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We consider the problem of estimating the distribution function, the den-
sity and the hazard rate of the (unobservable) event time in the current status
model. A well studied and natural nonparametric estimator for the distribu-
tion function in this model is the nonparametric maximum likelihood estima-
tor (MLE). We study two alternative methods for the estimation of the dis-
tribution function, assuming some smoothness of the event time distribution.
The first estimator is based on a maximum smoothed likelihood approach.
The second method is based on smoothing the (discrete) MLE of the dis-
tribution function. These estimators can be used to estimate the density and
hazard rate of the event time distribution based on the plug-in principle.

1. Introduction. In survival analysis, one is interested in the distribution of
the time it takes before a certain event (failure, onset of a disease) takes place.
Depending on exactly what information is obtained on the time X and the precise
assumptions imposed on its distribution function F0, many estimators for F0 have
been defined and studied in the literature.

When a sample of Xi’s is directly and completely observed, one can estimate F0
under various assumptions. In the parametric approach, one assumes F0 to belong
to a parametric class of distributions, e.g., the exponential- or Weibull distribu-
tions. Then estimating F0 boils down to estimating a finite-dimensional parameter
and a variety of classical point estimation procedures can be used to do this. If one
wishes to estimate F0 fully nonparametrically, so without assuming any proper-
ties of F0 other than the basic properties of distribution functions, the empirical
distribution function Fn of X1, . . . ,Xn is a natural candidate to use. If the distribu-
tion function is known to have a continuous derivative f0 w.r.t. Lebesgue measure,
one can use kernel estimators [see, e.g., Silverman (1986)] or wavelet methods
[see, e.g., Donoho and Johnstone (1995)] for estimating f0. Finally, in case F0
is known to satisfy a certain shape constraint as concavity or convex-concavity
on [0,∞), a shape-constrained estimator for F0 can be used. Problems of this
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type were considered in, e.g., Bickel and Fan (1996), Groeneboom, Jongbloed and
Wellner (2002) and Dümbgen and Rufibach (2009).

However, in many cases the variable X is not observed completely, due to some
sort of censoring. Parametric inference in such situations is often not really differ-
ent from that based on exactly observed Xi’s. The parametric model for X basi-
cally transforms to a parametric model for the observable data and the usual meth-
ods for parametric point estimation can be used to estimate F0. For various types
of censoring, also nonparametric estimators have been proposed. In the context
of right-censoring, the Kaplan–Meier estimator [see Kaplan and Meier (1958)] is
the (nonparametric) maximum likelihood estimator of F0. It maximizes the like-
lihood of the observed data over all distribution functions, without any additional
constraints. Density estimators also exist in this setting, see, e.g., Marron and Pad-
gett (1987). Huang and Zhang (1994) consider the MLE for estimating F0 and its
density in this setting under the assumption that F0 is concave on [0,∞).

The type of censoring we focus on in this paper, is interval censoring, case I.
The model for this type of observations is also known as the current status model.
In this model, a censoring variable T , independent of X, is observed as well as
a variable � = 1{X≤T }, indicating whether the (unobservable) X lies to the left
or to the right of the observed T . For this model, the (nonparametric) maximum
likelihood estimator is studied in Groeneboom and Wellner (1992). This estimator
is discrete and is therefore not suitable for estimating the density f0, the hazard
rate λ0 = f0/(1 − F0) or the transmission potential which depend on the hazard
rate λ0 studied in Keiding (1991). An estimator that can be used to estimate these
quantities is the maximum likelihood estimator studied by Dümbgen, Freitag-Wolf
and Jongbloed (2006) under the constraint that F is concave or convex-concave.

In this paper, we study two likelihood based estimators for F0 (and its density f0
and hazard rate λ0) based on interval censored data from F0 under the assumption
that F0 is continuously differentiable. The first estimator we study is a so-called
maximum smoothed likelihood estimator (MSLE) as studied by Eggermont and
LaRiccia (2001) in the context of monotone and unimodal density estimation. It
is a general likelihood-based M-estimator that will turn out to be smooth auto-
matically. The second estimator we consider, the smoothed maximum likelihood
estimator (SMLE), is obtained by convolving the (discrete) MLE of Groeneboom
and Wellner (1992) with a smoothing kernel. These different methods result in dif-
ferent but related estimators. Analyzing the pointwise asymptotics shows that only
the biases of these estimators differ while the variances are equal. We cannot say
that one estimator is uniformly superior to the other. In a somewhat analogous way,
Mammen (1991) studies the differences between the efficiencies of smoothing of
isotonic estimates and isotonizing smooth estimates. This also does not produce a
clear “winner.”

The outline of this paper is as follows. In Section 2, we introduce the current
status model and review some results needed in the sequel. The MSLE F̂ MS

n for
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F0 based on current status data is introduced and characterized in Section 3. More-
over, asymptotic results are derived for F̂ MS

n as well as its density f̂ MS
n and hazard

rate λ̂MS
n , showing that the rate of convergence of F̂ MS

n is faster than the rate of
convergence of the MLE. In Section 4, the SMLE for F0, f0 and λ0 are introduced
and their asymptotic properties derived. The resulting asymptotic distributions are
very similar to the asymptotic distributions of the MSLE. In Section 5, we briefly
address the problem of bandwidth selection in practice. We also apply these meth-
ods to a data set on hepatitis A from Keiding (1991). Technical proofs and lemmas
can be found in the Appendix.

2. The current status model. Consider an i.i.d. sequence X1,X2, . . . with
distribution F0 on [0,∞) and independent of this an i.i.d. sequence T1, T2, . . . from
a distribution G with Lebesgue density g on [0,∞). Based on these sequences,
define Zi = (Ti,1{Xi≤Ti}) =: (Ti,�i). Then Z1,Z2, . . . are i.i.d. and have density
fZ with respect to the product of Lebesgue- and counting measure on [0,∞) ×
{0,1}:

fZ(t, δ) = g(t)
{
δF0(t) + (1 − δ)

(
1 − F0(t)

)}
(2.1)

= δg1(t) + (1 − δ)g0(t).

One usually says that the Xi’s take their values in the hidden space [0,∞) and the
Zi take their values in the observation space [0,∞) × {0,1}.

Let Pn be the empirical distribution of Z1, . . . ,Zn. Writing down the log likeli-
hood as a function of F and dividing by n, we get

l(F ) =
∫ {

δ logF(t) + (1 − δ) log
(
1 − F(t)

)}
dPn(t, δ).(2.2)

Here, we ignore a term in the log likelihood that does not depend on the distribution
function F .

In Groeneboom and Wellner (1992), it is shown that the (nonparametric) max-
imum likelihood estimator (MLE) is well defined as maximizer of (2.2) over all
distribution functions and that it can be characterized as the left derivative of the
greatest convex minorant of a cumulative sum diagram. To be precise, the observed
time points Ti are ordered in increasing order, yielding T(1) < T(2) < · · · < T(n),
and the � associated with T(i) is denoted by �(i). Then the cumulative sum dia-
gram consisting of the points

P0 = (0,0), Pi =
(

i

n
,

1

n

i∑
j=1

�(j)

)

is constructed. Having determined the greatest convex minorant of this diagram,
F̂n(T(i)) is given by the left derivative of this minorant, evaluated at the point Pi .
At other points it is defined by right continuity. Denoting by Gn the empirical
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distribution function of the Ti’s and by Gn,1 the empirical subdistribution function
of the Ti ’s with �i = 1, observe that for 0 ≤ i ≤ n, Pi = (Gn(T(i)),Gn,1(T(i))).
Also note that F̂n is a step function of which the set of jump points {τ1, . . . , τm} is
a subset of the set {Ti : 1 ≤ i ≤ n}.

Groeneboom and Wellner (1992) show that this MLE is a consistent estimator
of F0, and prove that under some local smoothness assumptions, for t > 0 fixed,
n1/3(F̂n(t)−F0(t)) has the so-called Chernoff distribution as limiting distribution.
If F0 and G are assumed to satisfy conditions (F.1) and (G.1) below Groeneboom
and Wellner (1992) also prove (see their Lemma 5.9 and page 120)

‖F0 − F̂n‖∞ = Op(n−1/3 logn),(2.3)

max
1≤i≤m

|τi+1 − τi | = Op(n−1/3 logn).(2.4)

(F.1) F0 has bounded support S0 = [0,M0] and is strictly increasing on S0 with
density f0, strictly staying away from zero.

(G.1) G has support SG = [0,∞), is strictly increasing on S0 with density g stay-
ing away from zero and g′ is bounded on S0.

From this, it follows that for fixed t > 0, any ν > 0 and It = [t − ν, t + ν]
sup
u∈It

|F0(u) − F̂n(u)| = Op(n−1/3 logn),(2.5)

max
i : τi∈It

|τi+1 − τi | = Op(n−1/3 logn).(2.6)

If one is willing to assume smoothness on F0 and use this in the estimation
procedure, this cube-root-n rate of convergence of the estimator can be improved.
The two estimators of F0 we define, do indeed converge at the faster rate n2/5.

3. Maximum smoothed likelihood estimation. In this section, we define the
maximum smoothed likelihood estimator (MSLE) F̂ MS

n for the unknown distrib-
ution function F0 of the variable of interest X. We characterize this estimator as
the derivative of the convex minorant of a function on R and derive its pointwise
asymptotic distribution. Based on F̂ MS

n , estimators for the density f0 as well as for
the hazard rate λ0 = f0/(1 − F0) are defined and studied asymptotically.

We start with defining the estimators. Define the empirical subdistribution func-
tions based on the Tj ’s with �j = 0 and 1, respectively, by

Gn,i(t) = 1

n

n∑
j=1

1[0,t]×{i}(Tj ,�j ) for i = 0,1,

and note that the empirical distribution of the data {Zj = (Tj ,�j ) : 1 ≤ j ≤ n}
can be expressed as dPn(t, δ) = δ dGn,1(t) + (1 − δ) dGn,0(t). Let Ĝn,1 and Ĝn,0
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be smoothed versions of Gn,1 and Gn,0, respectively (e.g., via kernel smoothing),
let ĝn,1 and ĝn,0 be their densities w.r.t. Lebesgue measure on [0,∞) and de-
fine dP̂n(t, δ) = δ dĜn,1(t) + (1 − δ) dĜn,0(t). This is a smoothed version of the
empirical measure Pn, where smoothing is only performed “in the t-direction.”
Following the general approach of Eggermont and LaRiccia (2001), we replace
the empirical distribution Pn in the definition of the log likelihood (2.2) by this
smoothed version P̂n, and define the smoothed log likelihood on the class of all
distribution functions by

lS(F ) =
∫ {

δ logF(t) + (1 − δ) log
(
1 − F(t)

)}
dP̂n(t, δ)

(3.1)
=

∫
log

(
1 − F(t)

)
dĜn,0(t) +

∫
logF(t) dĜn,1(t).

