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Abstract

A distribution which arises in problems of estimation of monotone functions is that of the
location of the maximum of two-sided Brownian motion minus a parabola. Using results
of Groeneboom (1985), (1989), we present algorithms and programs for computation of this
distribution and its quantiles. We also present some comparisons with earlier computations
(Dykstra and Carolan (1996)) and simulations (Narayanan and Sager (1989), and Keiding,
Begtrup, Scheike, and Hasibeder (1996)).
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1. Introduction

Our goal here is to compute, table, and plot the density, distribution function, moments, and
quantiles of the location Z of the maximum of two-sided Brownian motion B minus the parabola
t2. We also provide several examples of the application of this distribution to problems including
interval censoring, monotone density and hazard estimation, deconvolution, least median of squares
estimation and mode estimation.

To be explicit, let B(t), —oo < t < 00, be two-sided standard Brownian motion with B(0) = 0.
Then

7 = argmax,(B(t) — t?).

It follows from Lemma 2.6 of Kim and Pollard (1990) that Z is uniquely defined with probability
1. The distribution of Z apparently first arose in work of Chernoff (1964) on the estimation of
the mode of a distribution function, and hence we refer to the distribution of Z as Chernoff’s
distribution.

Prakasa Rao (1969) showed that the distribution of the slope at zero of the greatest convex
minorant of B(t) + t? is exactly 2Z. This follows from the “switching relation”; see Groeneboom
(1985), (2.2), page 541 for the finite sample version of this relation. Groeneboom (1985), (1989)
completely described the distribution of Z and characterized analytically the process {V(a) : a €
IR}, where

V(a) = sup{t € R: B(t) — (t — a)? is maximal.

In particular, Z has a density fz with respect to Lebesgue measure on IR which is symmetric about

zero, and which satisfies

1 44/3| Z|
2 Ai'(a)

fz(2) exp(—32 2|2 + 21364 2]) as 2z — 00.

where a1 ~ —2.3381 is the largest zero of the Airy function Ai and where Ai'(a;) =~ 0.7022. The
link of the distribution of Z with Airy functions is also given in Daniels and Skyrme (1985), but
the process {V(a) : @ € IR} is not discussed in that paper. In unpublished notes, Groeneboom and
Sommeijer (1984) numerically computed the absolute moments FE(|Z|¥), k = 1,...,4. The first of
these was reported by Devroye and Gyorfi (1985), page 214; and all four of them were reported
by Keiding, Begtrup, Scheike, and Hasibeder (1996). Note that by symmetry of f it follows that
E(Z¥) =0 for k odd.

2. Applications and Examples.

Here we present several examples showing how the distribution of Z enters.

Example 1. (Decreasing densities) A classical example of an application of the theory is the
Grenander estimator of a decreasing density on [0,00) Suppose that Xi,..., X, is a sample,
generated by a decreasing density f on [0,00) that has a nonzero derivative f'(z) at a point
z € (0,00). Let f, be the maximum likelihood estimator of f under the monotonicity restriction.



Then fn is the left-continuous derivative of the concave majorant of the empirical distribution
function, see Grenander (1956) and Groeneboom and Lopuhad (1993). This estimator has, after
“cube root n” standardization, the following limiting distribution

@) @)} fa@) - @)} B 22n - o,

where 2 denotes convergence in distribution, see Prakasa Rao (1969) and (for a different shorter
proof) Groeneboom (1985).

Example 2. (Monotone failure rates) For this situation a similar result holds as in Example 1.
For example, let X1, ..., X, is a sample, generated by a distribution with an increasing failure rate
r on [0,00) and let 7, be the NPMLE of r in the class of distributions with increasing failure rate.
Then, under some regularity conditions:

w3 (4@ (@)} () = (@)} B 22, m — oo,
see Prakasa Rao (1970).

Example 3. (Least median of squares estimator) Let Xi,..., X, be a sample from a density
strongly unimodal distribution with density fy, given by

folx) = f(z = 0), z € IR,

where the density f is differentiable and symmetric around zero. Rousseeuw (1984) introduces the
least median of squares estimator 6, for the shift parameter 6 and gives a heuristic argument for

the result that X
Mﬁ{@—Q}

converges in distribution to ¢- Z, where ¢ > 0 is a constant depending on the distribution function
F corresponding to the density f, the density f itself and its derivative f’. A proof of this result
is given in Kim and Pollard (1990). In Rousseeuw (1984) also recommendations for confidence
intervals can be found.

