
1

PhD-course DTU Informatics, Graduate School ITMAN
Delft University of Technology

Iterative Methods for Linear
Systems of Equations
Preconditioning techniques

ITMAN PhD-course, DTU, 20-10-08 till 24-10-08

Martin van Gijzen

2

PhD-course DTU Informatics, Graduate School ITMAN

Overview day 5

• Preconditioning

• Some popular preconditioners

• Diagonal scaling (Jacobi)

• Gauss-Seidel, SOR and SSOR

• Incomplete Choleski and Incomplete LU

• Advanced preconditioners

• Multigrid

• Domain decomposition

• Preconditioning of KKT systems

3

PhD-course DTU Informatics, Graduate School ITMAN

Introduction

Already on the first day we saw that Richardson’s method could

be improved by applying a preconditioner. Preconditioners are a

key to successful iterative methods. In general they are very

problem dependent.

Today we will discuss some standard preconditioners and some

ideas behind advanced preconditioning techniques.

4

PhD-course DTU Informatics, Graduate School ITMAN

Preconditioning (1)

A preconditioned iterative solver solves the system

M−1Ax = M−1b .

The matrix M is called the preconditioner.

The preconditioner should satisfy certain requirements:

• Convergence should be much faster for the preconditioned

system than for the original system. Normally this means

that M is constructed as an easily invertible approximation

to A. Note that if M = A any iterative method converges in

one iteration.

• Operations with M−1 should be easy to perform ("cheap").

5

PhD-course DTU Informatics, Graduate School ITMAN

Preconditioning (2)

Of course the matrix M−1A is not explicitly formed. The

multiplication u = M−1Av can simply be carried out by the

operations

t = Av; u = M−1t

6

PhD-course DTU Informatics, Graduate School ITMAN

Preconditioning (3)

Preconditioners can be applied in different ways:

From the left

M−1Ax = M−1b ,

centrally

M = LU ; L−1AU−1y = L−1b; x = U−1y ,

or from the right

AM−1y = b; x = M−1y .

7

PhD-course DTU Informatics, Graduate School ITMAN

Preconditioning (4)

Left, right and central preconditioning gives the same spectrum.

Yet there are other differences:

• Left preconditioning is most natural: no extra step is

required to compute x;

• Central preconditioning preserves symmetry;

• Right preconditioning does not affect the residual norm.

8

PhD-course DTU Informatics, Graduate School ITMAN

Why preconditioners?

0
2

4
6

8
10

12
14

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

Information after 1 iteration

8

PhD-course DTU Informatics, Graduate School ITMAN

Why preconditioners?

0
2

4
6

8
10

12
14

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

Information after 7 iterations

8

PhD-course DTU Informatics, Graduate School ITMAN

Why preconditioners?

0
2

4
6

8
10

12
14

0

5

10

15

20

25
0

0.2

0.4

0.6

0.8

1

Information after 21 iterations

9

PhD-course DTU Informatics, Graduate School ITMAN

Why preconditioning?

From the previous pictures it is clear that we need

O(1/h) = O(
√

n) iterations to move information from one end to

the other end of the grid.

So at best it takes O(n3/2) operations to compute the solution

with an iterative method.

In order to improve this we need a preconditioner that enables

fast propagation of information through the mesh.

10

PhD-course DTU Informatics, Graduate School ITMAN

Clustering the spectrum

On day 2 we saw that CG performs better when the spectrum of

A is clustered.

Therefore, a good preconditioner clusters the spectrum.

0 1 2 3 4
−1

−0.5

0

0.5

1

0 1 2 3 4
−1

−0.5

0

0.5

1

11

PhD-course DTU Informatics, Graduate School ITMAN

Diagonal scaling

Diagonal scaling or Jacobi preconditioning uses

M = diag(A)

as preconditioner. Clearly, this preconditioner does not enable

fast propagation through a grid. On the other hand, operations

with diag(A) are very easy to perform and diagonal scaling can

be useful as a first step, in combination with other techniques.

12

PhD-course DTU Informatics, Graduate School ITMAN

Gauss-Seidel, SOR and SSOR
The Gauss-Seidel preconditioner is defined by

M = L + D

in which L is the strictly lower-triangular part of A and

D = diag(A). By introducing a relaxation parameter, we get the

SOR-preconditioner.

