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Overview day 4

• Bi-Lanczos method

• Computation of an approximate solution:

• Bi-CG

• QMR

• CGS and Bi-CGSTAB

• Convergence

• The induced dimension theorem and IDR(s)
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Introduction

Yesterday, we discussed Arnoldi-based methods. A method like

GMRES minimises the residual norm, but has to compute and

store a new orthogonal basis vector in each iteration. The cost of

doing this becomes prohibitive if many iterations have to be

performed.

Today, we will discuss another class of iterative methods. They

are based on the bi-Lanczos method, and hence closely related

to CG. They use short recurrence but the iterates have no

optimality property.

We will also discuss a new method: IDR(s). This method is not

based on the bi-Lanczos method, but is mathematically related.
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The Bi-Lanczos method

The symmetric Lanczos method constructs a matrix Qk such

that QT
kQk = I and

QT
kAQk = Tk tridiagonal .

The Bi-Lanczos algorithm constructs matrices Wk and Vk such

that

Wk
TAVk = Tk tridiagonal

and such that

Wk
TVk = I

Hence Wk and Vk are not orthogonal themselves, but they form

a bi-orthogonal pair.
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The Bi-Lanczos method (2)

Choose two vectors v1 and w1 such that vT
1 w1 = 1

β1 = δ1 = 0 w0 = v0 = 0 initialization

FOR k = 1, · · · DO iteration

αk = wT
k Avk

v̂k+1 = Avk − αkvk − βkvk−1 new

ŵk+1 = ATwk − αkwk − δkwk−1 direction v

δk+1 = |v̂T
k+1

ŵk+1| orthogonal to

βk+1 = v̂T
k+1

ŵk+1/δk+1 previous w.

wk+1 = ŵk+1/βk+1

vk+1 = v̂k+1/δk+1

END FOR
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The Bi-Lanczos method (3)
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and

Vk = [v1 v2 . . . vk] Wk = [w1 w2 . . . wk] .

Then AVk = VkTk + δk+1vk+1e
T
k

and ATWk = WkT
T
k + βk+1wk+1e

T
k .
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The Bi-Lanczos method (3)

Note that

span{v1 · · · vk} is a basis for Kk(A; v1)

and

span{w1 · · ·wk} is a basis for Kk(AT ;w1)
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Breakdown of Bi-Lanczos

Bi-Lanczos breaks down if

wT
k+1vk+1 = 0 .

This can happen in the following cases:

vk+1 = 0 : {v1 · · · vk} span an invariant subspace (wrt. A)

wk+1 = 0 : {w1 · · ·wk} span an invariant subspace (wrt. AT )

wk+1 6= 0 and vk+1 6= 0 : serious breakdown
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Bi-CG

A CG-type method can now be defined as:

v1 = r0/‖r0‖ and w1 = r̃0/‖r̃0‖ (with e.g. r̃0 = r0).

- Compute Wk and Vk using Bi-Lanczos

- Compute xk = x0 + Vkyk with yk such that

W T
k AVkyk = W T

k r0 ⇔ Tkyk = ‖r0‖e1

This algorithm can be cast in a more practical form in the same

way as CG. The resulting algorithm is called Bi-CG.
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The Bi-CG algorithm

r0 = b−Ax0 Choose r̃0, p0 = r0, p̃0 = r̃0 initialization

FOR k = 0, 1, · · · , DO

αk =
r̃T

k
rk

p̃T

k
Apk

xk+1 = xk + αkpk update iterate

rk+1 = rk − αkApk update residual

r̃k+1 = r̃k − αkA
T p̃k shadow residual

βk =
r̃T

k+1
rk+1

r̃T

k
rk

pk+1 = rk+1 + βkpk update direction vector

p̃k+1 = r̃k+1 + βkp̃k shadow direction vector

END FOR
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Properties of Bi-CG

• The method uses limited memory: only five vectors need to

be stored;

• The method is not optimal. However, if A is SPD and with

r̃0 = r0 we get CG back (but with two times the number of

operations per iteration!)

• The method is finite: all the residuals are orthogonal to the

shadow residuals r̃T
i rj = 0 if i 6= j.

• The method is not robust: r̃T
k rk may be zero and rk 6= 0.
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’Quasi’ minimising the residuals

In analogy to CG and MINRES (and to FOM and GMRES) we

can define a ’quasi’-minimal residual algorithm.

To this end, we first rewrite the Bi-Lanczos relations.
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The Bi-Lanczos relations

Define T k as
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We can now write

AVk = Vk+1T k



14

PhD-course DTU Informatics, Graduate School ITMAN

Quasi minimal residuals (1)

We would like to solve the problem: find xk = x0 + Vkyk such

that ‖rk‖ is minimal.

rk = b−Axk = r0 −AVkyk = ‖r0‖v1 −AVkyk

Hence the problem is to minimise

‖rk‖ = ‖‖r0‖v1 −AVkyk‖ (1)

= ‖‖r0‖Vk+1e1 − Vk+1T kyk‖ . (2)

If Vk+1 had orthonormal columns this would be equivalent to:

Minimise

‖rk‖ = ‖‖r0‖e1 − T kyk‖
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Quasi minimal residuals (2)

However, in general Vk does not have orthogonal columns.