Example 4. (Interval censoring, case 1, also called “current status model”). Suppose that X
is a “survival time” with distribution function F' on [0,00) and Y is an observation time which
is independent of X and has distribution function G on [0,00). However we can observe only
(Y, 1ix<y}) = (Y,A), and want to estimate F', the distribution function of X based on i.i.d.

replications (Y1,A1),..., (Yn,Ay) of (Y, A). In this case the NPMLE F,, of F is known from Ayer,
Brunk, Ewing, Reid, and Silverman (1955). It was proved in Groeneboom and Wellner (1992) that
if F' has density f and G has density g at tg € (0,00) with g(¢g) > 0, f(tp) > 0, then

R s (1 1/3
n1/3(1Fn(t0) — F(tg)) = {§F(to)(1 - F(to))f(to)/g(to)} 27, n — oo.



Thus from Table 2 in section 2 below, it follows that an asymptotic 95% confidence interval for
F(tp) is given by

R 1. R R 1/3
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where f(to) and g(to) are any consistent estimators of f(t9) and g(fo) respectively; e.g. based on
kernel smoothing of F,, and G, (t) = n ™1 Y27 Liy <y

In the particular application discussed by Keiding et al. (1996), X; represents “age of
immunization” of individual 7 against rubella, Y; represents “current age” of person i.

Example 5. (Interval censoring, case 2). In this case the data consist of a sample of observations
(Uivv;bA%Fi), 1=1,...,n,

where U; < V; and [U;, V;] is an “observation interval” for the (hidden and unobservable) variable
X;. The variables A; and I'; are indicators, telling us whether X; is left of U;, between U; and V;,
or right of V;:

Ai= Lixi<uiys L = L, <xi<vi}

The X; are assumed to be independent of the (U;, V;). For analyses of this model, see, for _example,
Groeneboom (1996) and Geskus and Groeneboom (1999). In this situation the NPMLE F,, has to
be computed by an iterative method. A fast iterative algorithm is available, the so-called iterative
convex minorant algorithm, proposed in Groeneboom and Wellner (1992) and further analyzed in
Jongbloed (1998b).

Assume that (U;, V;) has a density h w.r.t. Lebesgue measure, with first and second marginal
densities hy and ho, respectively. Moreover, suppose that F is the distribution function of the
variable X; with a density f w.r.t. Lebesgue measure, and let k;, i = 1,2, and the function a be

defined by
[ h(u,v) (" h(u,v)
)= [ Sra 0= [ e
and
a(t) = };((f(?)) + k1 (to) + ka(to) + %

Then we have at a point ¢ in the interior of the support of the distribution function F' under some
regularity conditions, in particular assuming that the observation points U; and V; are strictly
separated (i.e., P{V; — U; < €} = 0 for some € > 0) and that f(¢) > 0:

n'3{2a(t)/f () YP{F(t) — F(t)} 2 22, n — o0,

see Groeneboom (1996), Theorem 4.4.

A long-standing conjecture is that in the situation where U; and V; are not strictly separated
the rate of convergence increases to (nlog n)l/ 3 and that the limiting distribution is again given by
Z, see Groeneboom and Wellner (1992), p. 100, but this conjecture has at present still not been



proved or disproved. Extensions to more than two observation points are possible (the situation
is not very different from “case 2”7, since only the two observation points surrounding the hidden
variable X; will be relevant for the analysis), but we will not further discuss this here.