The maximizer of the smoothed log likelihood is characterized similarly as the
maximizer of the log likelihood. The next theorem makes this precise.

THEOREM 3.1. Define Ĝn(t) = Ĝn,0(t) + Ĝn,1(t) for t ≥ 0 and consider
the following parameterized curve in R2+, a continuous cumulative sum diagram
(CCSD):

t �→ (Ĝn(t), Ĝn,1(t)),(3.2)

for t ∈ [0, τ ], with τ = sup{t ≥ 0 : ĝn,0(t) + ĝn,1(t) > 0}. Let F̂ MS
n (t) be the right-

continuous slope of the lower convex hull of the CCSD (3.2), evaluated at the point
with x-coordinate Ĝn(t). Then F̂ MS

n is the unique maximizer of (3.1) over the class
of all sub-distribution functions. We call F̂ MS

n the maximum smoothed likelihood
estimator of F0.

In the proof of Theorem 3.1, we use the following lemma, a proof of which can
be found in the Appendix.

LEMMA 3.2. Let F̂ MS
n be defined as in Theorem 3.1. Then for any distribution

function F , ∫
logF(t) dĜn,1(t) ≤

∫
F̂ MS

n (t) logF(t) dĜn(t)

and ∫
log

(
1 − F(t)

)
dĜn,0(t) ≤

∫ (
1 − F̂ MS

n (t)
)

log
(
1 − F(t)

)
dĜn(t)

with equality in case F = F̂ MS
n .
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PROOF OF THEOREM 3.1. Use the equality part of Lemma 3.2 to rewrite (3.1)
as

lS(F̂ MS
n ) =

∫ (
F̂ MS

n (t) log F̂ MS
n (t) + (

1 − F̂ MS
n (t)

)
log

(
1 − F̂ MS

n (t)
))

dĜn(t).

By the inequality part of Lemma 3.2, we get for each distribution function F that

lS(F ) ≤
∫

F̂ MS
n (t) logF(t) dĜn(t) +

∫ (
1 − F̂ MS

n (t)
)

log
(
1 − F(t)

)
dĜn(t).

Now note, using the convention 0 · ∞ = 0, that for all p,p′ ∈ [0,1]
p logp′ + (1 − p) log(1 − p′) ≤ p logp + (1 − p) log(1 − p).(3.3)

This implies that lS(F ) ≤ lS(F̂ MS
n ), i.e., lS is maximal for F̂ MS

n .
For uniqueness, note that inequality (3.3) is strict whenever p′ 
= p. The last step

in the preceding argument then shows that lS(F ) < lS(F̂ MS
n ), unless F = F̂ MS

n a.e.
w.r.t. the measure dĜn. It could be that dĜn has no mass on [a, b] for some a < b,
i.e., (Ĝn(t), Ĝn,1(t)) = (Ĝn(a), Ĝn,1(a)) for all t ∈ [a, b]. This means that F̂ MS

n is
constant on [a, b]. Furthermore, it holds that F(a) = F̂ MS

n (a) and F(b) = F̂ MS
n (b),

implying that F is also constant and equal to F̂ MS
n on [a, b] a.e. w.r.t. the Lebesgue

measure on [0,∞). Hence, lS(F ) < lS(F̂ MS
n ) unless F = F̂ MS

n . �

We assume the estimators Ĝn,i are continuously differentiable, hence, F̂ MS
n is

continuous and its derivative exists. So we can define the maximum smoothed
likelihood estimators for f0 and λ0 by

f̂ MS
n (t) = d

du
F̂ MS

n (u)

∣∣∣∣
u=t

, λ̂MS
n (t) = f̂ MS

n (t)

1 − F̂ MS
n (t)

(3.4)

for t > 0 such that F̂ MS
n (t) < 1.

In Theorem 3.1 no particular choice for Ĝn,0 and Ĝn,1 was made. For what
follows, we define these estimators explicitly as kernel smoothed versions of Gn,0
and Gn,1. Let k be a probability density satisfying condition (K.1).

(K.1) The probability density k has support [−1,1], is symmetric and twice con-
tinuously differentiable on R.

Note that condition (K.1) implies that m2(k) = ∫
u2k(u) du < ∞.

Let K be the distribution function with density k, i.e., K(t) = ∫ t
−∞ k(u) du,

k′ be the derivative of k and h > 0 be a smoothing parameter (depending on n).
Then we use the following notation for the scaled version of K , k and k′

Kh(u) = K(u/h), kh(u) = 1

h
k(u/h) and k′

h(u) = 1

h2 k′(u/h).(3.5)
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For i = 0,1 let

ĝn,i(t) =
∫

kh(t − u)dGn,i(u)

be kernel (sub-density) estimates based on the observations Tj for which �j = i,
and let ĝn(t) = ĝn,1(t) + ĝn,0(t). Also define the associated (sub-) distribution
functions

Ĝn,i(t) =
∫
[0,t]

ĝn,i(u) du, for i = 0,1, and Ĝn(t) =
∫
[0,t]

ĝn(u) du.

Because X ≥ 0, we can expect inconsistency problems for the kernel density
and density derivative estimators at zero. In order to prevent those, we modify the
definition of ĝn,i for t < h. To be precise, we define

ĝn,i(t) =
∫ 1

h
kβ

(
t − u

h

)
dGn,i(u), 0 ≤ t ≤ h,

for β = t/h where the so-called boundary kernel kβ is defined by

kβ(u) = ν2,β(k) − ν1,β(k)u

ν0,β(k)ν2,β(k) − ν1,β(k)2 k(u)1(−1,β)(u)

with νi,β(k) =
∫ β

−1
uik(u) du, i = 0,1,2.

Let the estimators ĝ′
n,i be the derivatives of ĝn,i , for i = 0,1. There are other ways

to correct the kernel estimator near the boundary, see, e.g., Schuster (1985) or
Jones (1993). However, simulations show that the results are not much influenced
by the used boundary correction method.

Having made these choices for the smoothed empirical distribution P̂n, let us
return to the MSLE. It is the maximizer of lS over the class of all distribution
functions. One could also maximize lS over the bigger class of all functions, max-
imizing the integrand of (3.1) for each t separately. This results in

F̂ naive
n (t) = ĝn,1(t)

ĝn(t)
, f̂ naive

n (t) = ĝn(t)ĝ
′
n,1(t) − ĝ′

n(t)ĝn,1(t)

ĝn(t)2 ,(3.6)

where

ĝ′
n(t) = ĝ′

n,0(t) + ĝ′
n,1(t).(3.7)

We call these naive estimators, since f̂ naive
n might take negative values, meaning

that F̂ naive
n decreases locally.

Figure 1(a) shows a part of the CCSD defined in (3.2) and its lower convex
hull. Figure 1(b) shows the naive estimator F̂ naive

n (the grey line), the MSLE F̂ MS
n

and the true distribution for a simulation of size 500. The unknown distribution
of the variable X is taken to be a shifted Gamma(4) distribution, i.e., f0(x) =
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(a) (b)

FIG. 1. A part of the CCSD, its lower convex hull and the estimates F̂ naive
n and F̂ MS

n for F0 based
on simulated data, with n = 500. (a) Part of the CCSD (grey line) and its lower convex hull (dashed
line); (b) estimates F̂ naive

n (grey line) and F̂ MS
n (dashed line) of F0 (dotted line).

(x−2)3

3! exp(−(x − 2))1[2,∞)(x), and the censoring variable T has an exponential
distribution with mean 3, i.e., g(t) = 1

3exp(−t/3)1[0,∞). For the kernel density, we
took the triweight kernel k(t) = 35

32(1 − t2)31[−1,1](t) and as bandwidth h = 0.7.

This picture shows that the estimator F̂ MS
n is the isotonic version of the estimator

F̂ naive
n .
The next theorem shows that for appropriately chosen h, the naive estimator

F̂ naive
n will be monotonically increasing on big intervals with probability converg-

ing to one as n tends to infinity if F0 and G satisfy conditions (F.1) and (G.1).

THEOREM 3.3. Assume F0 and G satisfy conditions (F.1) and (G.1). Let ĝn

and ĝn,1 be kernel estimators for g and g1 with kernel density k satisfying condi-
tion (K.1). Let h = cn−α (c > 0) be the bandwidth used in the definition of ĝn and
ĝn,1. Then for all 0 < m < M < M0 and α ∈ (0,1/3) the following holds

P(F̂ naive
n is monotonically increasing on [m,M]) −→ 1.(3.8)

Note that this theorem as it stands does not imply that F̂ MS
n (t) = F̂ naive

n (t) on
[m,M] with probability tending to one. Some additional control on the behavior of
F̂ naive

n on [0,m) and (M,M0] is needed. The proof of the corollary below makes
this precise.

COROLLARY 3.4. Under the assumptions of Theorem 3.3, it holds that for all
0 < m < M < M0 and α ∈ (0,1/3),

P
(
F̂ naive

n (t) = F̂ MS
n (t) for all t ∈ [m,M]) −→ 1.(3.9)
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Consequently, for all t > 0 the asymptotic distributions of F̂ MS
n (t) and F̂ naive

n (t)

are the same.

In van der Vaart and van der Laan (2003), a result similar to our Corollary 3.4 is
proved for smooth monotone density estimators. The kernel estimator is compared
with an isotonized version of this estimator. Their proof is based on a so-called
switch-relation relating the derivative of the convex minorant of a function to that
of an argmax function. The direct argument we use to prove Corollary 3.4 furnishes
an alternative way to prove their result.

By Corollary 3.4, the estimators F̂ MS
n (t) and F̂ naive

n (t) have the same asymptotic
distribution. The same holds for f̂ MS

n (t) and f̂ naive
n (t) as well as for λ̂MS

n (t) and
λ̂naive

n (t). The pointwise asymptotic distribution of F̂ naive
n (t) follows easily from

the Lindeberg–Feller central limit theorem and the delta method. The resulting
pointwise asymptotic normality of both F̂ MS

n (t) and F̂ naive
n (t) is stated in the next

theorem.

THEOREM 3.5. Assume F0 and G satisfy conditions (F.1) and (G.1). Fix t > 0
such that f ′′

0 and g′′ exist and are continuous at t and g(t)f ′
0(t)+ 2f0(t)g

′(t) 
= 0.
Let h = cn−1/5 (c > 0) be the bandwidth used in the definition of ĝn and ĝn,1. Then

n2/5(
F̂ MS

n (t) − F0(t)
)
� N (μF,MS, σ 2

F,MS),

where

μF,MS = 1

2
c2m2(k)

{
f ′

0(t) + 2
f0(t)g

′(t)
g(t)

}
,

σ 2
F,MS = c−1 F0(t)(1 − F0(t))

g(t)

∫
k(u)2 du.

