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Overview day 2

• The Krylov subspace

• Better than Richardson

• Construction of a basis

• Computation of an approximate solution

• Solution methods:

• The Conjugate Gradient method

• CG Convergence theory

• CR and MINRES

• CG for the normal equations
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Richardson’s method

Yesterday we saw that Richardson’s method produces iterates

xk+1 = x0 +
k
∑

i=0

(I − A)ir0 .

So xk+1 ∈ span{x0, r0, Ar0, A
2r0, · · · , Akr0}.

For the residuals we have

rk+1 = b − Ax0 − A
k
∑

i=0

(I − A)ir0 = r0 − A
k
∑

i=0

(I − A)ir0 .

and hence rk+1 ∈ span{r0, Ar0, A
2r0, · · · , Ak+1r0}.
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The Krylov subspace

The space span{r0, Ar0, A
2r0, · · · , Ak−1r0} is called the Krylov

subspace of dimension k, corresponding to matrix A and initial

residual r0 and is denoted by

Kk(A; r0) = span{r0, Ar0, A
2r0, · · · , Ak−1r0}

The leading question in the next days will be:

Can we use the information contained in Kk(A; r0) more

efficiently than in Richardson’s method?
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Basic Iterative Methods

Basic iterative methods produce iterates according to

xk+1 = xk + M−1rk .

Hence xk+1 ∈ x0 ∪ Kk+1(M−1A;M−1r0).

For the moment, we concentrate on the choice M = I.
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One-step methods are Krylov methods

Both the steepest-descent method and the minimal-residual

method perform iterations of the form

xk+1 = xk + αkrk (1)

rk+1 = b − Axk+1 = rk − αkArk .

Clearly, also for these methods xk+1 ∈ x0 ∪ Kk+1(A; r0)
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Towards optimal methods

One-step projection methods make an optimal combination of

the last two basis vectors in the Krylov subspace. The question

that we will address now is:

Is it possible to make optimal linear combinations of all the basis

vectors in the Krylov subspace?

We will answer this question in two steps:

• First, we discuss how to construct a basis for Kk(A; r0);

• Then, we will explain how we can construct an optimal

approximation as a linear combination of the basis vectors.

Today we will focus on symmetric matrices.
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A basis for the Krylov subspace

The most simple basis for the Krylov subspace Kk(A; r0) is the

power basis: r0, Ar0, A
2r0, · · ·Ak−1r0.

Clearly, this basis is ill-conditioned since Ak−1r0 will point more

and more in the direction of the largest eigenvector of A.

A stable, orthogonal basis can be constructed with Arnoldi’s me-

thod.
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Arnoldi’s method
Choose a starting vector q1 with ‖q1‖2 = 1.

FOR k = 1, · · · DO iteration

v = Aqk expansion

FOR i = 1, ..., k orthogonalisation

hi,k = vT qi

v = v − hi,kqi

END FOR

hk+1,k = ‖v‖2

IF hk+1,k = 0 STOP invariant subspace spanned

qk+1 = v/hk+1,k new basis vector

END FOR



10

PhD-course DTU Informatics, Graduate School ITMAN

The Arnoldi relation

The Arnoldi method can be summarised in a compact way. Let

Hk =

















h1,1 . . . . . . h1,k

h2,1
. . .

...
. . . . . .

...

O hk,k−1 hk,k

















and Qk = [q1 q2 · · · qk] then

AQk = QkHk + hk+1,kqk+1e
T
k

Here ek is the k − th canonical basis vector in R
k.
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A is symmetric

According to the Arnoldi relation we have

QT
k AQk = Hk .

Moreover, if A is symmetric we have

HT
k = QT

k AT Qk = QT
k AQk = Hk .

So Hk is symmetric and upper Hessenberg,

this means that Hk must be tridiagonal.
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A is symmetric (2)

So

Hk =

















h1,1 h2,1 O

h2,1
. . . . . .
. . . . . . hk,k−1

O hk,k−1 hk,k

















.

With αk = hk,k and βk = hk−1,k the Arnoldi method simplifies to

the (symmetric) Lanczos method. With the Lanczos method it is

possible to compute a new orthonormal basis vector using only

the two previous basis vectors.
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The Lanczos method

Choose a starting vector q1 with ‖q1‖2 = 1

β1 = 0 q0 = 0 initialization

FOR k = 1, · · · DO iteration

αk = qT
k Aqk

v = Aqk − αkqk − βkqk−1 new direction

orthogonal to

βk+1 = ‖v‖2 previous q

qk+1 = v/βk+1 normalization

END FOR
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The Lanczos method

Let

Tk =























α1 β2 0

β2 α2
. . .