We could ignore this fact and still compute yk by minimising

‖‖r0‖e1 − T kyk‖

The resulting algorithm is called QMR. For many problems, the

convergence of QMR is smoother than of Bi-CG, but not essenti-

ally faster.
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Bi-CG wastes time

Bi-CG constructs its approximations as a linear combination of

the columns of Vk. The only reason why we construct shadow

vectors is to calculate the parameters αk and βk.

Another disadvantage of Bi-CG and QMR is that operations with

AT have to be performed, and this may be difficult in matrix-free

computations.

Next we look at the following questions:

• Can the computational work of Bi-CG be better exploited?

• Can operations with AT be avoided?
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Bi-CG: a closer look

In the Bi-CG method, the residual vector can be expressed as

rk = φk(A)r0

and the direction vector as

pk = πk(A)r0

with φk and πk polynomials of degree k.

The shadow vectors r̃k and p̃k are defined through the same

recurrences as rk and pk. Hence

r̃k = φk(A
T )r̃0, p̃k = πk(A

T )r̃0
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Towards a faster algorithm

The scalar αk in Bi-CG is given by

αk =
(φk(A

T )r̃0)
T (φk(A)r0)

(πk(AT )r̃0)T (Aπk(A)r0)
=

r̃T
0 φ

2
k(A)r0

r̃T
0
Aπ2

k(A)r0

The idea is now to find an algorithm which gives residuals r̂k that

satisfy

r̂k = φk
2(A)r0.

The algorithm that is based on this idea is called CGS (by

Sonneveld in 1989).
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Conjugate Gradients Squared
x0 is an initial guess; r0 = b−Ax0;

r̃0 arbitrary, such that rT
0 r̃0 6= 0 , ρ0 = rT

0 r̃0) ;

β−1 = ρ0 ; p−1 = q0 = 0 ;

FOR i = 0, 1, 2, ... DO

ui = ri + βi−1qi ;

pi = ui + βi−1(qi + βi−1pi−1) ;

v̂ = Api ;

αi = ρi

r̃T

0
v̂

;

qi+1 = ui − αiv̂ ;

si = ui + qi+1

xi+1 = xi + αi(ui + qi+1) ;

ri+1 = ri − αiA(ui + qi+1) ;

ρi+1 = r̃T
0 ri+1 ; βi = ρi+1

ρi
;

END FOR
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CGS (2)

For many problems CGS converges considerably faster than

Bi-CG, sometimes twice as fast.

However, convergence is more erratic. Bi-CG shows peaks in

the convergence curves. These peaks are squared by CGS.

The peaks can destroy the accuracy of the solution and also

convergence of the method. The search for a more smoothly

converging method has led to the development of Bi-CGSTAB by

Van der Vorst.
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Bi-CGSTAB

Bi-CGSTAB is based on the following observation. Instead of

squaring the Bi-CG polynomial, we can construct other iteration

methods by which xk are generated so that

rk = ψk(A)φk(A)r0

Bi-CGSTAB takes a polynomial of the form

ψk(x) = (1 − ω1x)(1 − ω2x)...(1 − ωkx)

The ωk are chosen to minimise the current residual in the same

way as in the one-step minimal residual method.
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Bi-CGSTAB: the algorithm
x0 is an initial guess; r0 = b−Ax0;

r̃0 arbitrary, such that rT
0 r̃0 6= 0 , ρ−1 = α−1 = ω−1 = 1 ;

v−1 = p−1 = 0 ;

FOR k = 0, 1, 2, ... DO

ρk = r̃T
0 rk ; βk−1 = (ρk/ρk−1)(αk−1/ωk−1) ;

pk = rk + βk−1(pk−1 − ωk−1vk−1) ;

vk = Apk ;

αk = ρk/(r̃
T
0 vk) ;

s = rk − αkvk ;

t = As ;

ωk = (tT s)/(tT t) ;

xk+1 = xk + αkpk + ωks ;

rk+1 = s− ωkt ;

END FOR
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Convergence of Bi-CG methods

No bounds on the residual norm can be given for the four

methods of today: they have no optimality property.

Some general observations can be made:

• All four methods that we discussed today are finite. They all

show superlinear convergence.

• The rate of convergence of Bi-CG and QMR is basically the

same, but convergence of QMR is smoother.