This also holds if we replace F̂ MS
n by F̂ naive

n .
For fixed t > 0, the asymptotically MSE-optimal bandwidth h for F̂ MS

n (t) is
given by hn,F,MS = cF,MSn−1/5, where

cF,MS =
{
F0(t)(1 − F0(t))

g(t)

∫
k(u)2 du

}1/5

(3.10)

×
{
m2

2(k)

{
f ′

0(t) + 2
f0(t)g

′(t)
g(t)

}2}−1/5

.

PROOF. For fixed c > 0, the asymptotic distribution of F̂ naive
n follows im-

mediately by applying the delta method with ϕ(u, v) = v/u to the first result in
Lemma A.3. By Corollary 3.4, this also gives the asymptotic distribution of F̂ MS

n .
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To obtain the bandwidth which minimizes the asymptotic mean squared error
(aMSE) we minimize

aMSE(F̂ MS
n , c) = 1

4
c4m2

2(k)

{
f ′

0(t) + 2
f0(t)g

′(t)
g(t)

}2

+ c−1 F0(t)(1 − F0(t))

g(t)

∫
k(u)2 du

with respect to c. This yields (3.10). �

REMARK 3.1. In case g(t)f ′
0(t)+2f0(t)g

′(t) = 0, the optimal rate of hn,F,MS

is n−1/9 resulting in a rate of convergence n−4/9 for F̂ MS
n . This is in line with

results for other kernel smoothers in case of vanishing first-order bias terms.

The pointwise asymptotic distributions of f̂ MS
n (t) and f̂ naive

n (t) also follow from
the Lindeber–Feller central limit theorem and the delta method.

THEOREM 3.6. Consider f̂ MS
n as defined in (3.4) and assume F0 and G sat-

isfy conditions (F.1) and (G.1). Fix t > 0 such that f
(3)
0 and g(3) exist and are

continuous at t . Let h = cn−1/7 (c > 0) be the bandwidth used to define F̂ MS
n .

Then

n2/7(
f̂ MS

n (t) − f0(t)
)
� N (μf,MS, σ 2

f,MS),

where

μf,MS = 1

2
c2m2(k)

(
f ′′

0 (t) + 2
g′′(t)f0(t) + g′(t)f ′

0(t)

g(t)
− 2

g′(t)2f0(t)

g(t)2

)

=: 1

2
c2m2(k)q(t),

σ 2
f,MS = F0(t)(1 − F0(t))

c3g(t)

∫
k′(u)2 du

for t such that q(t) 
= 0. This also holds if we replace f̂ MS
n by f̂ naive

n .
For fixed t > 0, the aMSE-optimal bandwidth h for f̂ MS

n (t) is given by
hn,f,MS = cf,MSn−1/7, where

cf,MS =
{

3
F0(t)(1 − F0(t))

g(t)

∫
k′(u)2 du

}1/7

{m2
2(k)q2(t)}−1/7.(3.11)

PROOF. Write ĝn(t) = g(t) + Rn(t) and ĝn,1(t) = g1(t) + Rn,1(t), so

n2/7(
f̂ naive

n (t) − f0(t)
)

= n2/7
(

g(t)ĝ′
n,1(t) − ĝ′

n(t)g1(t)

g(t)2 − g(t)g′
1(t) − g′(t)g1(t)

g(t)2

)
+ Tn(t)
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for

Tn(t) = n2/7 [g(t) + Rn(t)]ĝ′
n,1(t) − ĝ′

n(t)[g1(t) + Rn,1(t)]
[g(t) + Rn(t)]2

− n2/7 g(t)ĝ′
n,1(t) − ĝ′

n(t)g1(t)

g(t)2

= n2/7 Rn(t)ĝ
′
n,1(t) − ĝ′

n(t)Rn,1(t)

[g(t) + Rn(t)]2

− n2/7(
g(t)ĝ′

n,1(t) − ĝ′
n(t)g1(t)

)Rn(t)(2g(t) + Rn(t))

g(t)2[g(t) + Rn(t)]2 .

Applying the delta method with ϕ(u, v) = (g(t)v − g1(t)u)/g(t)2 to the last
result in Lemma A.3 gives that

n2/7
(

g(t)ĝ′
n,1(t) − ĝ′

n(t)g1(t)

g(t)2 − g(t)g′
1(t) − g′(t)g1(t)

g(t)2

)
� N (μ1, σ

2
f,MS)

for

μ1 = 1

2
c2m2(k)

(
f ′′

0 (t) + 3
g′′(t)f0(t) + g′(t)f ′

0(t)

g(t)

)
.(3.12)

By Lemma A.3 n2/7Rn(t)
P−→ 1

2c2m2(k)g′′(t) and n2/7Rn,1(t)
P−→ 1

2c2 ×
m2(k)g′′

1 (t), so by the consistency of ĝ′
n and ĝ′

n,1, see Lemma A.2, and the contin-
uous mapping theorem we have

Tn(t)
P−→ 1

2
c2m2(k)

g′′(t)g′
1(t) − g′(t)g′′

1 (t)

g(t)2

− 1

2
c2m2(k)

(
g(t)g′

1(t) − g′(t)g1(t)
)2g′′(t)g(t)

g(t)4

= −1

2
c2m2(k)

(
2
g′(t)2f0(t)

g(t)2 + g′′(t)f0(t) + g′(t)f ′
0(t)

g(t)

)
= μ2.

Hence, we have that

n2/7(
f̂ naive

n (t) − f0(t)
)
� N (μf,MS, σ 2

f,MS)

for μf,MS = μ1 + μ2. By Corollary 3.4, this also gives the asymptotic distribution
of f̂ MS

n .
The optimal c given in (3.11) is obtained by minimizing

aMSE(f̂ MS
n , c) = 1

4
c4m2

2(k)q2(t) + c−3 F0(t)(1 − F0(t))

g(t)

∫
k′(u)2 du. �
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COROLLARY 3.7. Consider λ̂MS
n of λ0 as defined in (3.4) and let h = cn−1/7

(c > 0) be the bandwidth used to compute it. Assume F0 and G satisfy conditions
(F.1) and (G.1). Fix t > 0 such that F0(t) < 1 and f

(3)
0 and g(3) exist and are

continuous at t . Then

n2/7(
λ̂MS

n (t) − λ0(t)
)
� N (μλ,MS, σ 2

λ,MS),

where

μλ,MS = 1

2
c2m2(k)

1

1 − F0(t)

(
f ′′

0 (t) + 2
g′′(t)f0(t) + g′(t)f ′

0(t)

g(t)
− 2

g′(t)2f0(t)

g(t)2

)

+ 1

2
c2m2(k)

f0(t)

(1 − F0(t))2

(
f ′

0(t) + 2g′(t)f0(t)

g(t)

)
= 1

2
c2m2(k)r(t),

σ 2
λ,MS = F0(t)

c3g(t)(1 − F0(t))

∫
k′(u)2 du

for t such that r(t) 
= 0. This also holds if we replace λ̂MS
n by λ̂naive

n .
For fixed t > 0 the aMSE-optimal bandwidth h for λ̂MS

n (t) is given by hn,λ,MS =
cλ,MSn−1/7, where

cλ,MS =
{

F0(t)

g(t)(1 − F0(t))

∫
k′(u)2 du

}1/7
{m2

2(k)r2(t)}−1/7.(3.13)

PROOF. Write F̂ MS
n (t) = F0(t) + Rn(t), then

n2/7(
λ̂MS

n (t) − λ0(t)
) = n2/7

1 − F0(t)

(
f̂ MS

n (t) − f0(t)
) + Tn(t)(3.14)

with

Tn(t) = n2/7f̂ MS
n (t)

(
1

1 − F0(t) − Rn(t)
− 1

1 − F0(t)

)
.

If h = cn−1/7 is the bandwidth for F̂ MS
n (t), then

n2/7
(

ĝn,1(t)

ĝn(t)
− g1(t)

g(t)

)
P−→ 1

2
c2m2(k)

{
f ′

0(t) + 2
f0(t)g

′(t)
g(t)

}
= μF,MS

by Lemma A.3 and the delta method. This implies that n2/7Rn(t)
P−→ μF,MS and

Tn(t) = n2/7f̂ MS
n (t)

Rn(t)

(1 − F0(t))(1 − F0(t) − Rn(t))

P−→ f0(t)

(1 − F0(t))2 μF,MS.

Since we also have that

n2/7

1 − F0(t)

(
f̂ MS

n (t) − f0(t)
)
� N

(
μf,MS

1 − F0(t)
,

σ 2
f,MS

(1 − F0(t))2

)
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we get that μλ,MS = μf,MS/(1 − F0(t)) + μF,MSf0(t)/(1 − F0(t))
2.

The optimal c given in (3.13) is obtained by minimizing

aMSE(λ̂MS
n , c) = 1

4
c4m2

2(k)r2(t) + c−3 F0(t)

g(t)(1 − F0(t))

∫
k′(u)2 du. �

4. Smoothed maximum likelihood estimation. In the previous section, we
started smoothing the empirical distribution of the observed data, and used that
probability measure instead of the empirical distribution function in the definition
of the log likelihood. In this section, we consider an estimator that is obtained by
smoothing the MLE (see Section 2). Recall the definitions of the scaled versions
of K , k and k′, given in (3.5)

Kh(u) = K(u/h), kh(u) = 1

h
k(u/h) and k′

h(u) = 1

h2 k′(u/h).

Define the SMLE F̂ SM
n for F0 by

F̂ SM
n (t) =

∫
Kh(t − u)dF̂n(u).

Similarly, define the SMLE f̂ SM
n for f0 and the SMLE λ̂SM

n of λ0 by

f̂ SM
n (t) =

∫
kh(t − u)dF̂n(u) and λ̂SM

n (t) = f̂ SM
n (t)/

(
1 − F̂ SM

n (t)
)
.

In this section, we derive the pointwise asymptotic distributions for these estima-
tors. First, we rewrite the estimators F̂ SM

n and f̂ SM
n .