For symmetric problems it is wise to take a symmetric

preconditioner. A symmetric variant of Gauss-Seidel is defined

by

M = (L + D)D−1(L + D)T

By introducing a relaxation parameter we get the so called

SSOR-preconditioner.

13

PhD-course DTU Informatics, Graduate School ITMAN

ILU-preconditioners (1)

ILU-preconditioners are the most popular ’black box’

preconditioners. They are constructed by making a standard

LU-decomposition

A = LU .

However, during the elimination process some nonzero entries in

the factors are discarded. This can be done on basis of two

criteria:

• Sparsity pattern: e.g. an entry in a factor is only kept if it

corresponds to a nonzero entry in A;

• Size: small entries in the decomposition are dropped.

14

PhD-course DTU Informatics, Graduate School ITMAN

ILU-preconditioners (2)

The number of nonzero entries that is maintained in the

LU-factors is normally of the order of the number of nonzeros in

A.

This means that operations with the LU-preconditioner are

approximately as costly as multiplications with A.

For A Symmetric Positive Definite a special variant of ILU exists,

called Incomplete Choleski. This preconditioner is based on the

Choleski decomposition A = CCT .

15

PhD-course DTU Informatics, Graduate School ITMAN

Basic preconditioners

Although the preconditioners discussed before can considerably

reduce the number of iterations, they do not normally reduce the

mesh-dependency of the number of iterations.

In the next slides we take a closer look at how basic iterative

methods reduce the error. From the observations we make, we

will develop the idea that is at the basis of one of the fastest

techniques: multigrid.

16

PhD-course DTU Informatics, Graduate School ITMAN

Smoothing Property

Random initial error

16

PhD-course DTU Informatics, Graduate School ITMAN

Smoothing Property

Error after 1 Jacobi iterations

16

PhD-course DTU Informatics, Graduate School ITMAN

Smoothing Property

Error after 2 Jacobi iterations

16

PhD-course DTU Informatics, Graduate School ITMAN

Smoothing Property

Error after 3 Jacobi iterations

17

PhD-course DTU Informatics, Graduate School ITMAN

Complementarity

• Error after a few weighted Jacobi iterations has structure,

this is the same for the other basic iterative methods.

• Instead of discarding the method, look to complement its

failings

How can we best correct errors that are slowly reduced by basic

iterative method?

17

PhD-course DTU Informatics, Graduate School ITMAN

Complementarity

• Error after a few weighted Jacobi iterations has structure,

this is the same for the other basic iterative methods.

• Instead of discarding the method, look to complement its

failings

How can we best correct errors that are slowly reduced by basic

iterative method?

• Slow-to-converge errors are smooth

• Smooth vectors can be accurately represented using fewer

degrees of freedom

18

PhD-course DTU Informatics, Graduate School ITMAN

Coarse-Grid Correction

• Smooth vectors can be accurately represented using fewer

degrees of freedom

• Idea: transfer job of resolving smooth components to a

coarser grid version of the problem

• Need:

• Complementary process for resolving smooth

components of the error on the coarse grid

• Way to combine the results of the two processes

19

PhD-course DTU Informatics, Graduate School ITMAN

Multigrid

• Relaxation is the name for applying one or a few basic

iteration steps.

• Idea is to correct the approximation after relaxation, x(1),

from a coarse-grid version of the problem

• Need interpolation map, P , from coarse grid to fine grid

• Corrected approximation will be x(2) = x(1) + Pxc

• xc is the solution of the coarse-grid problem and satisfies

(P T AP)xc = P T A(x − x(1)) = P T r(1)

20

PhD-course DTU Informatics, Graduate School ITMAN

Two-grid cycle

20

PhD-course DTU Informatics, Graduate School ITMAN

Two-grid cycle

Multigrid Components

• Relaxation Relax: x(1)= x(0)+M (0)r-1

• Use a smoothing process (such as Jacobi or Gauss-Seidel)

to eliminate oscillatory errors

• Remaining error satisfies Ae(1) = r(1) = b − Ax(1)

20

PhD-course DTU Informatics, Graduate School ITMAN

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

Relax: x(1)= x(0)+M (0)r-1

Restriction

• Transfer residual to coarse grid

• Compute P T r(1)

20

PhD-course DTU Informatics, Graduate School ITMAN

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

Relax: x(1)= x(0)+M (0)r-1

Restriction

Solve: PTAPxc= PTr(1)

• Use coarse-grid correction to eliminate smooth errors

• Best correction xc satisfies

P T APxc = P T r(1)

20

PhD-course DTU Informatics, Graduate School ITMAN

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

• Transfer correction to fine grid

• Compute x(2) = x(1) + Pxc

20

PhD-course DTU Informatics, Graduate School ITMAN

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

• Relax once again to remove oscillatory error introduced in

coarse-grid correction

20

PhD-course DTU Informatics, Graduate School ITMAN

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Direct solution of coarse-grid problem isn’t practical

20

PhD-course DTU Informatics, Graduate School ITMAN

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Direct solution of coarse-grid problem isn’t practical

Use an iterative method!