Example 6. (Deconvolution) Let Xi,..., X, be a sample from the convolution of an/\unknown
distribution function F', concentrated on [0,1] and the uniform distribution and let F,, be the
NPMLE of F. Then, if F has a positive density f(z) at = € (0,1):

3 {Fo(@) - F@)} /[ {3F@)(1 - F@) @)} 222, n - o,

see Theorem 4.5 in van Es (1991) or Groeneboom and Wellner (1992), p. 109. A similar result for
deconvolution with the exponential distribution is given in Jongbloed (1998a), where it is shown that
if X1,...,X, is a sample from the convolution of an unknown distribution function F', concentrated
on [0,00) with the standard exponential distribution, the NPMLE F, of F satisfies

3 {Bo(@) - P@)} [ {3 f@)}' 7 B 2z,

if F' has a positive density f(z) at = > 0. For related material, see van Es and van Zuijlen (1996)
and van Es, Jongbloed and van Zuijlen (1998).

Example 7. (Mode Estimation; Venter’s estimator). Suppose that Xi,..., X, are i.i.d. with
unimodal density f satisfying

£(x) =0~ 57z — 67+ Za(z — 6 + ol — 01").

Then as shown by Venter (1967), his estimator 0, of the mode 0 satisfies
n1/5<§n —0) —g L3 A=2/35=2/3 7
Thus, if 49 and 4 are consistent estimators of vy and - respectively, then

> 2!/34q

yields an approximate 95% confidence interval for the mode 6.

Narayanan and Sager (1989) give several nice examples of mode estimation via both Chernoff’s
estimators and Venter’s estimators and their (simulated) quantiles of the distribution of Z to form
confidence intervals; see especially pages 46 - 50.

Example 8. (Panel Count Data). Wellner and Zhang (1998) show that a pseudo-likelihood
estimator A, of the mean function A of a counting process with “panel count” data satisfies

] EYOVINST:
n' B3RP () — A() 2 {%} o



where G'(t) = > 72, P(K = k) Z?:l k(). Thus if 62(t), N, and G'(t) are consistent estimators
of o2(t), A'(t), and G'(t) respectively, then

v 1/3
Aoy + {022(2%)(”} -2+ (.99818)

yields an approximate 95% confidence interval for A(t).
For a rather different approach to examples of the type presented here, see Politis and Romano

(1994), especially their example 2.1.1, pages 2035-2036.

3. Computation of the density f; and distribution function F.

The density fz can in principle be found by solving the following partial differential equation (heat
equation), given in Chernoff (1964):

82
1
for x < t?, under the boundary conditions:
2 def .. .
u(t,t*) = th% u(t,x) =1, lilm u(t,z) =0, t € R. (3.2)
xt x| —00

In terms of the (smooth) solution u(t, z), the density fz is given by
fz(t) = 3ua(—t)us(t), t € IR, (3.3)

where (as in Groeneboom (1985), the function us is defined by

0
ug(t) = lim —u(t,x), t € IR. 3.4
2( ) o112 Ot ( ) )7 ( )

In fact, the original computations of the density were based on a numerical solution of this
differential equation (this information is based on personal communications from professors Herman
Chernoff and Willem van Zwet). The trouble with this approach is the behavior of the function us
for negative values of ¢. In fact, since, by (4.25) in Groeneboom (1985),

up(t) ~ crexp {—2[t[* —cft|}, t — —o0,

where ¢ = 2.9458 ... and c¢; =~ 2.2638..., the function us tends to zero extremely rapidly, as t
decreases away from zero. Some experiments with the numerical approach by the first author,
in cooperation with B. Sommeyer, back in 1984, showed that this simple analytic fact invalidates
any direct numerical approach, based on the partial differential equation: an error analysis showed
that even with very fine grids the numerical solution was highly unstable. For this reason a more



thorough analytic analysis of the problem was made, and the results of this analysis are given in
Groeneboom (1985) and Groeneboom (1989)

The following development is from Groeneboom (1985), section 4, pages 548 - 553. Define a
function p : [0,00) — R as follows:

I oy + 300 bry* =12 if yel0,1]
p(y) = (3.5)
—y’3/2 + 22w exp(—y3/6) POt exp(21/3(~1ky) , if ye(1,00).

Here the ap’s are the zeros of the Airy function Ai, and ax, by are defined recursively as follows:
set ¢g = 1 and
(2n —3)(2n + 1)
Cp—1,
n?(2n — 1)

The recursive relations for the coefficients a; and by follow from the integral equation (4.14) in
Groeneboom (1985). The integral equation leads to an accurate and useful analytic representation
of the density in a neighborhood of zero, whereas the expansion on the second line of (3.5) does
similar job away from zero.