LEMMA 4.1. Fix t > 0, such that g(u) > 0 in a neighborhood of t and define

ψh,t (u) = kh(t − u)

g(u)
, ϕh,t (u) = k′

h(t − u)

g(u)
.(4.1)

Then ∫
Kh(t − u)d(F̂n − F0)(u) = −

∫
ψh,t (u)

(
δ − F̂n(u)

)
dP0(u, δ),(4.2)

∫
kh(t − u)d(F̂n − F0)(u) = −

∫
ϕh,t (u)

(
δ − F̂n(u)

)
dP0(u, δ).(4.3)

PROOF. To see equality (4.2), we rewrite the left-hand side as follows∫ t+h

0
Kh(t − u)d(F̂n − F0)(u)

=
∫ t−h

0
d(F̂n − F0)(u) +

∫ t+h

t−h
Kh(t − u)d(F̂n − F0)(u)

= F̂n(t − h) − F0(t − h) + Kh(t − u)
(
F̂n(u) − F0(u)

)∣∣t+h
u=t−h
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−
∫ t+h

t−h
−(

F̂n(u) − F0(u)
)
kh(t − u)du

=
∫ t+h

t−h

kh(t − u)

g(u)

(
F̂n(u) − F0(u)

)
dG(u)

= −
∫

ψh,t (u)
(
δ − F̂n(u)

)
dP0(u, δ).

Equation (4.3) follows by a similar argument. �

Hence, in determining the asymptotic distribution of the estimators F̂ SM
n (t) and

f̂ SM
n (t), we can consider the integrals at the right-hand side of (4.2) and (4.3). The

idea of the proof of the asymptotic result for F̂ SM
n (t), given in the next theorem

proven in the Appendix, is as follows. By the characterization of the MLE, given
in Lemma A.5, we could add the term dPn for free in the right-hand side of (4.2)
if ψh,t were piecewise constant. For most choices of k this function ψh,t is not
piecewise constant. Replacing it by an appropriately chosen piecewise constant
function results in an additional Op-term which does not influence the asymptotic
distribution. By some more adding and subtracting, resulting in some more Op-
terms, we get that

−n2/5
∫

ψh,t (u)
(
δ − F̂n(u)

)
dP0(u, δ)

= n2/5
∫

ψh,t (u)
(
δ − F0(u)

)
d(Pn − P0)(u, δ) + Op(1)

and the pointwise asymptotic distribution follows from the central limit theorem.

THEOREM 4.2. Assume F0 and G satisfy conditions (F.1) and (G.1). Fix t >

0 such that f ′
0 is continuous at t and f ′

0(t) 
= 0. Let h = cn−α (c > 0) be the

bandwidth used in the definition of F̂ SM
n . Then for α = 1/5

n2/5(
F̂ SM

n (t) − F0(t)
)
� N (μF,SM, σ 2

F,SM),

where

μF,SM = 1
2c2m2(k)f ′

0(t), σ 2
F,SM = F0(t)(1 − F0(t))

cg(t)

∫
k(u)2 du.(4.4)

For fixed t > 0 the aMSE-optimal bandwidth of h for estimating F̂ SM
n (t) is given

by hn,F,SM = cF,SMn−1/5, where

cF,SM =
{
F0(t)(1 − F0(t))

g(t)

∫
k(u)2 du

}1/5
{m2

2(k)f ′
0(t)

2}−1/5.(4.5)
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THEOREM 4.3. Assume F0 and G satisfy conditions (F.1) and (G.1). Fix t > 0
such that f ′′

0 is continuous at t and f ′′
0 (t) 
= 0. Let h = cn−1/7 (c > 0) be the

bandwidth used in the definition of f̂ SM
n . Then

n2/7(
f̂ SM

n (t) − f0(t)
)
� N (μf,SM, σ 2

f,SM),

where

μf,SM = 1
2c2m2(k)f ′′

0 (t), σ 2
f,SM = F0(t)(1 − F0(t))

c3g(t)

∫
k′(u)2 du.

For fixed t > 0 the aMSE-optimal value of h for estimating f̂ SM
n (t) is given by

hn,f,SM = cf,SMn−1/7, where

cf,SM =
{

3
F0(t)(1 − F0(t))

g(t)

∫
k′(u)2 du

}1/7

{m2
2(k)f ′′

0 (t)2}−1/7.(4.6)

The proof of this result is similar to the proof of Theorem 4.2, hence it is omit-
ted.

COROLLARY 4.4. Assume F0 and G satisfy conditions (F.1) and (G.1). Fix
t > 0 such that F0(t) < 1, f ′′

0 is continuous in t and f ′′
0 (t) 
= 0. Let h = cn−1/7

(c > 0) be the bandwidth used to compute λ̂SM
n . Then

n2/7(
λ̂SM

n (t) − λ0(t)
)
� N (μλ,SM, σ 2

λ,SM),

where

μλ,SM = 1/2c2m2(k)

1 − F0(t)

(
f ′′

0 (t) + f0(t)f
′
0(t)

1 − F0(t)

)
,

σ 2
λ,SM = F0(t)

c3g(t)(1 − F0(t))

∫
k′(u)2 du

for t such that (1 − F0(t))f
′′
0 (t) + f0(t)f

′
0(t) 
= 0.

For fixed t > 0 the aMSE-optimal bandwidth h for λ̂SM
n (t) is given by hn,λ,SM =

σ 2
λ,SMn−1/7, where

cλ,SM =
{

3
F0(t)

g(t)(1 − F0(t))

∫
k′(u)2 du

}1/7

(4.7)

×
{

m2
2(k)

(1 − F0(t))2

(
f ′′

0 (t) + f0(t)f
′
0(t)

1 − F0(t)

)2}−1/7

.

PROOF. The proof uses the same decomposition as the proof of Corollary 3.7,

but now n2/7Rn(t)
P−→ 1

2c2m2(k)f ′
0(t). This gives that

Tn(t)
P−→ 1

2
c2m2(k)f0(t)

f ′
0(t)

(1 − F0(t))2 = μF,SM
f ′

0(t)

(1 − F0(t))2

and μλ,SM = μf,SM/(1 − F0(t)) + μF,SMf0(t)/(1 − F0(t))
2. �
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5. Bandwidth selection in practice. In the previous sections, we derived the
optimal bandwidths to estimate θ0(F ) [the unknown distribution function F0, its
density f0 or the hazard rate λ0 = f0/(1 − F0) at a point t] using two differ-
ent smoothing methods. These optimal bandwidths can be written as h

n,θ̂(F )
=

c
θ̂(F )

n−α for some α > 0 (either 1/5 or 1/7), where c
θ̂(F )

is defined as the min-

imizer of aMSE(c) over all positive c. For example θ0(F ) = F0(t) and θ̂ (F ) =
F̂ SM

n (t). However, the asymptotic mean squared error depends on the unknown
distribution F0, so c

θ̂(F )
and h

n,θ̂(F )
are unknown.

Several data dependent methods are known to overcome this problem by esti-
mating the aMSE, e.g., the bootstrap method of Efron (1979) or plug-in methods
where the unknown quantities, like f0 or f ′′

0 , in the aMSE are replaced by esti-
mates [see, e.g., Sheather (1983)]. We use the smoothed bootstrap method, which
is commonly used to estimate the bandwidth in density-type problems, see, e.g.,
Hazelton (1996) and González-Manteiga, Cao and Marron (1996).

For θ̂ (F ) = F̂ MS
n (t) the smoothed bootstrap works as follows. Let n be the

sample size and h0 = c0n
−1/5 an initial choice of the bandwidth. Instead of sam-

pling from the empirical distribution (as is done in the usual bootstrap) we sam-
ple X

∗,1
1 ,X

∗,1
2 , . . . ,X∗,1

m (m ≤ n) from the distribution F̂ SM
n,h0

(where we explic-

itly denote the bandwidth h0 used to compute F̂ SM
n ). Furthermore, we sample

T
∗,1
1 , . . . , T ∗,1

m from Ĝn,h0 and define �
∗,1
i = 1{X∗,1

i ≤Z
∗,1
i }. Based on the sam-

ple (T
∗,1

1 ,�
∗,1
1 ), . . . , (T ∗,1

m ,�∗,1
m ), we determine the estimator F̂

SM,1
m,cm−1/5 with

bandwidth h = cm−1/5. We repeat this many times (say B times), and estimate
aMSE(c) by

M̂SEB(c) = B−1
B∑

i=1

(
F̂

SM,i

m,cm−1/5(t) − F̂n,h0(t)
)2

.

The optimal bandwidth hn,F,SM we estimate by ĥn,F,SM = ĉF,SMn−1/5 where
ĉF,SM is defined as the minimizer of M̂SEB(c) over all positive c. For the other
estimators, the smoothed bootstrap works similarly.

Table 1 contains the values of ĉF,SM and ĥn,F,SM for the different choices of
c0 and two different points t based on a simulation study. For the distribution of

the Xi , we took a shifted Gamma(4) distribution, i.e., f0(x) = (x−2)3

3! exp(−(x −
2))1[2,∞)(x), and for the distribution of the Ti we took an exponential distribution
with mean 3, i.e., g(t) = 1

3exp(−t/3)1[0,∞). Furthermore, we took n = 10,000,
m = 2000, B = 500 and k(t) = 35

32(1 − t2)31[−1,1](t), the triweight kernel. The
table also contains the theoretical aMSE optimal values cF,SM, given in (4.5), the
values of c̃F,SM using Monte Carlo simulations of size n = 10,000 and m = 2000
and the corresponding values of hn,F,SM and h̃n,F,SM. In the Monte Carlo simula-
tion, we resampled B times a sample of size n (and m) from the true underlying
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TABLE 1
Minimizing values for c and corresponding values of the bandwidth based on the smoothed

bootstrap method for different values of c0, based on Monte Carlo simulations and the
theoretical values

t = 4.0 t = 6.5

ĉF,SM ĥn,F,SM ĉF,SM ĥn,F,SM

c0 = 5 6.050 0.959 9.150 1.450
c0 = 10 7.350 1.165 10.100 1.601
c0 = 15 7.700 1.220 12.050 1.910
c0 = 20 7.850 1.244 14.150 2.243
c0 = 25 9.850 1.561 15.500 2.457
MC-sim (n) 6.700 1.062 10.700 1.696
MC-sim (m) 6.750 1.070 11.600 1.838
Theor. val. 6.467 1.025 10.426 1.652

distributions and estimated, in case of sample size n, the aMSE by

M̃SEB(c) = B−1
B∑

i=1

(
F̂ SM

n,cn−1/5,i
(t) − F0(t)

)2
.

Then c̃F,SM is defined as the minimizer of M̃SEB(c) over all positive c and
h̃F,SM = c̃F,SMn−1/5. Figure 2 shows the aMSE(c) for t = 4 and its estimates
M̂SEB(c) with c0 = 15 and M̃SEB(c). Figure 2 also shows the estimator F̂ SM

n with
bandwidth h = 1.7 (which is somewhere in the middle of the results in Table 1 for
c0 = 15), the maximum likelihood estimator F̂n and the true distribution F0.