• Convergence of Bi-CGSTAB and CGS is most of the time

faster than of the other two methods. But convergence of

CGS can be erratic which has a negative effect on the

accuracy.
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Convergence: first example

The figure below shows typical convergence curves for

Bi-CGSTAB, CGS, QMR and Bi-CG.
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Convergence: second example

The figure below shows another example of the convergence of

Bi-CGSTAB, CGS, QMR and Bi-CG.
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BiCGSTAB2 and BiCGstab( ℓ)

For some problems, in particular for real problems with large

complex eigenvalues, Bi-CGSTAB does not work well. The

reason is that for such problems it is not possible to construct a

residual minimising polynomial of the form

ψk(x) = (1 − ω1x)(1 − ω2x)...(1 − ωkx) .

Such a polynomial has real roots, and can therefore not

approximate large eigenvalues.

To overcome this problem Gutknecht proposed BiCGSTAB2,

which uses a polynomial with quadratic factors. Sleijpen and

Fokkema proposed BiCGstab(ℓ), which uses polynomial factors

of degree ℓ.
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Intermezzo

Of the Bi-CG methods Bi-CGSTAB is by far the most widely

used.

Recently, the new method IDR(s) has been proposed by

Sonneveld and van Gijzen.

IDR(1) and Bi-CGSTAB are mathematically equivalent. But

convergence of IDR(s) is often much faster than of Bi-CGSTAB

for s > 1.

Although Bi-CGSTAB and IDR(1) are mathematically equivalent,

IDR(s) is based on a completely different approach.
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The IDR approach for solving Ax = b

Generate residuals rn = b−Axn that are in subspaces Gj of

decreasing dimension.

These nested subspaces are related by

Gj = (I − ωjA)(Gj−1 ∩ S)

where

• S is a fixed proper subspace of C
N ,

• and the ωj ∈ C’s are non-zero scalars.

Ultimately rn ∈ {0} (IDR theorem).
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The IDR theorem

Theorem 1 (IDR) Let A be any matrix in C
N×N , let v0 be any

nonzero vector in C
N , and let G0 be the complete Krylov space

KN (A; v0). Let S denote any (proper) subspace of C
N such that

S and G0 do not share a nontrivial invariant subspace of A, and

define the sequence Gj , j = 1, 2, . . . as

Gj = (I − ωjA)(Gj−1 ∩ S)

where the ωj ’s are nonzero scalars. Then

(i) Gj ⊂ Gj−1 for all j > 0.

(ii) Gj = {0} for some j ≤ N .
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Making an IDR algorithm
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Making an IDR algorithm (2)

Definition of S:

S can be defined as span(p1 . . . ps)
⊥. Let P be the matrix with

p1 . . . ps as its columns. Then v ∈ S ⇔ PHv = 0.

Residual difference vectors:

We compute residual difference vectors

∆rn = rn+1 − rn = −A∆xn to update the solution vector xn+1

with the residual rn+1.



32

PhD-course DTU Informatics, Graduate School ITMAN

Making an IDR algorithm (3)

Intermediate residuals

Intermediate residuals rn can be generated by repeating the

algorithm. Once s+ 1 residuals in Gj have been computed, the

next residual will be in Gj+1.

Choice of ω

Every s+ 1st step a new ω may be chosen. We choose it such

that the next residual is minimized in norm.
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Prototype IDR( s) algorithm.
while ‖rn‖ > TOL or n < MAXIT do

for k = 0 to s do
Solve c from PHdRnc = PHrn

v = rn − dRnc; t = Av;

if k = 0 then
ω = (tHv)/(tHt);

end if
drn = −dRnc− ωt; dxn = −dXnc+ ωv;

rn+1 = rn + drn; xn+1 = xn + dxn;

n = n+ 1;

dRn = (drn−1 · · · drn−s); dXn = (dxn−1 · · · dxn−s);

end for
end while
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Convergence of IDR( s)

The figure below shows typical convergence of Bi-CGSTAB,

GMRES (optimal) and IDR(s).
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Concluding remarks (1)

Today we discussed short recurrence methods for solving

nonsymmetric problems.

Of these methods Bi-CGSTAB is by far the most popular.

A logical question to ask is: are there better methods than

Bi-CGSTAB possible that use short recurrences?

The answer is: sure! For example IDR(s). However, neither

Bi-CGSTAB nor IDR(s) reduce an error in an optimal way.

Another question is: Is it possible to derive an optimal method for

general matrices that uses short recurrences?

The answer is: unfortunately not. This has been proven by Faber

and Manteufel in the 90’s.



36

PhD-course DTU Informatics, Graduate School ITMAN

Concluding remarks

When should we use IDR(s) and when GMRES?

It is difficult to give a general answer.

Rules of thumb are:

• Are matrix-vector multiplications (and/or preconditioning

operations) expensive?

GMRES is your best bet, at least if the number of iterations

is limited.

• Are matrix-vector multiplications inexpensive and you expect

that many iterations are needed (for example because you

use a simple preconditioner)?

Use IDR(s) (with s = 4 as a good default).
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