Then with ag = 1, by = 2/3, and B(p,q) =I'(p)['(¢)/T'(p + q), the standard Beta function, set

ep=—2"4 n=12,....

n—1
1
U =n— Y mbn,kB(?m —2%k—1/2,k+3/2), n=12...; (3.6)
k=0
n—1 1
bp = kZ:O Wan_k_lfz(?m —2%k—2,k+3/2), n=273,.... (3.7)

The reason for treating the intervals [0, 1] separately is that the series using the zeros of the Airy
function diverges at zero and gives a bad approximation in neighborhoods of zero.
We then define g : IR — IR by

g(x) = 2z - —/Ooop(y) exp(—3y(2z +y)?)dy

2 o0
* 2\/;/ {22 +9°)y* + 322 +9°)*yexp(—59° (20 + )Y dy  (3.8)
0
if x € [-1,00), and

g(x) = exp(32°)41/* Y " exp(—2"3ax) /A (ar,) (3.9)
k=1

if 2 € (—o0, —1]; here A’ is the derivative of the Airy function Ai. The reason for using y? in the

integrand of the first part of the definition of g instead of y as in Groeneboom (1985), is purely

numerical: the present change of variables avoids a factor of ,/y in the denominator of the integrand.
Finally, the density fz is expressed in terms of g as

J2(2) = Lg(2)g(~2), =€ (~o0,00). (3.10)

7
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Figure 1: Density function of Z, f.

The distribution function Fz of Z is simply

z

Fz(z) = /_Z fz(w)dw = %/ g(w)g(—w)dw , z € (—00,00).

—0o0

Because of the symmetry of fz about 0, it suffices to calculate

Fu(z) — F(0) = /0 Fo(w)dw = %/Ozg(w)g(—w)dw, e [0,00). (3.11)

Figures 1 and 2 show plots of the density function f; and the distribution function Fy
respectively; in these figures we used the first 20 terms of the series defining the function p, and
also the first 20 terms of the series defining ¢ in the region (—oo, —1). The figures shown here were
produced by Mathematica; see Wolfram (1996).

The tables were also first computed in Mathematica. Subsequently, a computer program,
written in C, was developed, using some routines for computing integrals and (zeros of) Airy
functions in Lau (1995). These C routines are translations into C of the routines in the NUMAL
library of the ALGOL 60 routines, developed at the Mathematical Centre, Amsterdam, see Hemker
(1980). The results of the C program correspond in all decimals shown with the results obtained in
Mathematica, except in a few cases where Mathematica could not reach sufficient accuracy (giving
small differences in the last decimals). The C program was originally written on a Macintosh
powerbook, using the Metrowerks Code Warrior C compiler and the sources could be compiled
without any change on an HP Unix workstation by the standard C compiler available on this
workstation. In the demonstration version of the program Table 1 of the present paper is computed.

We also tried to provide a Microsoft Windows 98 executable, but in this case ran into trouble,
since compilation by the Microsoft Visual C++ compiler, version 6.0, produced a so-called “release
version” that either did not work or produced the wrong results (interestingly, depending on the



081

06

15 1 05 05 1 15
Figure 2: Distribution function of Z, Fy.

machine on which it was run!). The so-called “debug version” worked o.k., but was very slow.
Consulting the available information on differences between “debug” and “release” versions did
not help us to solve the problem. Disabling the “maximize speed” option in compiling the release
version also produced a correctly but slowly working version! So, in view of these experiences, we
recommend compiling the C sources either on a machine using the Unix operating system or on a
Macintosh power PC, using Metrowerks Code Warrior. Compilation using Microsoft Visual C++
may produce unexpected results!

Dykstra and Carolan (1997) computed the density function fz by numerical Fourier inversion
of formula (3.8), page 91, Groeneboom (1989). This section showed how fz is computable without
numerical Fourier inversion.