20

PhD-course DTU Informatics, Graduate School ITMAN

Two-grid cycle

Multigrid Components

• Relaxation

• Restriction

• Coarse-Grid

Correction

• Interpolation

• Relaxation

Relax: x(1)= x(0)+M (0)r-1

Restriction Interpolation

Solve: PTAPxc= PTr(1)

Relax

Recursion!

Apply same methodology to solve coarse-grid problem

21

PhD-course DTU Informatics, Graduate School ITMAN

The Multigrid V-cycle

Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax

22

PhD-course DTU Informatics, Graduate School ITMAN

Properties of Effective Cycles
• Fast convergence

• Effective reduction of all error components

• On each level, coarse-grid correction must effectively

reduce exactly those errors that are slow to be reduced

by relaxation alone

• Hierarchy of coarse-grid operators resolves relevant

physics at each scale

• Low iteration cost

• Simple relaxation scheme (cheap computation of M−1r

on all levels)

• Sparse coarse-grid operators

• Sparse interpolation/restriction operations

23

PhD-course DTU Informatics, Graduate School ITMAN

Choosing Coarse Grids
• No best strategy to choose coarse grids

• Operator dependent, but also machine dependent

• For structured meshes, often use uniform de-refinement

approach

• For unstructured meshes, various weighted independent set

algorithms are often used.

24

PhD-course DTU Informatics, Graduate School ITMAN

What didn’t we talk about?

• How do we choose P?

• Number of columns

• Sparsity structure

• Non-zero values

• Choices depend closely on the properties of the relaxation

method

25

PhD-course DTU Informatics, Graduate School ITMAN

Some remarks about multigrid

Multigrid works well if the problem

- is grid-based. However, matrix-based multigrid methods

(Algebraic Multigrid) do exist and are often successful;

- has a smooth solution. An underlying assumption is that the

solution can be represented on a coarser grid. Multigrid

works particularly well for Poisson-type problems. For these

problems the number of operations is O(n).

Multigrid can be used as a separate solver, but is often used as

a preconditioner for a Krylov-type method.

26

PhD-course DTU Informatics, Graduate School ITMAN

Parallel computing

Modern supercomputers may contain many thousands of

processors. Another popular type of parallel computer is the

cluster of workstations connected via a communication network.

Parallel computing poses special restrictions on the numerical

algorithms. In particular, algorithms that rely on recursions are

difficult to parallelise.

27

PhD-course DTU Informatics, Graduate School ITMAN

Domain decomposition preconditioners (1)

A standard way to parallelise a grid-based computation is to split

the domain into p subdomains, and to map each subdomain on a

processor.

It is a natural idea to solve the subdomain problems

independently and to iterate to correct for the error.

This idea has given rise to the family of domain decomposition

preconditioners.

The theory for domain decomposition preconditioners is vast,

here we only discuss some important ideas.

28

PhD-course DTU Informatics, Graduate School ITMAN

Domain decomposition

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-4 -3 -2 -1 0 1 2 3 4

Simple Mesh

Example of domain decomposition

29

PhD-course DTU Informatics, Graduate School ITMAN

Domain decomposition (2)

The domain decomposition decomposes the system Ax = b into

blocks. For two subdomains one obtains

A =





A11 A12

A21 A22









x1

x2



 =





b1

b2



 ,

x1 and x2 represent the subdomain unknowns, A11 and A22 the

subdomain discretization matrices and A12 and A21 the coupling

matrices between subdomains.

30

PhD-course DTU Informatics, Graduate School ITMAN

Domain decomposition preconditioners

It is a natural idea to solve a linear system Ax = b by solving the

subdomain problems independently and to iterate to correct for

the error.

This idea has given rise to the family of domain decomposition

preconditioners.

The theory for domain decomposition preconditioners is vast,

here we only discuss some important ideas.

