in parallel.

However, processor 1 has to send (part of) v1 to processor 2

before the computation, and processor 2 (part of) v2 to

processor 1.

This kind of communication is local, only informations from

neighbouring subdomains is needed.

November 27, 2007 25

National Master Course

Parallel vector operations

Inner products uHv are calculated by computing the local inner

products uH
1

v1 and uH
2

v2. The final results is obtained by adding

all local inner products. This requires global communication.

Vector updates u = u + av can be performed locally, without any

communication.

November 27, 2007 26

National Master Course

Domain decomposition preconditioners

It is a natural idea to solve a linear system Ax = b by solving the

subdomain problems independently and to iterate to correct for

the error.

This idea has given rise to the family of domain decomposition

preconditioners.

The theory for domain decomposition preconditioners is vast,

here we only discuss some important ideas.

November 27, 2007 27

National Master Course

Block-Jacobi preconditioner

A simple domain decomposition preconditioner is defined by

M =





A11 0

0 A22



 (Block-Jacobi preconditioner).

or, in general by

M =











A11

. . .

AMM











The subdomain systems can be solved in parallel.

November 27, 2007 28

National Master Course

Solution of the subdomain problems

There are several ways to solve the subdomain problems:

• Exact solves. This is in general (too) expensive.

• Inexact solves using an incomplete decomposition

(block-ILU).

• Inexact solves using an iterative method to solve the

subproblems. Since in this case the preconditioner is

variable, the outer iteration should be flexible, for example

GCR.

November 27, 2007 29

National Master Course

On the scalability of block-Jacobi

Without special techniques, the number of iterations increases

with the number of subdomains. The algorithm is not scalable.

To overcome this problems techniques can be applied to enable

the exchange of information between subdomains.

November 27, 2007 30

National Master Course

Improving the scalability

Two popular techniques improve the flow of information are:

• Use an overlap between subdomains. Of course one has to

ensure that the value of unknowns in gridpoints that belong

to multiple domains is unique.

• Use a coarse grid correction. The solution of the coarse grid

problem is added to the subdomain solutions.

This idea is closely related to multigrid, since the coarse-grid

solution is the non-local, smooth part of the solution that

cannot be represented on a single subdomain.

November 27, 2007 31

National Master Course

Concluding remarks

Preconditioners are the key to a successful iterative method.

Today we saw some of the most important preconditioners. The

’best’ preconditioner, however, depends completely on the

problem.

	Program November 27
	Introduction
	Preconditioning (1)
	Preconditioning (2)
	Preconditioning (3)
	Preconditioning (4)
	Why preconditioners?
	Why preconditioning?
	Clustering the spectrum
	Diagonal scaling
	Gauss-Seidel, SOR and SSOR
	ILU-preconditioners (1)
	ILU-preconditioners (2)
	Numerical software
	BLAS
	BLAS 1
	Cache memory
	BLAS 2 and 3
	Paralllel computing
	Shared versus distributed memory
	Domain decomposition
	Domain decomposition (2)
	Parallel matrix-vector multiplication
	Parallel vector operations
	Domain decomposition preconditioners
	Block-Jacobi preconditioner
	Solution of the subdomain problems
	On the scalability of block-Jacobi
	Improving the scalability
	Concluding remarks