Table 1 gives the distribution function Fz(z) and the density function fz(z) for z = 0.0(.01)2.0.
We took n = 20 in our computation of the power series; the demonstration program allows the user
take a different number of terms before starting the computation. Our experience is that in going
beyond 20 (in choosing the number of terms in the power series), the results did not change in 9
decimals. The C code also contains routines for computing moments and quantiles; these routines
can all be found in the source “main.c”. We used these routines in producing the other tables
below.



Table 1. Values of the distribution function Fz and density function f.

z | Fz(2) | fz(2) z | Fz(2) | fz(2) z | Fz(2) | [z2(2)

.00 | .500000 | 0.758345 .30 | 716352 | 0.649874 .60 | .875858 | .403594
.01 | .507583 | 0.758215 31| 722817 | 0.643059 .61 | .879851 | .394887
.02 | .515163 | 0.757828 32 | 729213 | 0.636088 .62 | .883756 | .386214
.03 | .522739 | 0.757183 .33 | .735538 | 0.628967 || .63 | .887575 | .377580
.04 | .530306 | 0.756281 34 | 741792 | 0.621704 .64 | .891308 | .368989
.05 | .537863 | 0.755123 .35 | 747972 | 0.614303 .65 | .894955 | .360447
.06 | .545408 | 0.753709 .36 | 754077 | 0.606771 .66 | .898517 | .351960
.07 | .552937 | 0.752042 37 | .760107 | 0.599115 .67 | 1901994 | .343531
.08 | .560448 | 0.750122 .38 | 766059 | 0.591341 .68 | 905388 | .335166
.09 | .567938 | 0.747951 .39 | 771933 | 0.583455 .69 | .908698 | .326870
.10 | 575406 | 0.745532 A0 | 777728 | 0.575464 || .70 | .911925 | .318646
A1 | 582848 | 0.742866 41 | 783442 | 0.567374 71| .915071 | .310499
12| 590263 | 0.739957 || .42 | .789075 | 0.559192 72 | .918136 | .302433
13 | 597647 | 0.736806 43 | 794626 | 0.550925 73 | .921120 | .294452
.14 | .604998 | 0.733416 44 | .800094 | 0.542578 .74 | .924025 | 286560
15 | .612314 | 0.729792 45 | .805477 | 0.534159 75 | .926852 | 278760
.16 | .619593 | 0.725935 46 | .810776 | 0.525674 76 | .929601 | 271057
A7 | 626832 | 0.721849 A7 | .815991 | 0.517130 7| .932273 | 263452
A8 | .634029 | 0.717539 A48 | .821119 | 0.508533 78 | .934870 | .255950
.19 | 641182 | 0.713008 49 | .826161 | 0.499890 .79 | .937392 | 248553
.20 | .648289 | 0.708260 .00 | .831117 | 0.491208 .80 | .939841 | .241264
.21 | .655347 | 0.703299 .51 | .835985 | 0.482492 .81 | .942218 | .234086
.22 | .662354 | 0.698131 .52 | .840766 | 0.473749 .82 | .944523 | .227020
.23 | .669309 | 0.692758 .53 | .845460 | 0.464986 .83 | .946759 | .220070
.24 | .676208 | 0.687187 .54 | .850066 | 0.456209 .84 | .948925 | .213237
.25 | .683052 | 0.681422 Db | .854584 | 0.447424 .85 | .951024 | .206523
.26 | .689836 | 0.675469 .56 | .859014 | 0.438638 .86 | .953056 | .199931
.27 | .696560 | 0.669332 D7 | .863357 | 0.429855 .87 1 .955023 | .193460
.28 | 703222 | 0.663017 b8 | .867612 | 0.421083 .88 | .956926 | .187113
.29 | .709820 | 0.656529 .59 | 871779 | 0.412327 .89 | .958766 | .180891

