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Program October 1

• Basic methods for eigenproblems.

• Standard Power method

• Shift-and-invert Power method

• QR algorithm

• Basic iterative methods for linear systems

• Richardson’s method

• Jacobi, Gauss-Seidel and SOR

• Iterative refinement

• Steepest decent and the Minimal residual method
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Basic methods for eigenproblems

The eigenvalue problem

Ax = λx

can not be solved in a direct way for problems of order > 4, since

the eigenvalues are the roots of the characteristic equation

det(A − λI) = 0 .

Today we will discuss two iterative methods for solving the eigen-

problem.
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The Power method

The Power method is the classical method to compute largest

eigenvalue and eigenvector of a matrix.

Multiplying with a matrix amplifies strongest the eigendirection

corresponding to the (in modulus) largest eigenvalues most.

Successively multiplying and scaling (to avoid overflow or

underflow) yields a vector in which the direction of the largest

eigenvector becomes more and more dominant.
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Algorithm

The Power method

q0 ∈ C
n is given

for k = 1, 2, ...

zk = Aqk−1

qk = zk/‖zk‖2

λ(k) = qH
k−1zk

endfor

It can easily be seen that if qk−1 is an eigenvector corresponding

to λj then

λ(k) = qH
k−1Aqk−1 = λjq

H
k−1qk−1 = λj‖qk−1‖

2
2 = λj .
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Convergence (1)

Assume that the n eigenvalues are ordered such that

|λ1| > |λ2| ≥ ... ≥ |λn| and the eigenvectors by x1, ..., xn so

Axi = λixi. Each arbitrary starting vector q0 can be written as:

q0 = a1x1 + a2x2 + ... + anxn

and if a1 6= 0 it follows that

Akq0 = a1λ
k
1(x1 +

n
∑

j=2

aj

a1

(

λj

λ1

)k

xj) .
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Convergence (2)

Using this equality we conclude that

|λ1 − λ(k)| = O

(

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k
)

, and also

the angle between qk and x1 is of order |λ2

λ1
|k.



October 1, 2008 8

National Master Course

Convergence (3)

Note that there is a problem if |λ1| = |λ2|, which is the case for

instance if λ1 = λ̄2. A vector q0 which has a nonzero component

in x1 and x2 can be written as

q0 = a1x1 + a2x2 +
n
∑

j=3

ajxj .

The component in the direction of x3, ..., xn will vanish in the Po-

wer method, but qk will not tend to a limit.
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Shifting

Clearly, the (asymptotic) convergence depends on |λ2

λ1
|. To

speed-up convergence the Power method can also be applied to

the shifted problem

(A − sI)x = (λ − s)x

The asymptotic rate of convergence now becomes

|
λ2 − s

λ1 − s
|

Moreover, by choosing a suitable shift (how?) convergence can

be forced towards the smallest eigenvalue of A.



October 1, 2008 10

National Master Course

Shift-and-invert

Another way to speed-up convergence is to apply the Power

method to the shifted and inverted problem

(A − sI)−1x = µx λ =
1

µ
+ s

This technique allows us to compute eigenvalues near the shift.

However, for this the solution of a system is required in every

iteration!

Assignment: Show that the shifted and inverted problem and the

original problem share the same eigenvectors.
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The QR method (1)

A popular techniqu,e in particular to solve small or dense

eigenvalue problems, is the QR method.

The method starts with the matrix A0, factors it by Gram-Schmidt

into Q0R0 and then reverses the factors: A1 = R0Q0.

Assignment: Show that A0 and A1 are similar (share the same

eigenvectors).
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The QR method (1)

A popular techniqu,e in particular to solve small or dense

eigenvalue problems, is the QR method.

The method starts with the matrix A0, factors it by Gram-Schmidt

into Q0R0 and then reverses the factors: A1 = R0Q0.

Assignment: Show that A0 and A1 are similar (share the same

eigenvectors).

