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Overview day 3

• Arnoldi’s method

• Computation of an approximate solution

• Solution methods:

• FOM

• GMRES

• Convergence theory

• Truncation and flexible methods: GCR and GMRESR
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Introduction

Yesterday we saw that an orthogonal basis for the Krylov subspace

Kk(A; r0) can be constructed using Arnoldi’s method.

In the symmetric case Arnoldi’s method is very efficient: new basis vectors can

be computed using a three-term recursion; involving only two old basis vectors.

This feature makes it possible to construct very efficient iterative solvers: CG

and CR (MINRES). These methods combine short recurrences with an

optimality condition for the error.

Today we will start looking at iterative solvers for nonsymmetric systems. We

start with methods that use Arnoldi to construct a basis for Kk(A; r0). Since

we make no assumptions on symmetry, all previously computed basis vectors

are needed to compute a new one.
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Arnoldi’s method
Choose a starting vector q1 with ‖q1‖2 = 1.

FOR k = 1, · · · DO iteration

v = Aqk expansion

FOR i = 1, ..., k orthogonalisation

hi,k = vT qi

v = v − hi,kqi

END FOR

hk+1,k = ‖v‖2

IF hk+1,k = 0 STOP invariant subspace spanned

qk+1 = v/hk+1,k new basis vector

END FOR
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The Arnoldi relation (1)

Recall that Arnoldi’s method can be summarised in a compact

way. Let

Hk =
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and Qk = [q1 q2 · · · qk] then

AQk = QkHk + hk+1,kqk+1e
T
k

Here ek is the k − th canonical basis vector in R
k.
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The Arnoldi relation (2)

By defining

Hk =
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the Arnoldi relation can also be written as

AQk = Qk+1Hk
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Optimal approximations (1)

Arnoldi’s method provides an orthogonal basis for the Krylov

subspace Kk(A; r0). Our approximations can be written as

xk = x0 + Qkyk

Yesterday we computed yk so that either the error

f(xk) = ‖xk − x‖2
A = (xk − x)T A(xk − x)

is minimised in A-norm, or that

g(xk) = ‖A(xk − x)‖2
2 = rT

k rk,

i.e. the norm of the residual is minimised.
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Optimal approximations (2)

If A is not SPD, the A-norm is not a proper norm. However, we

also saw that in the SPD-case, minimising the A-norm of the

error yields residuals that are orthogonal to Qk.

Imposing that the residual is orthogonal to Qk gives

QT
k (r0 − AQkyk) = 0 ⇒ ‖r0‖e1 − Hkyk = 0

with e1 the first canonical basis vector of dimension k.

Solving the latter (small) system gives

yk = ‖r0‖H
−1

k e1 xk = x0 + Qkyk

This method is called Full Orthogonalisation Method or FOM.
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The Full Orthogonalisation Method
FOM is equivalent to CG if A is SPD. Unfortunately, it has some

important disadvantages:

• FOM is not memory-efficient: Qk has to be stored

completely. Every iteration, a new basis vector has to be

computed and stored. Orthogonalisation of new basis

vectors also becomes increasingly more expensive with k.

• FOM does not have an optimality property

• The method is finite, but this is only of theoretical

importance. To reach this point a complete set of at most n

basis vectors has to be computed and stored.

• FOM is not robust. Hk can be singular and hence not

invertible.
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Galerkin and Petrov-Galerkin

The FOM-method to find xk is part of a family of techniques to

extract an approximate solution from a search space Qk by

making the residual orthogonal to a test space Wk. Formally, this

can be formulated as:

Let xk = x0 + Qkyk. Find yk such that

W T
k (r0 − AQkyk) = 0

Such conditions are called Petrov-Galerkin conditions.

If Wk = Qk we call it a Galerkin condition.
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Optimal approximations (3)

We now look at the second way to obtain in some sense optimal

approximations: minimising the norm of the residual. Clearly

minimising

g(xk) = ‖A(xk − x)‖2
2 = rT

k rk

is a well-defined problem, also if A is nonsymmetric.
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Minimal residuals

The problem is: find xk = x0 + Qkyk such that ‖rk‖ is minimal.

rk = b − Axk = r0 − AQkyk = ‖r0‖q1 − AQkyk

hence

‖rk‖ = ‖‖r0‖q1 − AQkyk‖

= ‖‖r0‖Qk+1e1 − Qk+1Hkyk‖

= ‖‖r0‖e1 − Hkyk‖
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GMRES (1)

Solving the overdetermined system

Hkyk = ‖r0‖e1

provides us with iterates

xk = x0 + Qkyk

that minimise the residual. The resulting algorithm is called

GMRES.

GMRES, which was proposed by Saad and Schultz, is one of the

most popular methods for solving nonsymmetric systems.
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GMRES (2)
GMRES is equivalent to MINRES if A is symmetric. Other

important features are:

• GMRES is not limited-memory: Qk has to be stored

completely. Every iteration, a new basis vector has to be

computed and stored. Orthogonalisation of new basis

vectors also becomes increasingly more expensive with k.

• GMRES minimises the norm of the residual.

• The method is finite, but this is only of theoretical

importance. To reach this point a complete set of at most n

basis vectors has to be computed and stored .