10




Table 1 continued

z | Fz(2) | fz(2) z | Fz(2) | fz2(2) z | Fz(2) | fz(2)
.90 | .960544 | .174795 1.27 | .994448 | .0346458 || 1.64 | .999631 | .0031329
91 | .962262 | .168827 1.28 | .994785 | .0328273 || 1.65 | .999662 | .0028995
.92 | 1963921 | .162985 1.29 | .995105 | .0310864 || 1.66 | .999689 | .0026817
.93 | .965522 | 157272 1.30 | .995407 | .0294208 || 1.67 | .999715 | .0024785
.94 | 967067 | .151687 1.31 | .995693 | .0278282 || 1.68 | .999739 | .0022891
.95 | .968556 | .146231 1.32 | 1995964 | .0263065 || 1.69 | .999761 | .0021127
.96 | .969992 | .140904 1.33 | .996220 | .0248534 || 1.70 | .999781 | .0019485
.97 | .971375 | .135705 1.34 | .996461 | .0234666 || 1.71 | .999800 | .0017957
.98 | .972706 | .130635 1.35 | .996689 | .0221441 || 1.72 | .999817 | .0016537
.99 | .973988 | .125694 1.36 | .996904 | .0208837 || 1.73 | .999833 | .0015219
1.00 | .975221 | .120880 1.37 | 997107 | .0196831 || 1.74 | .999848 | .0013995
1.01 | .976406 | .116194 1.38 | .997298 | .0185404 || 1.75 | .999861 | .0012861
1.02 | 977545 | .111633 1.39 | .997478 | .0174534 || 1.76 | .999873 | .0011810
1.03 | .978639 | .107199 1.40 | .997648 | .0164201 || 1.77 | .999885 | .0010836
1.04 | .979689 | .102889 1.41 | .997807 | .0154385 || 1.78 | .999895 | .0009936
1.05 | .980697 | .0987031 || 1.42 | .997957 | .0145066 || 1.79 | .999905 | .0009103
1.06 | .981664 | .0946394 || 1.43 | .998097 | .0136226 || 1.80 | .999913 | .0008334
1.07 | .982590 | .0906969 || 1.44 | .998229 | .0127844 || 1.81 | .999921 | .0007625
1.08 | .983478 | .0868741 || 1.45 | .998353 | .0119902 || 1.82 | .999929 | .0006970
1.09 | .984328 | .0831697 || 1.46 | .998469 | .0112384 || 1.83 | .999935 | .0006367
1.10 | .985142 | .0795821 || 1.47 | .998578 | .0105269 || 1.84 | .999941 | .0005811
1.11 | .985920 | .0761096 || 1.48 | .998680 | .0098542 || 1.85 | .999947 | .0005300
1.12 | .986665 | .0727506 || 1.49 | .998775 | .0092187 || 1.86 | .999952 | .0004830
1.13 | .987376 | .0695033 || 1.50 | .998864 | .0086186 || 1.87 | .999957 | .0004399
1.14 | .988055 | .0663658 || 1.51 | .998948 | .0080523 || 1.88 | .999961 | .0004003
1.15 | .988703 | .0633362 || 1.52 | .999025 | .0075183 || 1.89 | .999965 | .0003639
1.16 | .989322 | .0604126 || 1.53 | .999098 | .0070151 || 1.90 | .999968 | .0003306
1.17 | 1989912 | .0575930 || 1.54 | .999166 | .0065413 || 1.91 | .999971 | .0003001
1.18 | .990474 | .0548753 || 1.55 | .999229 | .0060955 || 1.92 | .999974 | .0002722
1.19 | .991010 | .0522574 || 1.56 | .999288 | .0056763 || 1.93 | .999977 | .0002468
1.20 | 1991520 | .0497372 || 1.57 | .999343 | .0052824 || 1.94 | .999979 | .0002235
1.21 | .992005 | .0473125 || 1.58 | .999394 | .0049125 || 1.95 | .999981 | .0002022
1.22 | .992466 | .0449811 || 1.59 | .999441 | .0045655 || 1.96 | .999983 | .0001828
1.23 | .992905 | .0427408 || 1.60 | .999485 | .0042401 || 1.97 | .999985 | .0001652
1.24 | 1993321 | .0405894 || 1.61 | .999526 | .0039352 || 1.98 | .999986 | .0001491
1.25 | .993717 | .0385246 || 1.62 | .999564 | .0036497 || 1.99 | .999988 | .0001345
1.26 | .994092 | .0365441 || 1.63 | .999599 | .0033826 || 2.00 | .999989 | .0001212
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4. Quantiles of F; and some comparisons.