Q−1
0 A0Q0 = Q−1

0 Q0R0Q0 = A1
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The QR method (2)

Repeating this process yields

Ak = QkRk Ak+1 = RkQk

The matrix Ak becomes more and more upper triangular and

finally the eigenvalues will be on the main diagonal.
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The QR method (3)

Normally the algorithm is used with shifts

Ak − αkI = QkRk Ak+1 = RkQk + αkI

This is justified by the fact that Ak+1 is similar to Ak (Check this! ).

Normally the shifted algorithm converges quadratically.
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Iterative methods for linear systems

Iterative methods construct successive approximations xk to the

solution of the linear systems Ax = b. Here k is the iteration

number, and the approximation xk is also called the iterate. The

vector rk = b − Axk is the residual.

The iterative methods are composed of only a few different basic

operations:

• Products with the matrix A

• Vector operations (updates and inner product operations)

• Preconditioning operations
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Preconditioning
Usually iterative methods are applied not to the original system

Ax = b

but to the preconditioned system

M−1Ax = M−1b

where the preconditioner is chosen such that:

• Preconditioning operations (operations with M−1) are

cheap;

• The iterative method converges much faster for the

preconditioned system.
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Basic iterative methods

The first iterative methods we will discuss are the basic iterative

methods. Basic iterative methods only use information of the

previous iteration.

Until the 70’s they were quite popular. Some are still used but as

preconditioners in combination with an acceleration technique.

They also still play a role in multigrid techniques where they are

used as smoothers.
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Basic iterative methods (2)

Basic iterative methods are usually constructed using a splitting

of A:

A = M − R.

Successive approximations are then computed using the

iterative process

Mxk+1 = Rxk + b

which is equivalent too

xk+1 = xk + M−1(b − Axk)

The vector rk = b − Axk is called the residual, and the matrix M

is a preconditioner. The next few slides we look at M = I.
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Richardson’s method

The choice M = I, R = I − A gives Richardson’s method, which

is the most simple iterative method possible.

The iterative process becomes

xk+1 = xk + (b − Axk) = b + (I − A)xk
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Richardson’s method (2)

This process yields the following iterates:

Initial guess x0 = 0

x1 = b

x2 = b + (I − A)x(1) = b + (I − A)b

x3 = b + (I − A)x(2) = b + (I − A)b + (I − A)2b

Repeating this gives

xk+1 =
k
∑

i=0

(I − A)ib
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Richardson’s method (3)

So Richardson’s method generates the series expansion for 1
1−z

with z = I − A. If this series converges we have

∞
∑

i=0

(I − A)i = A−1

The series expansion for 1
1−z

converges if |z| < 1. If A is

diagonalizable then the series
∑∞

i=0(I − A)i converges if

|1 − λ| < 1

with λ any eigenvalue of A. For λ real this means that

0 < λ < 2
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Richardson’s method (4)

In order to increase the radius of convergence and to speed up

the convergence, one can introduce a parameter α:

xk+1 = xk + α(b − Axk) = αb + (I − αA)xk

It is easy to verify that if all eigenvalues are real and positive the

optimal α is given by

αopt =
2

λmax + λmin
.
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Richardson’s method (5)

Before, we assumed for the initial guess x0 = 0.

Starting with another initial guess x0 only

means that we have to solve a shifted system

A(y + x0) = b ⇔ Ay = b − Ax0 = r0

So the results obtained before remain valid, irrespective of the

initial guess.
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Richardson’s method (6)

We want to stop once the error ‖xk − x‖ < ǫ, with ǫ some

prescribed tolerance e. Unfortunately we do not know x, so this

criterion does not work in practice.

Alternatives are:

• ‖rk‖ = ‖b − Axk‖ = ‖Ax − Axk‖ < ǫ

Disadvantage: criterion not scaling invariant

• ‖rk‖
‖r0‖

< ǫ

Disadvantage: good initial guess does not reduce the

number of iterations

• ‖rk‖
‖b‖ < ǫ

Seems best
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Convergence of Basic Iterative Methods

To investigate the convergence of Basic Iterative Methods in

general, we look again at the formula

Mxk+1 = Rxk + b.