• GMRES is robust: Hkyk = ‖r0‖e1 always has a

least-squares solution.
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Another way of deriving GMRES
GMRES can also be derived by imposing a Petrov-Galerkin

condition with Wk = AQk:

W T
k rk = QT

k AT rk = 0.

Using rk = ‖r0‖q1 − AQkyk gives

‖r0‖Q
T
k AT q1 − QT

k AT AQkyk = 0.

With AQk = Qk+1Hk we get

‖r0‖Hk
T e1 − Hk

T Hkyk = 0

which are exactly the normal equations that correspond to the

overdetermined system Hkyk = ‖r0‖e1.
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Optimality and orthogonality
We already saw that for A SPD

min
xk

‖xk − x‖A with xk ∈ {x0 ∪ Kk(A; r0)}

implies that QT
k rk = 0, and hence that

rk ⊥ Kk(A; r0) .

Now, we have also seen that

min
xk

‖b − Axk‖2 with xk ∈ {x0 ∪ Kk(A; r0)}

implies that QT
k AT rk = 0 and hence that

rk ⊥ AKk(A; r0) = Kk(A;Ar0) .
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Convergence

Like CG and MINRES, FOM and GMRES show superlinear

convergence.

Since GMRES minimises the residual norm, it decreases

monotonically and convergence is smooth.

FOM on the other hand does not minimise anything which

results in more erratic convergence.
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A bound on the GMRES-residual norm

Many bounds on the GMRES-residual norm are known. We

mention the classical bound by Elman:

Suppose A is real and 1

2
(A + AT ) positive definite. Let

θ = λmax(
1

2
(A + AT )).

Then, the GMRES-residual norm after k iterations satisfies

‖rk‖/‖r0‖ ≤ (1 −
θ2

‖A‖2
)k/2.

In practice, this bound is useful, but very pessimistic.
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GMRES(m)

If many iterations have to be performed GMRES can become

prohibitively expensive, with respect to both memory and

computing time.

An easy solution is to restart the process after a cycle of m

iterations, where m is a parameter chosen by the user.

This procedure can have a very strong negative effect on the

rate of convergence. Typically, convergence becomes linear, and

superlinear convergence is lost.

Note that the one-step minimal residual method we discussed on

monday is equivalent to GMRES(1).
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GCR (1)

A method that explicitly constructs residuals that satisfy

rk ⊥ AKk(A; r0) .

is the Generalised Conjugate Residual method. Clearly GCR is

equivalent to GMRES.

GCR computes two sets of basis vectors, and memory

requirements are twice as high as for GMRES. GCR, however,

also has important advantages.
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The GCR method (2)
choose x0, compute r0 = b − Ax0

FOR k = 1, 2, ... DO

sk = rk−1 ,

vk = Ask ,

FOR j = 1, ..., k − 1 DO

α = vT
k vj ,

vk := vk − αvj , sk := sk − αsj ,

END FOR

vk := vk/‖vk‖2 , sk := sk/‖vk‖2

xk := xk−1 + (rT
k−1

vk)sk ;

rk := rk−1 − (rT
k−1

vk)vk ;

END FOR
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The GCR method (3)

GCR generates two sets of basis vectors:

s1, s2, . . . , sk

which form a basis for Kk(A; r0), and

v1, v2, . . . , vk

which form an orthogonal basis for AKk(A; r0).
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The GCR method (3)

Although storing two sets of vectors is a considerable overhead,

it gives two big advantages:

• GCR can be truncated, which can be much more efficient

than restarting. For example, if A is symmetric, truncating

after one vector (i.e. keeping only the vectors sk−1 and vk−1

from the previous iterations) yields the CR method.

• xk and rk can always be computed in a consistent way,

independent of how sk is constructed. This makes it

possible to apply another iterative technique as a (variable)

preconditioner. The method that results if GMRES is used

as preconditioner is called GMRESR (by Vuik and Van der

Vorst).
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GMRESR (1)
choose x0, m, compute r0 = b − Ax0

FOR k = 1, 2, ... DO

sk = Pm(A)rk−1 ,

vk = Ask ,

for j = 1, ..., k − 1 do

α = vT
k vj ,

vk := vk − αvj , sk := sk − αsj ,

END FOR

vk := vk/‖vk‖2 , sk := sk/‖vk‖2

xk := xk−1 + (rk−1, vk)sk ;

rk := rk−1 − (rk−1, vk)vk ;

END FOR
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GMRESR (2)

In the algorithm Pm(A)r denotes ’apply m GMRES iterations to

the residual’.

GMRESR is an example of a so-called flexible method, which

allows the application of a preconditioner that varies from

iteration to iteration. A flexible variant of GMRES also exists.

By tuning well the work in the outer GCR loop and the inner

GMRES loop, it is possible to optimise for the computational

work and/or for memory requirements.
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Concluding remarks

Today, we have discussed GMRES-type methods for

nonsymmetric problems. The advantage of these methods is

that they minimise the residual. The disadvantage is that they

use long recurrences, using many vectors.

Tomorrow, we will concentrate on iterative solvers for

nonsymmetric problems that use short recurrences.
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