Dykstra and Carolan (1997) suggested that fz and Fz are closely approximated by the N (0, (.52)2)
density and distribution functions respectively. While this results in a simple approximation for the
corresponding quantiles F, 1(p), the differences between the exact quantiles and the approximate
quantiles, or exact distribution function and approximate distribution function based on the normal
approximation can be substantial.

Table 2 compares a few quantiles computed directly by inverting the distribution function,
computed in the preceding section, with analytically computed, approximate (by a normal
distribution approximation), and Monte Carlo quantiles as computed by Dykstra and Carolan
(1997), Narayanan and Sager (1989), and Keiding et al. (1996). The Dykstra and Carolan (1997)
approach seems to fail in the tail, and we indeed believe that it is absolutely necessary to use
different representations of the density in a neighborhood of zero and in the tail (which is a common
phenomenon in the numerical evaluation of special functions), whereas Dykstra and Carolan (1997)
essentially use the same representation for the whole domain. The normal approximation clearly
cannot be good for the whole domain; is this case it is reasonable for the outer values, but not so
good for the intermediate values. The results of the Monte Carlo simulation of Narayanan and Sager
seem pretty good for the values tabulated here and slightly better than the Monte Carlo simulation
results, reported by Keiding et al. Neverthless, there is no need for Monte Carlo simulations and
these will generally produce results deteriorating rapidly if one goes further out in the tail.

Table 3 gives further quantiles of the distribution F.

Table 2. Comparison of several computations and estimators of the quantiles F, 1(p) for certain

p’s.
Percentile || Exact Dykstra and N(0,(.52)?) | Narayanan | Keiding et al.
D F; L(p) Carolan; Fourier and Sager; Monte-Carlo
inversion Monte-Carlo

9 .664235 | .664 .666 .658 .66

.95 .845081 .846 .856 .838 .836

975 1998181 998 1.018 .986 1.009

.99 1.171530 | 1.156 1.205 1.156 1.176

.995 1.286659 | 1.270 1.314 1.281 1.278

999 1.516664 | 1.452 1.515 1.510 NA
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Table 3. Quantiles of F;'(p) for p = .5(.01).99 and p = .99(.001).999.

p [F'(p) [»p Fy ' (p)

50 | 0.00 80 | 0.439328
51| 0.013187 || .81 | 0.458525
52 | 0.026383 || .82 | 0.477804
53 | 0.039595 || .83 | 0.497731
54| 0.052830 || .84 | 0.518383
55 | 0.066096 || .85 | 0.539855
56 | 0.079402 || .86 | 0.562252
57 | 0.092757 || .87 | 0.585706
58 | 0.106168 || .88 | 0.610378
59 | 0.119645 || .89 | 0.636468
60 | 0.133196 || .90 | 0.664235
61| 0.146831 || .91 | 0.694004
62 | 0.160560 || .92 | 0.726216
63| 0.174393 || .93 | 0.761477
64| 0.188342 || .94 | 0.800658
65 | 0.202418 || .95 | 0.845081
66 | 0.216633 || .96 | 0.896904
67 | 0.230999 || .97 | 0.960057
68| 0.24553 || .98 | 1.043030
69 | 0.260242 || .99 | 1.171530
70 | 0.275151 || .991 | 1.189813
71| 0.290274 || 992 | 1.209897
72| 0.305629 | .993 | 1.232241
73| 0.321238 || 994 | 1.257496
74| 0.337123 || 995 | 1.286659
75 | 0.353308 || .996 | 1.321370
76 | 0.369821 || .997 | 1.364637
77| 0.386694 || 998 | 1.423026
78 | 0.403959 || .999 | 1.516664
79 | 0.421656 || 19999 | 1.784955
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5. Moments of ~Z.

As remarked in the introduction, the first four moments were computed by Groeneboom and
Sommeijer (1984). Table 3 shows the first 10 moments of Z.

Table 4. Absolute moments of Z; E(|Z|¥), k = 1(1)10.

E(|z]")

41273655
.26355964
21135025
19715702
20573334
.23455025
.28760426
37509901
51604236
74410271

= © 00 O O Wi |

@)
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