We also applied the smoothed bootstrap to choose the smoothing parameter for
F̂ SM

n (t) based on the hepatitis A prevalence data described by Keiding (1991).
Table 2 contains the values of ĉF,SM and ĥn,F,SM for three different time points,
t = 20, t = 45 and t = 70 and for different values of c0. The size n of the hepatitis
A prevalence data is 850. For the sample size m of the smoothed bootstrap sample,
we took 425 and we repeated the smoothed bootstrap B = 500 times. If we take
the smoothing parameter h equal to 25 (which is somewhere in the middle of the
results in Table 2), the resulting estimator F̂ SM

n is shown in Figure 3. The maximum
likelihood estimator F̂n is also shown in Figure 3.

6. Discussion. We considered two different methods to obtain smooth esti-
mates for the distribution function F0 and its density f0 in the current status model.
Pointwise asymptotic results show that for estimating any of these functions both
estimators have the same variance but a different asymptotic bias. The asymptotic
bias of the MSLE equals the asymptotic bias of the SMLE plus an additional term
depending on the unknown densities f0 and g (and their derivatives) and the point
t we estimate at. For some choices of f0 and g this additional term is positive,
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FIG. 2. Left panel: the aMSE of F̂ SM
n (4) (dotted line) and its estimates based on the smoothed

bootstrap (solid line) with c0 = 15 and the Monte Carlo simulations (dashed lines) with sample
size n (black line) and m (grey line). Right panel: the true distribution (dash-dotted line) and its
estimators F̂ SM

n with h = 1.7 (solid line) and F̂n (step function).

for other choices it is negative. Hence, we cannot say one method always results
in a smaller bias than the other method, i.e., one estimator is uniformly superior.
This was also seen by Marron and Padgett (1987) and Patil, Wells and Marron
(1994) in the case of estimating densities based on right-censored data. Figure 4
shows the asymptotic mean squared error of the estimators F̂ MS

n (t) and F̂ SM
n (t) if

F0 is the shifted Gamma(4) distribution and G is the exponential distribution with

mean 3, i.e., f0(x) = (x−2)3

3! exp(−(x − 2))1[2,∞)(x), g(t) = 1
3exp(−t/3)1[0,∞)

and c = 7.5. For some values of t the aMSE of F̂ MS
n (t) is smaller [meaning that

the bias of F̂ MS
n (t) is smaller], for other values of t the aMSE of F̂ SM

n (t) is smaller
[meaning that the bias of F̂ SM

n (t) is smaller].
We also considered smooth estimators for the hazard rate λ0, defined as

λ̂n(t) = f̂n(t)

1 − F̂n(t)
,

where f̂n and F̂n are either f̂ MS
n and F̂ MS

n or f̂ SM
n and F̂ SM

n . Because λ̂n(t) is
a quotient, we could estimate nominator and denominator separately by choos-
ing one bandwidth h = cn−1/7 to compute f̂n(t) and a different bandwidth h1 =
c1n

−1/5 to compute F̂n(t). However, by the relation

λ0(t) = d

dz
− log

(
1 − F0(z)

)∣∣
z=t = f0(t)

1 − F0(t)

it is more natural to estimate f0(t) and F0(t) with the same bandwidth. As for the
estimators for f0 and F0, we cannot say the estimator λ̂MS

n (t) with bandwidth of
order n−1/7 is uniformly superior to λ̂SM

n (t) with bandwidth of order n−1/7.
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TABLE 2
Minimizing values for c and corresponding values of the bandwidth based on the smoothed

bootstrap method for different values of c0 and for three different values of t

t = 20 t = 45 t = 70

ĉF,SM ĥn,F,SM ĉF,SM ĥn,F,SM ĉF,SM ĥn,F,SM

c0 = 50 107.7 27.947 60.3 15.647 128.9 33.448
c0 = 60 105.6 27.402 67.6 17.541 128.7 33.396
c0 = 70 106.7 27.687 67.8 17.593 127.4 33.059
c0 = 80 101.8 26.416 71.6 18.579 130.4 33.837
c0 = 90 92.5 24.003 70.4 18.268 131.0 33.993
c0 = 100 91.9 23.847 76.5 19.851 127.5 33.085
c0 = 110 90.5 23.484 75.9 19.695 126.2 32.747
c0 = 120 89.8 23.302 80.8 20.967 124.3 32.254
c0 = 130 89.4 23.198 81.0 21.018 124.5 32.306
c0 = 140 84.2 21.849 81.9 21.252 120.2 31.190
c0 = 150 87.3 22.653 88.7 23.017 117.4 30.464

APPENDIX: TECHNICAL LEMMAS AND PROOFS

In this section, we prove most of the results stated in the previous sections. We
start with some results on the consistency and pointwise asymptotics of the kernel
estimators ĝn, ĝ′

n, Ĝn, ĝn,1, ĝ′
n,1 and Ĝn,1.

LEMMA A.1. Let ĝn be the boundary kernel estimator for g, with smooth-
ing parameter h = n−α (α < 1/3). Then with probability converging to one ĝn is

FIG. 3. The estimators F̂ SM
n (solid line) and F̂n (dashed line) for the hepatitis A prevalence data.
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FIG. 4. The aMSE of F̂ MS
n (t) (solid line) and F̂ SM

n (t) (dashed line) as function of t in the situation
described in Section 6.

uniformly bounded, i.e.,

∃C > 0 :P
(

sup
x∈[0,1]

|ĝn(x)| ≤ C
)

−→ 1.(A.1)

PROOF. First note that without loss of generality we can assume 0 ≤ k(u) ≤
k(0). Recall that νi,β(k) = ∫ β

−1 uik(u) du for β ∈ [0,1], for which we have the
following bounds

ν0,β ≥ 1
2 , |ν1,β | ≤ 1

2Ek|U |, 1
2 Vark U ≤ ν2,β ≤ Vark U,

where U has density k. Combining this, we get that ν0,βν2,β −ν2
1,β ≥ 1

4 Vark |U | >
0, so that we can uniformly bound the kernel kβ by

|kβ(u)| =
∣∣∣∣ ν2,β − ν1,βu

ν0,βν2,β − ν2
1,β

k(u)1(−1,β](u)

∣∣∣∣
≤ |ν2,β | + |ν1,β |

1/4 Vark |U | k(0) = ck(0).

For the boundary kernel estimate ĝn, we then have

|ĝn(x)| =
∣∣∣∣h−1

∫
kβ(

(x − y)/h
)
dGn(y)

∣∣∣∣
≤ h−1ck(0)|Gn(x + h) − Gn(x − h)|
≤ h−1ck(0)|Gn(x + h) − G(x + h) − Gn(x − h) + G(x − h)|

+ h−1ck(0)
(
G(x + h) − G(x − h)

)
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≤ ck(0)nα−1/22 sup
y≥0

√
n|Gn(y) − G(y)| + 2‖g‖∞ck(0)

= Op(nα−1/2) + 2‖g‖∞ck(0).

Since this bound in uniform in x, (A.1) follows for C = 3‖g‖∞ck(0). �

LEMMA A.2. Assume g satisfies conditions (G.1) and let Ĝn, Ĝn,1, ĝn, ĝn,1,
ĝ′

n and ĝ′
n,1 be kernel estimators for G, G1, g, g1, g′ and g′

1 with kernel density k

satisfying condition (K.1) and bandwidth h = cn−α (c > 0). For α ∈ (0,1/3) and
m > 0

sup
t∈[m,∞)

|ĝn(t) − g(t)| P−→ 0, sup
t∈[m,∞)

|ĝ′
n(t) − g′(t)| P−→ 0,

(A.2)
sup

t∈[0,2M0]
|Ĝn(t) − G(t)| P−→ 0,

sup
t∈[m,∞)

|ĝn,1(t) − g1(t)| P−→ 0, sup
t∈[m,∞)

|ĝ′
n,1(t) − g′

1(t)| P−→ 0,

(A.3)
sup

t∈[0,2M0]
|Ĝn,1(t) − G1(t)| P−→ 0.

PROOF. Let ĝu
n be the uncorrected kernel estimate for g and note that by prop-

erties of the boundary kernel estimator we have for all x ≥ h

ĝu
n(x) = ĝn(x).

Hence, the first two results in (A.2) follow immediately from Theorems A and C
in Silverman (1978). To prove the third result in (A.2), fix M > M0, ε > 0 and
choose 0 < δ < ε/(2C) such that G(δ) < ε/4, where C is such that (A.1) holds.
For all x ≥ 0 and n sufficiently large (such that h = hn < δ), we then have

|Ĝn(x) − G(x)| ≤ δ sup
y∈[0,δ]

|ĝn(y)| + G(δ) + sup
y≥δ

|Ĝn(y) − G(y)|.

The right-hand side does not depend on x so that

P(‖Ĝn − G‖∞ > ε)

≤ P
(
δ sup
y∈[0,δ]

|ĝn(y)| + G(δ) + sup
y≥δ

|Ĝu
n(y) − G(y)| > ε

)

≤ P
(
δ sup
y∈[0,1]

|ĝn(y)| + G(δ) + sup
y≥δ

|Ĝu
n(y) − G(y)| > ε

)

= P
({

δ sup
y∈[0,1]

|ĝn(y)| + G(δ) + sup
y≥δ

|Ĝu
n(y) − G(y)| > ε

}

∩
{

sup
y∈[0,1]

|ĝn(y)| ≤ C
})
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+ P
({

δ sup
y∈[0,1]

|ĝn(y)| + G(δ) + sup
y≥δ

|Ĝu
n(y) − G(y)| > ε

}

∩
{

sup
y∈[0,1]

|ĝn(y)| > C
})

≤ P
(
sup
y≥δ

|Ĝu
n(y) − G(y)| > ε/4

)
.

The last probability converges to zero as a consequence of Theorem A in Silverman

(1978), hence ‖Ĝn − G‖∞
P−→ 0.