Remember that A = M − R. If we subtract Mx = Rx + b from

this equation we get a recursion for the error e = xk − x:

Mek+1 = Rek
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Convergence of Basic Iterative Methods (2)

We can also write this as

ek+1 = M−1Rek

This is a power iteration and hence the error will ultimately point

in the direction of the largest eigenvector of M−1R. The rate of

convergence is determined by the spectral radius ρ(M−1R) of

M−1R:

ρ(M−1R) = |λmax(M−1R)| .

For convergence we must have that

ρ(M−1R) < 1 .
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Linear convergence

Ultimately, we have ‖ek+1‖ ≈ ρ(M−1R)‖ek‖, which means that

we have linear convergence
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Classical Basic Iterative Methods

We will now briefly discuss the three best known basic iterative

methods

• Jacobi’s method

• The method of Gauss-Seidel

• Successive overrelaxation

These methods can be seen as Richardson’s method applied to

the preconditioned system

M−1Ax = M−1b .
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Jacobi’s method

We first write A = L + D + U , with L the strictly lower triangular

part of A, D the main diagonal and U the strictly upper triangular

part. Jacobi’s method is now defined by the choice M = D,

R = −L − U . The process is given by

Dxk+1 = (−L − U)xk + b

or equivalently by

xk+1 = xk + D−1(b − Axk)
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The Gauss-Seidel method

We write again A = L + D + U . The Gauss-Seidel method is

now defined by the choice M = L + D, R = −U . The process is

given by

(L + D)xk+1 = −Uxk + b

or equivalently by

xk+1 = xk + (L + D)−1(b − Axk)
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Successive overrelaxation (SOR)

We write again A = L + D + U . The SOR method is now defined

by the choice M = D + ωL, R = (1 − ω)D − ωU . The parameter

ω is called the relaxation parameter. The process is given by

(D + ωL)xk+1 = ((1 − ω)D − ωU)xk + ωb

or as

xk+1 = xk + ω(D + ωL)−1(b − Axk)

With ω = 1 we get the method of Gauss-Seidel back. In general

the optimal value of ω is not known.
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Iterative refinement

Last week we saw direct methods. For numerical stability it is

necessary to perform partial pivoting. However, this goes at the

expense of the efficiency.

If the LU -factors are inaccurate, such that A = LU − R, they can

still be used as preconditioner for the process

xi+1 = xi + (LU)−1(b − Axi)

This is called iterative refinement and is used to improve the ac-

curacy of the direct solution.
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One-step projection methods

The convergence of Richardson’s method is not guaranteed and

if the method converges, convergence is often very slow.

We now introduce two methods that are guaranteed to converge

for wide classes of matrices. The two methods take special

linear combinations of the vectors rk and Ark to construct a new

iterate xk+1 that satisfies a local optimality property.
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Steepest descent

Let A be symmetric positive definite. Define the function

f(xk) = ‖xk − x‖2
A = (xk − x)T A(xk − x)

Let xk+1 = xk + αkrk Then the choice

αk =
rT
k rk

rT
k Ark

minimizes f(xk+1).
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Minimal residual

Let A be general square. Define the function

g(xk) = ‖b − Axk‖
2
2 = rT

k rk

Let xk+1 = xk + αkrk Then the choice

αk =
rT
k Ark

rT
k AT Ark

minimizes g(xk+1).
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Orthogonality properties

The optimality properties of the steepest descent method and

the minimal residual method are equivalent with the following

orthogonality properties:

For steepest descent

αk =
rT
k rk

rT
k Ark

⇒ rk+1 ⊥ rk

For the minimal residual method

αk =
rT
k Ark

rT
k AT Ark

⇒ rk+1 ⊥ Ark .
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Concluding remarks

During the next lessons the steepest decent method and the

minimal residual method will be generalised.

This will ultimately give rise to a class of optimal methods.

Moreover, we will see that these methods are closely linked to

eigenvalue method (as the simple iterative methods are to the

Power method).
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