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• Least squares problems

• The SVD

• Regularisation

• CG for the normal equations

• LSQR and Bi-diagonalization
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Least squares problems

In this lesson we consider the problem

Ax = b

with A ∈ C
m×n, x ∈ C

n and b ∈ C
m.

Furthermore,

- The system may be inconsistent (b 6∈ R(A)).

- Usually m >> n.

- The rank of A may be smaller than n.
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Least squares problems (2)

The system Ax = b may be inconsistent. We therefore solve it in

the sense of least squares, meaning that we solve the

minimisation problem

min
x

‖Ax − b‖2

Solutions to this problem satisfy the normal equations

AHAxLS = AHb

and hence

rLS = b − AxLS ⊥ R(A)

If rank(A) < n the least squares solution is not unique.
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Least squares problems (3)

Suppose rank(A) < m and xLS is a least-squares solution. Then

x̂ = xLS + y with y ∈ N (A)

is also a least squares solution.

A unique least squares solution xLSMN is the one with minimum

norm, which is the solution of the constrained problem

min
x

‖Ax − b‖2 subject to x ⊥ N (A) .
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The Singular Value Decomposition

Let A ∈ C
m×n be a matrix of rank r. Then there exist unitary

matrices U ∈ C
m×m and V ∈ C

n×n such that

A = UΣV H ,





Σr 0

0 0





where Σ ∈ R
m×n and Σr = diag(σ1, σ2, · · · , σr), and

σ1 ≥ σ1 ≥ · · · > 0.

The σi are called the singular values of A.
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The SVD and the LSMN solution

The least-squares minimum norm solution can be computed

using the SVD by

xLSMN = V





Σ−1
r 0

0 0



UHb

The matrix

A+ = V





Σ−1
r 0

0 0



UH

is called the pseudoinverse or the Moore-Penrose inverse of A.
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The SVD and the LSMN solution (2)

Proof that xLSMN = A+b:

z = V Hx =





z1

z2



 c = UHb =





c1

c2





where z1, c1 ∈ C
r. Then

‖b − Ax‖2 = ‖UH(b − AV V Hx)‖2 =

= ‖





c1

c2



−





Σr 0

0 0









z1

z2



 ‖2 = ‖





c1 − Σrz1

c2



 ‖2

Hence ‖b − Ax‖2 is minimized by z1 = Σ−1
r c1 and ‖x‖ by z2 = 0.
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Noisy problems

In least-squares problems b often corresponds to measured

date, which means that we are actually solving the noisy problem

Ax = b + δb .

Moreover, small singular values typically correspond to the

noise.

These small singular values have a dramatic effect on the

LSMN-solution (why?)!!!

This is an example of a so-called ill-posed problem: small

perturbations in the data give a large perturbation in the solution.



November 4, 2009 10

National Master Course

Regularization
Limiting this effect is called regularization. Several regularization

methods have been proposed:

- Set small singular values to 0. This requires the explicit

calculation of the SVD, which is not possible for large scale

problems.

- (Tykhonov regularisation) Solve the damped least squares

problem:

min
x

‖





A

τI



x −





b

0



 ‖2

- Use an iterative method (reason: convergence to small

singular values is slow)
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CGLS (1)

CG can always be applied to the normal equations

AHAx = AHb

since AHA is Hermitian positive semi-definite.

The stability can be improved by replacing inner products

pH(AHAp)

by inner products

(Ap)HAp

which leads to the algorithm CGLS.
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CGLS (2)

r0 = b − Ax0; z0 = AHr0, p0 = z0 initialization

FOR k = 0, 1, · · · , DO

wk = Apk

αk =
zH

k
zk

wH

k
wk

xk+1 = xk + αkpk update iterate

rk+1 = rk − αkwk update residual

zk+1 = AHrk+1 residual normal equations

βk =
zH

k+1
zk+1

zH

k
zk

pk+1 = zk+1 + βkpk update direction vector

END FOR
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CGLS (3)

CGLS can also be used for solving nonsymmetric square

systems. However, this has two important disadvantages:

• The work per iteration is twice as much as in CG;

• K2(A
HA) = K2(A)2, which means that convergence is often

very slow.
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CGLS (4), Assignment

Assuming that K2(A) = 100:

1. Give an upper bound on the number of CG iterations

required to satisfy
‖x−xk‖A

‖x−x0‖A
< 10−6.

Hint: use the upper bound

‖x − xk‖A ≤ 2

(

√

K2(A) − 1
√

K2(A) + 1

)k

‖x − x0‖A.

2. Answer the same question for CGLS.
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CGLS (4), Assignment

Assuming that K2(A) = 100:

1. Give an upper bound on the number of CG iterations

required to satisfy
‖x−xk‖A

‖x−x0‖A
< 10−6.

Hint: use the upper bound

‖x − xk‖A ≤ 2

(

√

K2(A) − 1
√

K2(A) + 1

)k

‖x − x0‖A.

2. Answer the same question for CGLS.

Answer: CG: 73, CGLS 726
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LSQR

LSQR (Paige and Saunders) is derived by applying Lanczos to




I A

AH 0









r

x



 =





b

0



 .

with starting vector u1 = 1

‖b‖





b

0




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LSQR (2)
The second vector in the Krylov subspace becomes

1

‖b‖





b

AHb





After orthonormalisation we obtain

1

‖AHb‖





0

AHb





Repeating this procedure shows that we get alternatingly

orthogonal vectors





u

0



 and





0

v




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LSQR (3)

This observation leads to the following

Bidiagonalisation algorithm (Golub and Kahan)

β1u1 = b α1v1 = AHu1

FOR i = 1, · · · DO

βi+1ui+1 = Avi − αiui

αi+1vi+1 = AHui+1 − βi+1vi

END FOR

with αi > 0 and βi > 0 such that ‖ui‖ = ‖vi‖ = 1.
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LSQR (4)

With Uk = [u1, u2, · · · , uk], Vk = [v1, v2, · · · , vk] and

Bk =























α1

β2 α2

β3

. . .

. . . αk

βk+1























,

it follows that

β1Uk+1e1 = b

AVk = Uk+1Bk

AHUk+1 = VkB
H
k + αk+1vk+1e

T
k+1
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LSQR (5)

Now construct solution vectors xk = Vkyk. Then we get for

rk = b − Axk :

rk = β1Uk+1e1 − AVkyk

= β1Uk+1e1 − Uk+1Bkyk

= Uk+1(β1e1 − Bkyk)

= Uk+1tk



November 4, 2009 20

National Master Course

LSQR (6)

Substitution in the augmented system and using the Gallerkin

condition gives




UH
k+1

0

0 V H
k









I A

AH 0









Uk+1tk+1

Vkyk



 =





UH
k+1

b

0



 ,

which leads to the reduced system




I Bk

BH
k

0









tk+1

yk



 =





β1e1

0



 .
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LSQR (7)

This last equation is equivalent to the least squares problem

min ‖β1e1 − Bkyk‖2

In LSQR this problem is solved using the QR-algorithm.

LSQR is famous for its robustness.
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Final remarks

Today we have seen CG-type methods for the normal equations.

These methods can also be applied to nonsymmetric systems.

The disadvantage of this approach is that the condition number

is squared compared to the original system. This may lead to

slow convergence and/or an inaccurate solution.

However, there are also classes of problems for which the

normal equations approach works quite well, in particular if A is

close to an orthogonal matrix.
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