For the first result in (A.3), define a binomially distributed random variable
N1 = ∑n

i=1�i with parameters n and p = P(�1 = 1) = ∫
F0(u)g(u)du, and the

probability density g̃(t) = g1(t)/p. Let V1, . . . , VN1 be the Ti such that �i = 1,
and rewrite ĝn,1(t) as 1

nh

∑N1
i=1 kh(t − Vi) = N1

n
ĝN1(t). Then we have by the trian-

gle inequality

‖ĝn,1 − g1‖∞ =
∥∥∥∥ĝN1

N1

n
− g̃p

∥∥∥∥∞
≤ p‖ĝN1 − g̃‖∞ + ‖ĝN1‖∞

∣∣∣∣N1

n
− p

∣∣∣∣.
The first term on the right-hand side converges to zero in probability by Silverman

(1978), since N1
P−→ ∞ as n → ∞. For the second term on the right-hand side,

note that

‖ĝN1‖∞ = ‖g̃ + ĝN1 − g̃‖∞ ≤ ‖g̃‖∞ + ‖ĝN1 − g̃‖∞,

where the last term again converges to zero in probability by Silverman (1978).
Combining this with the Law of Large Numbers applied to |N1

n
− p| gives that

‖ĝN1‖∞|N1
n

− p| P−→ 0 as n → ∞, hence ‖ĝn,1 − g1‖∞
P−→ 0. The proofs of the

other results in (A.3) are similar. �

LEMMA A.3. Let ĝn and ĝn,1 be kernel estimates for g and g1 with kernel
density k satisfying condition (K.1) and bandwidth h = cn−α (c > 0). Fix t > 0
such that f ′′

0 and g′′ exist and are continuous at t . Then for α = 1/5,

n2/5
((

ĝn(t)

ĝn,1(t)

)
−

(
g(t)

g1(t)

))
� N

(( 1
2c2m2(k)g′′(t)
1
2c2m2(k)g′′

1 (t)

)
,�1

)
(A.4)

with

�1 = c−1
∫

k(u)2 du

(
g(t) g1(t)

g1(t) g1(t)

)
.(A.5)

For 0 < α < 1/5,

n2α(
ĝn(t) − g(t)

) P−→ 1
2c2m2(k)g′′(t)
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and

n2α(
ĝn,1(t) − g1(t)

) P−→ 1
2c2m2(k)g′′

1 (t).

Let ĝ′
n,1 and ĝ′

n be as defined in (3.7). Then for fixed t > 0 such that f
(3)
0 and g(3)

exist and are continuous at t and α = 1/7,

n2/7
((

ĝ′
n(t)

ĝ′
n,1(t)

)
−

(
g′(t)
g′

1(t)

))
� N

(( 1
2c2m2(k)g(3)(t)

1
2c2m2(k)g

(3)
1 (t)

)
,�2

)
(A.6)

with

�2 = c−3
∫

k′(u)2 du

(
g(t) g1(t)

g1(t) g1(t)

)
.(A.7)

PROOF. We start with the proof of (A.4). Define

Yi =
(

Yi;1
Yi;2

)
= n−3/5

(
kh(t − Ti)

kh(t − Ti)�i

)
.

By the assumptions on f0 and g and condition (K.1), we have

EYi = n−3/5

(
g(t) + 1

2h2m2(k)g′′(t) + Op(h2)

g1(t) + 1
2h2m2(k)g′′

1 (t) + Op(h2)

)
,

n∑
i=1

VarYi = c−1
∫

k(u)2 du

(
g(t) g1(t)

g1(t) g1(t)

)
+ Op(n−1/5).

By the Lindeberg–Feller central limit theorem, we get

n2/5
((

ĝn(t)

ĝn,1(t)

)
−

(
g(t)

g1(t)

))
−

( 1
2c2m2(k)g′′(t)
1
2c2m2(k)g′′

1 (t)

)
� N (0,�1),

where �1 is defined in (A.5).

To prove that n2α(ĝn(t) − g(t))
P−→ 1

2c2m2(k)g′′(t) for 0 < α < 1/5, define
Wi = n2α−1kh(t − Ti). Since we have

EWi = n2α−1(
g(t) + 1

2h2g′′(t) + Op(h2)
)
,

nVarWi = n5α−1c−1g(t)

∫
k(u)2 du + Op(n4α−1) = Op(n5α−1),

we have that
∑

VarWi −→ 0 for 0 < α < 1/5, hence

n

(
1

n

n∑
i=1

Wi − EW1

)
= n2α(

ĝn(t) − g(t)
) − 1

2
c2m2(k)g′′(t) + Op(1)

P−→ 0.

Similarly we can prove that n2α(ĝn,1(t) − g1(t))
P−→ 1

2c2m2(k)g′′
1 (t).

The proof of (A.6) is similar as the proof of (A.4). �
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Using these results we now can prove the results in Section 3.

PROOF OF LEMMA 3.2. The proof of the inequalities in Lemma 3.2 is based
on the Monotone Convergence theorem (MCT). Denote the lower convex hull
of the continuous cusum diagram defined in (3.2) by t �→ (Ĝn(t),Cn(t)) for
t ∈ [0, τ ], where τ = sup{t ≥ 0 : ĝn,0(t)+ ĝn,1(t) > 0}. By definition of this convex
hull, we have for all t > 0

Ĝn,1(t) =
∫

1[0,t](u) dĜn,1(u) ≥
∫

1[0,t](u) dCn(u)

(A.8)
=

∫
F̂ MS

n (u)1[0,t](u) dĜn(u).

The function 1[0,t](u) is decreasing on [0,∞). Consider an arbitrary distribution
function F on [0,∞) and write p(t) = − logF(t). Then, on [0, τ ], the function p

can be approximated by decreasing step functions

pm(t) =
m∑

i=1

ai1[0,xi ](t) with ai ≥ 0 ∀i and 0 < x1 < · · · < xm < τ.

The functions pm can be taken such that pm ↑ p, on [0, τ ]. For each m, we have
∫

pm(t) dĜn,1(t) =
m∑

i=1

∫
ai1[0,xi ](t) dĜn,1(t)

≥
m∑

i=1

∫
ai1[0,xi ](t) dCn(t)(A.9)

=
∫

pm(t)F̂ MS
n (t) dĜn(t).

The MCT now gives that for each n

lim
m→∞

∫
pm(t) dĜn,1(t) =

∫
p(t) dĜn,1(t) = −

∫
logF(t) dĜn,1(t),

lim
m→∞

∫
pm(t) dCn(t) =

∫
p(t) dCn(t) = −

∫
F̂ MS

n (t) logF(t) dĜn(t).

Combined with (A.9), this implies the first inequality in Lemma 3.2.
To prove the second inequality in Lemma 3.2, it suffices to prove∫

log
(
1 − F(t)

)
dĜn,1(t) ≥

∫
F̂ MS

n (t) log
(
1 − F(t)

)
dĜn(t),(A.10)

since ∫
log

(
1 − F(t)

)
dĜn,0(t) =

∫
log

(
1 − F(t)

)
d(Ĝn − Ĝn,1)(t).
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The proof of (A.10) follows by a similar argument. Then we use approximations
qm(t) of the decreasing function q(t) = log(1 − F(t)) such that qm ↑ q to prove
(A.10).

For the equality statements for F = F̂ MS
n in Lemma 3.2, we can also use the

monotone approximation by step functions, restricting the jumps to the points of
increase of F̂ MS

n [i.e., points x for which F̂ MS
n (x + ε) − F̂ MS

n (x − ε) > 0 for all
ε > 0] implying equality in (A.9). �

PROOF OF THEOREM 3.3. Take 0 < m < M < M0. By assumption (G.1) and
Lemma A.2, with probability arbitrarily close to one, we have for n sufficiently
large that ĝn(t) > 0 for all t ∈ [m,M]. We then have that F̂ naive

n (t) = ĝn,1(t)/ĝn(t)

is well defined on [m,M] and to prove that F̂ naive
n (t) is monotonically increasing

on [m,M] with probability tending to one, it suffices to show that ∃δ > 0 such that
∀η > 0

P

(
∀t ∈ [m,M] :

d

dt
F̂ naive

n (t) ≥ δ

)
≥ 1 − η(A.11)

for n sufficiently large. We have that

d

dt
F̂ naive

n (t) = ĝn(t)ĝ
′
n,1(t) − ĝn,1(t)ĝ

′
n(t)

[ĝn(t)]2 ,

which is also well defined.
To prove (A.11) it suffices to prove ∃δ > 0 such that ∀η > 0

P
(∀t ∈ [m,M] : ĝn(t)ĝ

′
n,1(t) − ĝn,1(t)ĝ

′
n(t) ≥ δ

) ≥ 1 − η(A.12)

for n sufficiently large. For this, we write

ĝn(t)ĝ
′
n,1(t) − ĝn,1(t)ĝ

′
n(t)

= ĝn(t)
(
ĝ′

n,1(t) − g′
1(t)

) + ĝn,1(t)
(
g′(t) − ĝ′

n(t)
)

+ g′
1(t)

(
ĝn(t) − g(t)

) + g′(t)
(
g1(t) − ĝn,1(t)

) + g(t)g′
1(t) − g′(t)g1(t)

≥ − sup
t∈[m,M]

|ĝ′
n,1(t) − g′

1(t)| sup
t∈[m,M]

ĝn(t)

− sup
t∈[m,M]

|ĝ′
n(t) − g′(t)| sup

t∈[m,M]
ĝn,1(t)

− sup
t∈[m,M]

|ĝn(t) − g(t)| sup
t∈[m,M]

g′
1(t)

− sup
t∈[m,M]

|ĝn,1(t) − g1(t)| sup
t∈[m,M]

g′(t)

+ g2(t)f0(t).

By Lemma A.2 and assumptions (F.1) and (G.1), we have that (A.12) follows for
δ < inft∈[m,M] g2(t)f0(t). �
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PROOF OF COROLLARY 3.4. Fix δ > 0 arbitrarily. We will prove that for n

sufficiently large

P
(
F̂ naive

n (t) = F̂ MS
n (t) for all t ∈ [m,M]) ≥ 1 − δ.

Define for η1 ∈ (0,m), η2 ∈ (0,M0 − M) and n ≥ 1 the event An by

An = {F̂ naive
n (t) is monotonically increasing and ĝn(t) > 0

for t ∈ [m − η1,M + η2]}.
By Lemma A.2 and Theorem 3.3, we have for all n sufficiently large P(An) ≥
1 − δ/10.

Define the “linearly extended Ĝn,1” by

C∗
n(t) =

⎧⎪⎨
⎪⎩

Ĝn,1(m) + (
Ĝn(t) − Ĝn(m)

)
F̂ naive

n (m), for t ∈ [0,m),
Ĝn,1(t), for t ∈ [m,M],
Ĝn,1(M) + (

Ĝn(t) − Ĝn(M)
)
F̂ naive

n (M), for t ∈ (M,M0].
It now suffices to prove that for all n sufficiently large

(i) P
({(Ĝn(t),C

∗
n(t)) : t ≥ 0} convex

) ≥ 1 − δ/2,

(ii) P
(∀t ∈ [0,M0] :C∗

n(t) ≤ Ĝn,1(t)
) ≥ 1 − δ/2.

Indeed, then with probability ≥ 1 − δ the curve {(Ĝn(t),C
∗
n(t)) : t ≥ 0} is a lower

convex hull of the CCSD {(Ĝn(t), Ĝn,1(t)) : t ≥ 0} with C∗
n(t) = Ĝn,1(t) for all

t ∈ [m,M]. From this, it follows that C∗
n(t) = Cn(t) for all t ∈ [m,M], hence also

Cn(t) = Ĝn,1(t) for all t ∈ [m,M]. This implies that for n sufficiently large

P

(
∀t ∈ [m,M] : F̂ naive

n (t) = dĜn,1(t)

dĜn(t)
= dCn(t)

dĜn(t)
= F̂ MS

n (t)

)
≥ 1 − δ.