. . . . . . . . .

0
. . . . . . βk

βk αk























.

and

Qk = [q1 q2 . . . qk]

Then AQk = QkTk + βk+1qk+1e
T
k
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Eigenvalue methods

Arnoldi’s and Lanczos method were originally proposed as

iterative methods to compute the eigenvalues of a matrix A:

QT
k AQk = Hk

is ’almost’ a similarity transformation. The eigenvalues of Hk are

called Ritz values.
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Optimal approximations (1)
The Lanczos method provides a cheap way to compute an

orthogonal basis for the Krylov subspace Kk(A; r0). Our

approximations can be written as

xk = x0 + Qkyk

where yk is determined so that either the error

f(xk) = ‖xk − x‖2
A = (xk − x)T A(xk − x)

is minimised in A-norm (only meaningful if A is pos. def.) or that

g(xk) = ‖A(xk − x)‖2
2 = rT

k rk,

i.e. the norm of the residual is minimised.
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Optimal approximations (2)

We first look at minimisation of the error in the A-norm:

xk = x0 + Qkyk ⇒ f(xk) = (x0 + Qkyk − x)T A(x0 + Qkyk − x) .

To minimise, we differentiate with respect to yk and set
∂f(xk)

∂yk
= 0. This yields

QT
k AQkyk = QT

k r0

and with QT
k AQk = Tk, r0 = ‖r0‖q1 we get

Tkyk = ‖r0‖e1

with e1 the first canonical basis vector.
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Optimal approximations (3)

It is easy to see that the residuals are orthogonal to the basis

vectors:

rk = r0 − AQkyk ⇒ QT
k rk = QT

k r0 − QT
k AQkyk = 0

This condition is equivalent to minimising f(xk) when A is SPD.

Since the rk’s are orthogonal, each residual is just a multiple of

the corresponding basis vector qk. This also means that the resi-

duals form an orthogonal basis for the Krylov subspace.
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Towards a practical algorithm

The main problem in the Lanczos algorithm is that all qi (or ri)

have to be stored to compute xk. This problem can be overcome

by making an implicit LU factorisation of Tk and updating xk in

every iteration.

Details can be found in the books of Van der Vorst and of Saad.

With this technique we get the famous and very simple

Conjugate Gradient method.
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The Conjugate Gradient method

r0 = b − Ax0; p0 = r0 initialization

FOR k = 0, 1, · · · , DO

αk =
rT

k
rk

pT

k
Apk

xk+1 = xk + αkpk update iterate

rk+1 = rk − αkApk update residual

βk =
rT

k+1
rk+1

rT

k
rk

pk+1 = rk+1 + βkpk update direction vector

END FOR
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Properties of CG

CG has several favourable properties:

• The method uses limited memory: only three vectors need

to be stored;

• The method is optimal: the error is minimised in A-norm;

• The method is finite: the n + 1-st residual must be zero

since all the residuals are orthogonal;

• The method is robust: pT
k Apk and rT

k rk both imply that the

true solution has been found (that rk = 0).



22

PhD-course DTU Informatics, Graduate School ITMAN

Lanczos matrix

Since CG and Lanczos are mathematically equivalent it should

be possible to recover the Lanczos matrix Tk from the

CG-iteration parameters. This is indeed the case

Tk =























1
α0

√

β0

α0
0

√

β0

α0

1
α1

+ β0

α0

. . .
. . . . . . . . .

0
. . . . . .

√
βm−2

αm−2√
βk−2

αk−2

1
αk−1

+
βk−2

αk−2























.
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Conjugate Gradient Error Analysis
CG minimises the function

f(xk) = (x0 + Qkyk − x)T A(x0 + Qkyk − x) .

With the error ek = xk − x and Ae0 = r0 CG minimises

‖ek‖A = ‖e0 + Qkyk‖ with Qkyk ∈ Kk(A;Ae0)

Consequently

ek = e0 − α1Ae0 − α2A
2e0 − · · · − αkA

ke0 = pk(A)e0

So ek is a polynomial in A times e0, with pk(0) = 1:

‖ek‖A = min
pk

‖pk(A)e0‖A ≤ min
pn

max
i

|pk(λi(A))| · ‖e0‖A
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A convergence bound for CG

The iterates xk obtained from the CG algorithm satisfy the

following inequality:

‖x − xk‖A ≤ 2

(

√

K2(A) − 1
√

K2(A) + 1

)k

‖x − x0‖A.