31

PhD-course DTU Informatics, Graduate School ITMAN

Block-Jacobi preconditioner

A simple domain decomposition preconditioner is defined by

M =





A11 0

0 A22



 (Block-Jacobi preconditioner).

or, in general by

M =











A11

. . .

AMM











The subdomain systems can be solved in parallel.

32

PhD-course DTU Informatics, Graduate School ITMAN

Solution of the subdomain problems

There are several ways to solve the subdomain problems:

• Exact solves. This is in general (too) expensive.

• Inexact solves using an incomplete decomposition

(block-ILU).

• Inexact solves using an iterative method to solve the

subproblems. Since in this case the preconditioner is

variable, the outer iteration should be f lexible, for example

GCR.

33

PhD-course DTU Informatics, Graduate School ITMAN

On the scalability of block-Jacobi

Without special techniques, the number of iterations increases

with the number of subdomains. The algorithm is not scalable.

To overcome this problem, techniques can be applied to enable

the exchange of information between subdomains.

34

PhD-course DTU Informatics, Graduate School ITMAN

Improving the scalability

Two popular techniques that improve the flow of information are:

• Use an overlap between subdomains. Of course one has to

ensure that the value of unknowns in gridpoints that belong

to multiple domains is unique.

• Use a coarse grid correction. The solution of the coarse grid

problem is added to the subdomain solutions.

This idea is closely related to multigrid, since the coarse-grid

solution is the non-local, smooth part of the error that cannot

be represented on a single subdomain.

35

PhD-course DTU Informatics, Graduate School ITMAN

KKT or saddle point systems

KKT systems frequently arise in optimisation. KKT systems are

also know as saddle-point systems. A KKT system has the

following block structure

A =





F BT

B −C





with F and C symmetric pos. def matrices.

Systems with such a matrix arise in many other applications, for

example in CFD (Stokes problem) and in structural engineering.

36

PhD-course DTU Informatics, Graduate School ITMAN

Preconditioning a KKT-system (1)

Many preconditonres have been developed that make use of the

fact that of the system matrix

A =





F BT

B −C





a block LU decomposition can be made:




F BT

B −C



 =





I OT

BF−1 I









F BT

O −MS



 .

Here MS = BF−1BT + C is the Schur complement.

37

PhD-course DTU Informatics, Graduate School ITMAN

Preconditioning a KKT-system (2)
Idea (e.g. Elman, Silvester, Wathen): take

P =





F BT

O −MS





as (right) preconditioner:

AP−1 =





I OT

BF−1 I





has only eigenvalue 1: GMRES ready in 2 iterations. BUT

• Preconditioner is nonsymmetric

• Schur complement is too expensive to compute and has to

be approximated

38

PhD-course DTU Informatics, Graduate School ITMAN

Preconditioning a KKT-system (3)

An SPD block-diagonal preconditioner:

P =





F OT

O MS





Can be used with MINRES (short recurrences)

Preconditioned matrix has three distinct eigenvalues

→ MINRES needs three iterations.

The main question is again how to make a cheap approximation

to the Schur complement.

39

PhD-course DTU Informatics, Graduate School ITMAN

Concluding remarks

Preconditioners are the key to a successful iterative method.

Today we saw some of the most important preconditioners. The

’best’ preconditioner, however, depends completely on the

problem.

	Overview day 5
	Introduction
	Preconditioning (1)
	Preconditioning (2)
	Preconditioning (3)
	Preconditioning (4)
	Why preconditioners?
	Why preconditioning?
	Clustering the spectrum
	Diagonal scaling
	Gauss-Seidel, SOR and SSOR
	ILU-preconditioners (1)
	ILU-preconditioners (2)
	Basic preconditioners
	Smoothing Property
	Complementarity
	Coarse-Grid Correction
	Multigrid
	Two-grid cycle
	The Multigrid V-cycle
	Properties of Effective Cycles
	Choosing Coarse Grids
	What didn't we talk about?
	Some remarks about multigrid
	Parallel computing
	Domain decomposition preconditioners (1)
	Domain decomposition
	Domain decomposition (2)
	Domain decomposition preconditioners
	Block-Jacobi preconditioner
	Solution of the subdomain problems
	On the scalability of block-Jacobi
	Improving the scalability
	 KKT or saddle point systems
	Preconditioning a KKT-system (1)
	Preconditioning a KKT-system (2)
	Preconditioning a KKT-system (3)
	Concluding remarks