We now prove (i). For the intervals [0,m) and (M,M0] the curve {(Ĝn(t),

C∗
n(t)) : t ≥ 0} is the tangent line of the CCSD at the points (Ĝn(m), Ĝn,1(m))

and (Ĝn(M), Ĝn,1(M)), respectively, so on the event An the curve is convex. This
gives for n sufficiently large

P
({(Ĝn(t),C

∗
n(t)) : t ≥ 0} convex

) ≥ P(An) ≥ 1 − δ/10 ≥ 1 − δ/2.

To prove (ii), we split up the interval [0,M0] in five different intervals I1 =
[0,m − η1), I2 = [m − η1,m), I3 = [m,M], I4 = (M,M + η2] and I5 = (M +
η2,M0] and prove that for 1 ≤ i ≤ 5

P(Ci) = P
(∀t ∈ Ii :C∗

n(t) ≤ Ĝn,1(t)
) ≥ 1 − δ/10.(A.13)

For t ∈ I3, C∗
n(t) = Ĝn,1(t), hence (A.13) holds trivially. For the interval I2, we

use that

Ĝn,1(u) − Ĝn,1(v) = (
Ĝn(u) − Ĝn(v)

)
F̂ naive

n (ξ)(A.14)



378 P. GROENEBOOM, G. JONGBLOED AND B. I. WITTE

for some ξ ∈ [u, v] (depending on u and v). This gives

P
(∀t ∈ I2 : Ĝn,1(t) − C∗

n(t) ≥ 0
)

= P
(∀t ∈ I2 :

(
Ĝn(t) − Ĝn(m)

)(
F̂ naive

n (ξ) − F̂ naive
n (m)

) ≥ 0
)

= P
(∀t ∈ I2 : F̂ naive

n (ξ) − F̂ naive
n (m) ≤ 0

) ≥ P(An) ≥ 1 − δ/10.

For I4, we can reason similarly.
Now consider (A.13) for i = 1. For every t ∈ I1, we have

G1(t) − G1(m) − F0(m)
(
G(t) − G(m)

)
=

∫ m

t

(
F0(m) − F0(u)

)
dG(u)

≥
∫ m

m−η1

(
F0(m) − F0(u)

)
dG(u).

This means we have

Ĝn,1(t) − C∗
n(t)

≥ Ĝn,1(t) − G1(t) + G1(m) − Ĝn,1(m) + F0(m)
(
G(t) − Ĝn(t)

)
+ F0(m)

(
Ĝn(m) − G(m)

) + (
F̂ naive

n (m) − F0(m)
)(

Ĝn(m) − Ĝn(t)
)

+
∫ m

m−η1

(
F0(m) − F0(u)

)
dG(u)

≥ −2‖Ĝn,1 − G1‖∞ − 2‖Ĝn − G‖∞ − 2|F̂ naive
n (m) − F0(m)|

+
∫ m

m−η1

(
F0(m) − F0(u)

)
dG(u).

By assumption (F.1), we have
∫ m
m−η1

(F0(m)−F0(u)) dG(u) > 0 so (A.13) follows

for i = 1 by Lemma A.2 and the pointwise consistency of F̂ naive
n .

For i = 5, the proof of (A.13) is similar as for i = 1. �

To prove the results in Section 4 and the results below, we use piecewise con-
stant versions of the functions ψh,t and ϕh,t defined in (4.1). These functions are
constant on the same intervals where the MLE F̂n is constant. Denote these inter-
vals by Ji = [τi, τi+1) for 0 ≤ i ≤ m − 1 (m ≤ n and τ0 = 0) and the piecewise
constant versions of ψh,t and ϕh,t by ψ̄h,t and ϕ̄h,t . For u ∈ Ji these functions can
be written as ψ̄h,t (u) = ψ(Ân(u)) and ϕ̄h,t (u) = ϕ(Ân(u)) for Ân(u) defined as

Ân(u) =
⎧⎨
⎩

τi, if ∀t ∈ Ji :F0(t) > F̂n(τi),
s, if ∃s ∈ Ji : F̂n(s) = F0(s),
τi+1, if ∀t ∈ Ji :F0(t) < F̂n(τi),

(A.15)

for u ∈ Ji , see also Figure 5.
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(a) (b) (c)

FIG. 5. The 3 different possibilities for the function Ân. (a) F0(t) > F̂n(τi); (b) F0(s) = F̂n(τi);
(c) F0(t) < F̂n(τi).

We first derive upper bounds for the distance between the function ψh,t and its
piecewise constant version ψ̄h,t and between ϕh,t and ϕ̄h,t .

LEMMA A.4. Let t > 0 be such that f0 is positive and continuous in a neigh-
borhood of t . Then there exists constants c1, c2 > 0 such that for n sufficiently
large

|ψ̄h,t (u) − ψh,t (u)| ≤ c1

h2 |F̂n(u) − F0(u)|1{|t−u|≤h},(A.16)

|ϕ̄h,t (u) − ϕh,t (u)| ≤ c2

h3 |F̂n(u) − F0(u)|1{|t−u|≤h}.(A.17)

PROOF. For n sufficiently large, we have for all s ∈ It = [t − h, t + h] that
f0(s) ≥ 1

2f0(t). Fix u ∈ It , then the interval Ji it belongs to is of one of the fol-
lowing three types:

(i) F0(x) > F̂n(τi) for all x ∈ Ji .
(ii) F0(x) = F̂n(x) for some x ∈ Ji .

(iii) F0(x) < F̂n(τi) for all x ∈ Ji .

First, we consider the situation where F̂n(u) = F0(u). Then by definition of ψ̄h,t ,

ψ̄h,t (u) = ψh,t (u),

so that both the left- and the right-hand side of (A.16) are equal to zero, and the
upper bound holds. Note that for each F̂n(u) = F0(u) implies Ân(u) = u, because
F0 is strictly increasing near t .

Now, we consider the situation where F̂n(u) 
= F0(u). For v, ξ ∈ Ji , we get by
using a Taylor expansion

|F̂n(u) − F0(u)| = |F̂n(v) − F0(u)|
= |F̂n(v) − F0(v) − (u − v)f0(ξ)|.
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Now, we have three posibilities. If Ân(u) = τi , then we have that F0(τi)− F̂n(τi) ≥
0 giving that

|F̂n(u) − F0(u)| = |F̂n(τi) − F0(τi) − (u − τi)f0(ξ)|
= |(u − τi)f0(ξ) + F0(τi) − F̂n(τi)|
≥ |u − τi |f0(ξ).

If Ân(u) = v for some v 
= u ∈ Ji , then we have that F̂n(v) = F0(v), so that

|F̂n(u) − F0(u)| = |F̂n(v) − F0(u)| = |F̂n(v) − F0(v) − (u − v)f0(ξ)|
= |u − v|f0(ξ).

If Ân(u) = τi+1, then we have F̂n(τi+1−) − F0(τi+1) ≥ 0 giving that

|F̂n(u) − F0(u)| = |F̂n(τi+1−) − F0(τi+1) − (u − τi+1)f0(ξ)|
= |(τi+1 − u)f0(ξ) + F̂n(τi+1−) − F0(τi+1)|
≥ |τi+1 − u|f0(ξ).

For v ∈ [τi, τi+1], this gives

|F̂n(u) − F0(u)| ≥ |u − v|f0(ξ) ≥ 1
2f0(t)|u − v| ≥ 0.

Since it also holds that

|ψ̄h,t (u) − ψh,t (u)| = |ψh,t (v) − ψh,t (u)| ≤ ch−2|v − u|,
|ϕ̄h,t (u) − ϕh,t (u)| = |ϕh,t (v) − ϕh,t (u)| ≤ c̃h−3|v − u|

the upper bound in (A.16) holds if c1 = 2c/f0(t) and the upper bound in (A.17)
holds if c2 = 2c̃/f0(t). �

To derive the asymptotic distribution of F̂ SM
n (t) we need a result on the charac-

terization of F̂n and some results from empirical process theory, stated in Lemmas
A.5 and A.7 below.

LEMMA A.5. For every right continuous piecewise constant function ϕ with
only jumps at the points τ1, . . . , τm,∫

ϕ(u)
(
δ − F̂n(u)

)
dPn(u, δ) = 0.

PROOF. By the convex minorant interpretation of F̂n, we have that∫
[τi ,τi+1)×{0,1}

δ dPn(u, δ) =
∫
[τi ,τi+1)×{0,1}

F̂n(u) dPn(u, δ)
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for all 0 ≤ i ≤ m − 1 (with τ0 = 0). This implies that∫
[τi ,τi+1)×{0,1}

ϕ(u)
(
δ − F̂n(u)

)
dPn(u, δ)

= ϕ(τi)

∫
[τi ,τi+1)×{0,1}

(
δ − F̂n(u)

)
dPn(u, δ) = 0.

Hence, ∫
ϕ(u)

(
δ − F̂n(u)

)
dPn(u, δ)

=
m−1∑
i=1

∫
[τi ,τi+1)×{0,1}

ϕ(u)
(
δ − F̂n(u)

)
dPn(u, δ) = 0.

�

Before we state the results on empirical process theory, we give some definitions
and Theorem 2.14.1 in van der Vaart and Wellner (1996) needed for the proof of
Lemma A.7.

Let F be the class of functions on R+ and L2(Q) the L2-norm defined by a
probability measure Q on R+, i.e., for g ∈ F

L2(Q)[g] = ‖g‖Q,2 =
(∫

R+
|g|dQ

)1/2

.

For any probability measure Q, let N(ε, F ,L2(Q)) be the minimal number of
balls {g ∈ F :‖g−f ‖Q,2 < ε} of radius ε needed to cover the class F . The entropy
H(ε, F ,L2(Q)) of F is then defined as

H(ε, F ,L2(Q)) = logN(ε, F ,L2(Q))

and J (δ, F ) is defined as

J (δ, F ) = sup
Q

∫ δ

0

√
1 + H(ε, F ,L2(Q))dε.

An envelope function of a function class F on R+ is any function F such that
|f (x)| ≤ F(x) for all x ∈ R+ and f ∈ F .