K2(A) is the condition number of A, which is for SPD-matrices

K2(A) =
λmax

λmin
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Proof (sketch)

The error ek = x − xk can be written as pk(A)e0 with pk(x) a

polynomial such that pk(0) = 1. Hence we have

‖ek‖A = ‖pk(A)e0)‖A

Since CG is optimal, we have

‖pk(A)e0)‖A ≤ ‖qk(A)e0‖A ∀ qk(x) with qk(0) = 1

The convergence bound can now be proved by taking for qk(x)

Chebychev polynomials that are transformed to the interval

λmin, λmax.
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Superlinear convergence

The upperbound on the CG-error is in practice very pessimistic.

Typically the rate of convergence increases during the process.

This is called superlinear convergence.
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Sparse Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum
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CG convergence: Dense Spectrum

0 1 2 3 4
−1

−0.5

0

0.5

1

p10(λ)



29

PhD-course DTU Informatics, Graduate School ITMAN

Minimising the residuals

CG minimises the A-norm of the error. As we have seen before,

another way to construct optimal approximations xk is to

minimise the residual, i.e. minimise

g(xk) = ‖A(xk − x)‖2
2 = rT

k rk

over all xk ∈ {x0 ∪ Kk(A; b)}. Before we solve this problem we

first look again at the Lanczos relation.
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The Lanczos relation

By defining

T k =





























α1 β2 0

β2 α2
. . .

. . . . . . . . .

0
. . . . . . βk

βk αk

βk + 1





























the Lanczos relation can also be written as

AQk = Qk+1T k
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Minimal residuals

The problem is: find xk = x0 + Qkyk such that ‖rk‖ is minimal.

rk = b − Axk = r0 − AQkyk = ‖r0‖q1 − AQkyk

hence minimise

‖rk‖ = ‖‖r0‖q1 − AQkyk‖ (1)

= ‖‖r0‖Qk+1e1 − Qk+1T kyk‖ (1)

= ‖‖r0‖e1 − T kyk‖
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Towards a practical algorithm

Solving the small overdetermined system T kyk = ‖r0‖e1

provides iterates

xk = x0 + Qkyk

that minimise the residual. The resulting algorithm is called

MINRES.

MINRES can be cast in a CG like algorithm, see the books of

van der Vorst and of Saad for details.

The resulting algorithm is called Conjugate Residual method.
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Conjugate Residual Method

r0 = b − Ax0; p0 = r0 initialization

FOR k = 0, 1, · · · , DO

αk =
rT

k
Ark

(Apk)T Apk

xk+1 = xk + αkpk update iterate

rk+1 = rk − αkApk update residual

βk =
rT

k+1
Ark+1

rT

k
Ark

pk+1 = rk+1 + βkpk update direction vector

Apk+1 = Ark+1 + βkApk to avoid extra matvec

END FOR
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Properties of CR

Like CG, CR has many favourable properties:

• The method uses limited memory: only four vectors need to

be stored;

• The method is optimal: the residual is minimised;

• The method is finite: the n-st residual must be zero since it

is optimal over the whole space;

• The method is robust if A is SPD, else rT
k Ark may be zero

for some nonzero rk

CR is less popular than CG since minimising the A-norm of the

error is often more natural. CG is also slightly cheaper.
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CG for the normal equations

CG can always be applied to the normal equations

AT Ax = AT b (or AAT y = b with x = AT y)

since AT A is an SPD-matrix (if A has full column rank).

Applying CG to the normal equations has two disadvantages:

• The work per iteration is twice as much as in CG;

• K2(A
T A) = K2(A)2, which means that convergence is often

very slow.
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CGLS

CGLS is a numerical stable variant of CG for the normal

equations.

The stability properties are improved by replacing inner products

pT (AT Ap)

by inner products

(Ap)T Ap
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LSQR

LSQR is derived by applying Lanczos to




I A

AT 0









r

x



 =





b

0



 .

The resulting algorithm is equivalent to CGLS.
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Concluding remarks

Today, we discussed Krylov methods for symmetric systems.

These methods combine an optimal error reduction with short

recurrences, and hence limited memory requirements.

The next two days, we will discuss methods for solving

nonsymmetric systems.
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