THEOREM A.6 [Theorem 2.14.1 in van der Vaart and Wellner (1996)]. Let P0
be the distribution of the observable vector Z and F be a P0-measurable class of
measurable functions with measurable envelope function F . Then

E sup
f ∈F

∣∣∣∣
∫

f d
√

n(Pn − P0)

∣∣∣∣ � J (1, F )‖F‖P0,2,

where � means ≤ up to a multiplicative constant.
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LEMMA A.7. Assume F0 and G satisfy conditions (F.1) and (G.1) and let
h : [0,∞) × {0,1} → [−1,1] be defined as h(u, δ) = F0(u) − δ. Then for α ≤ 1/5
and n → ∞

Rn = n2α
∫

ψ̄h,t (u)
(
F̂n(u) − F0(u)

)
d(Gn − G)(u) = Op(1),(A.18)

Sn = n2α
∫

{ψ̄h,t (u) − ψh,t (u)}h(u, δ) d(Pn − P0)(u, δ) = Op(1).(A.19)

PROOF. Define It = [t − ν, t + ν] for some ν > 0 and note that by (2.5) and
(2.6) for any η > 0 we can find M1,M2 > 0 such that for all n sufficiently large

P(E1,n,M1) := P
(

sup
u∈It

|F̂n(u) − F0(u)| ≤ M1n
−1/3 logn

)
(A.20)

≥ 1 − η/2,

P (E2,n,M2) := P
(

sup
u∈It

|Ân(u) − u| ≤ M2n
−1/3 logn

)
(A.21)

≥ 1 − η/2.

Also note that ‖h‖∞ ≤ 1. Moreover, denote by A the class of monotone functions
on It , with values in [0,2t]. Then we know, see, e.g., (2.5) in van de Geer (2000),
that for all δ > 0

H(δ, A,L2(Q)) � δ−1

for any probability measure Q. For the same reason, the class BM of functions of
bounded variation on [0,2t], absolutely bounded by M , has entropy function of
the same order:

H(δ, BM,L2(Q)) � δ−1 for all δ > 0.

Let us now start the main argument. Choose η > 0 and M1,M2 > 0 related
to (A.20) and (A.21), correspondingly. Let ν1,n, ν2,n be vanishing sequences of
positive numbers and write

P([|Rn| > ν1,n]) = P([|Rn| > ν1,n] ∩ E1,n,M1) + P([|Rn| > ν1,n] ∩ E c
1,n,M1

)

≤ P([|Rn| > ν1,n] ∩ E1,n,M1) + η/2 ≤ ν−1
1,nE|Rn|1E1,n,M1

+ η/2,

P ([|Sn| > ν2,n]) ≤ P([|Sn| > ν2,n] ∩ E2,n,M2) + η/2 ≤ ν−1
2,nE|Sn|1E2,n,M2

+ η/2.

Here, we use the Markov inequality, (A.20) and (A.21). We now concentrate
on the terms ν−1

1,nE|Rn|1E1,n,M1
and ν−1

2,nE|Sn|1E2,n,M2
. We show that if we take,

e.g., νi,n = εn−βi (logn)2 for β1 = 5/6 − 7α/2 and β2 = 5/6 − 4α and any
ε > 0 these terms will be smaller than η/2 for all n sufficiently large, showing
that Rn = Op(n−β1(logn)2) = Op(1) and Sn = Op(n−β2(logn)2) = Op(1) for
α ≤ 1/5.
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We start with some definitions. Define for

Cn(u) = k(nα(t − u)/c)

cg(u)
1It (u),

the functions ξA,B,n and ζB,n by

ξA,B,n(u) = Cn(A(u))B(u),

ζB,n(u, δ) = n1/3−α(logn)−1h(u, δ)
(
Cn

(
n−1/3B(u) logn + u

) − Cn(u)
)

and let

G1,n = {ξA,B,n :A ∈ A,B ∈ BM1}, G2,n = {ζB,n :B ∈ BM2}.
Note that by condition (K.1) |Cn(u) − Cn(v)| ≤ nαρ|u − v| for all u, v ∈ It and
some constant ρ > 0 depending only on the kernel k, the point t and the constant c.
Also note that both classes G1,n and G2,n have a constant ρi times 1It as envelope
function, where the constant ρi only depend on k, t , c and Mi , i = 1,2. For κ1,n =
n3α−5/6 logn and κ2,n = n4α−5/6 logn, we now have that

E|Rn|1E1,n,M1

≤ E sup
A∈A,B∈BM1

∣∣∣∣n2α−1/3 logn

∫
ψ(A(u))B(u)d(Gn − G)(u)

∣∣∣∣1E1,n,M1

≤ κ1,nE sup
ξ∈G1,n

∣∣∣∣
∫

ξ(u) d
√

n(Gn − G)(u)

∣∣∣∣
and

E|Sn|1E2,n,M2

≤ E sup
B∈BM2

∣∣∣∣n2α−1/2
∫

h(u, δ)

× {
ψ

(
n−1/3B(u)

× logn + u
) − ψ(u)

}
d
√

n(Pn − P0)(u, δ)

∣∣∣∣
× 1E2,n,M2

≤ E sup
ζ∈G2,n

κ2,n

∣∣∣∣
∫

ζ(u, δ) d
√

n(Pn − P0)(u, δ)

∣∣∣∣.
To bound these expectations, we use Theorem A.6. Using the entropy results

for A and BM together with smoothness properties, we bound the entropies of the
classes G1,n and G2,n. Therefore, we fix an arbitrary probability measure Q and
δ > 0.
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We start with the entropy of G1,n. Select a minimal n−αδ/(2ρM1)-net A1, . . . ,

ANA
in A and a minimal δ/(2‖Cn‖∞)-net B1,B2, . . . ,BNB

in BM1 and construct
the subset of G1,n consisting of the functions ξAi,Bj ,n corresponding to these nets.
The number of functions in this net is then given by

NANB = exp
(
H

(
n−αδ/(2ρM1), A,L2(Q)

) + H
(
δ/(2‖Cn‖∞), BM1,L2(Q)

))
≤ exp(Cnα/δ),

where C > 0 is a constant. This set is a δ-net in G1,n. Indeed, choose a ξ = ξA,B,n ∈
G1,n and denote the closest function to A in the A-net by Ai and similarly the
function in the BM1 -net closest to B by Bj . Then

‖ξA,B,n − ξAi,Bj ,n‖Q,2

≤ ‖Cn‖∞‖B(·) − Bj(·)‖Q,2 + M1‖Cn(Ai(·)) − Cn(A(·))‖Q,2

≤ δ/2 + M1ρnα‖Ai − A‖Q,2 ≤ δ.

This implies that

H(δ, G1,n,L2(Q)) � nα/δ

and

J (δ, G1,n) ≤
∫ δ

0

√
1 + H(ε, G1,n,L2(Q)) dε � nα/2

√
δ.

To bound the entropy of G2,n, we select a minimal (δ/ρ)-net B1,B2, . . . ,BN in
BM2 and construct the subset of G2,n consisting of the functions ζBi,n correspond-
ing to this net. The number of functions in this net is then given by

N = exp
(
H

(
δ/ρ, BM2,L2(Q)

)) ≤ exp(C/δ),

where C > 0 is a constant. This set is a δ-net in G2,n. Indeed, choose a ζ = ζB,n ∈
G2,n and denote the closest function to B in the BM2 -net by Bi , then

‖ζB,n − ζBi,n‖L2(Q)

≤ n1/3−α(logn)−1‖h‖∞
× ∥∥Cn

(
n−1/3B(·) logn + ·) − Cn

(
n−1/3Bi(·) logn + ·)∥∥L2(Q)

≤ n1/3−α(logn)−1nαρn−1/3 logn‖Bi − B‖L2(Q) ≤ δ.

This implies that

H(δ, G2,n,L2(Q)) � 1/δ and J (δ, G2,n) �
√

δ.
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We now obtain via Theorem A.6 that

E|Rn|1E1,n,M1
≤ κ1,nE sup

ξ∈G1,n

∣∣∣∣
∫

ξ(u) d
√

n(Gn − G)(u)

∣∣∣∣
� κ1,nJ (1, G1,n) � n7α/2−5/6 logn,

E|Sn|1E2,n,M2
≤ κ2,nE sup

ζ∈G2,n

∣∣∣∣
∫

ζ(u, δ) d
√

n(Pn − P0)(u, δ)

∣∣∣∣
� κ2,nJ (1, G2,n) � n4α−5/6 logn.

Hence, we can take νi,n = εn−βi (logn)2 for β1 = 5/6 − 7α/2, β2 = 5/6 − 4α and
any ε > 0 to conclude that

P

(
nβ1

(logn)2 |Rn| > ε

)
≤ nβ1

ε(logn)2 E|Rn|1E1,n,M1
+ η/2 � 1

ε logn
+ η/2 < η,

P

(
nβ2

(logn)2 |Sn| > ε

)
≤ nβ2

ε(logn)2 E|Sn|1E2,n,M2
+ η/2 � 1

ε logn
+ η/2 < η

for n sufficiently large. �

With this lemma, we now can prove Theorem 4.2.

PROOF OF THEOREM 4.2. Using the piecewise contant version ψ̄h,t of ψh,t ,
we can write∫

ψh,t (u)
(
δ − F̂n(u)

)
dP0(u, δ) =

∫
ψ̄h,t (u)

(
δ − F̂n(u)

)
dP0(u, δ) + Rn,

where for h = cn−α and n sufficiently large

|Rn| ≤ c1h
−2

∫
u∈[t−h,t+h]

|F0(u) − F̂n(u)|2 dG(u) = Op(nα−2/3) = Op(n−2α)

by (2.3) and Lemma A.4. So we find

n2α
∫

ψh,t (u)
(
δ − F̂n(u)

)
dP0(u, δ)

= n2α
∫

ψ̄h,t (u)
(
δ − F0(u)

)
d(P0 − Pn)(u, δ) + Op(1)

using that n2αRn = Op(1), Property A.5 and (A.18). By (A.19), we get

n2α
∫

ψ̄h,t (u)
(
δ − F0(u)

)
d(P0 − Pn)(u, δ)

= n2α
∫

ψh,t (u)
(
δ − F0(u)

)
d(P0 − Pn)(u, δ) + Op(1).
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Applying the central limit theorem with α = 1/5, gives

n2/5
∫

ψh,t (u)
(
δ − F0(u)

)
d(Pn − P0)(u, δ) � N (0, σ 2

F,SM)

for σ 2
F,SM as in (4.4). Note that now

n2/5(
F̂ SM

n (t) − F0(t)
)

= n2/5
∫

ψh,t (u)
(
δ − F0(u)

)
d(Pn − P0)(u, δ)

+ n2/5
(∫

Kh(t − u)dF0(u) − F0(t)

)
� N (μF,SM, σ 2

F,SM).

To find our optimal bandwidth hn,opt, we minimize the aMSE with respect to c

aMSE(F̂ SM
n , c) = 1

4
c4m2

2(k)f ′
0(t)

2 + c−1 F0(t)(1 − F0(t))

g(t)

∫
k(u)2 du,

which is standard a minimization in c, yielding (4.5). �
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