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Abstract

In Groeneboom (1985, 1989) a jump process was introduced that can be used (among
other things) to study the asymptotic properties of the Grenander estimator of a monotone
density. In this paper we derive the asymptotic normality of a suitably rescaled version of
the L1 error of the Grenander estimator, using properties of this jump process.
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1 Introduction

Let f be a decreasing density with support [0, 1]. Denote by Fn the empirical distribution
function of a sample X1, . . . , Xn from f . Let F̂n be the concave majorant of Fn on [0,1],
by which we mean the smallest concave function such that

F̂n(t) ≥ Fn(t), t ∈ [0, 1], and F̂n(0) = 0, F̂n(1) = 1.

The Grenander estimator f̂n is defined as the left derivative of F̂n.
In Groeneboom (1985) the asymptotic behavior of f̂n was investigated. Instead of

studying the process {f̂n(t), t ∈ (0, 1)} itself, the better tractable (inverse) process {Un(a) :
a ∈ [f(1), f(0)]} was studied, where Un(a) is defined as the last time that the process
Fn(t)− at attains its maximum:

Un(a) = sup{t ∈ [0, 1] : Fn(t)− at is maximal}. (1.1)

A new proof, based on the inverse process Un, was given of a result in Prakasa Rao (1969)
on pointwise weak convergence of f̂n. In Groeneboom (1985) also analytical properties
of the weak limit of the locally rescaled process Un(a) were discussed and it was indicated
how the process Un together with a Hungarian embedding technique could be used to
prove asymptotic normality of the L1 error

‖f̂n − f‖1 =
∫ 1

0
|f̂n(t)− f(t)| dt. (1.2)

The analytical properties of the limit process a 7→ V (a) were made rigorous in Groene-
boom (1989) and at the same time it was mentioned that a rigorous treatment of the
asymptotic normality of the L1 error would appear elsewhere. This paper fulfills that
promise.

We feel that this result is important, since the problem of estimating a monotone
density is closely related to several other (inverse) problems, e.g., estimation of the distri-
bution function of interval censored data (see, e.g. Groeneboom and Wellner (1992)),
and estimation of a monotone hazard function, and since the result was referred to by sev-
eral authors, see, for instance, Devroye and Györfi (1985), pp. 213 and 214, Devroye
(1987), p. 145, Csörgö and Horvath (1988), Birgé (1989), and Wang (1992). Recently,
the result has been taken up again in the context of nonparametric regression, see Durot
(1996). In fact, the methods used by Durot (1996), whose work was done independently,
are closer in spirit to the methods, suggested in Groeneboom (1985), than our present
paper, which relies on ideas, developed in Groeneboom (1989). In both settings, the proof
relies heavily on the fact that Brownian motion has independent increments. One of the
main differences between the model, considered in Durot (1996), and the present paper
is that in the regression setting one can make a direct embedding into Brownian motion,
whereas in our case we can only make such a embedding into the Brownian bridge and we
need rather delicate arguments to make the transition to Brownian motion (Corollary 3.3
in the present paper).
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The main result can be stated as follows. Define

V (c) = sup{t : W (t)− (t− c)2 is maximal}, (1.3)

where {W (t) : −∞ < t < ∞} denotes standard two-sided Brownian motion on IR origi-
nating from zero (i.e. W (0) = 0).

Theorem 1.1 (Main Theorem) Let f be a twice differentiable decreasing density on
[0,1], satisfying

(A1) 0 < f(1) ≤ f(t) ≤ f(s) ≤ f(0) < ∞, for 0 ≤ s ≤ t ≤ 1.

(A2) 0 < inf
t∈(0,1)

|f ′(t)| ≤ sup
t∈(0,1)

|f ′(t)| < ∞.

(A3) sup
t∈(0,1)

|f ′′(t)| < ∞.

Then with µ = 2E|V (0)|
∫ 1
0 |

1
2f ′(t)f(t)|1/3 dt,

n1/6
{

n1/3
∫ 1

0
|f̂n(t)− f(t)| dt− µ

}

converges in distribution to a normal random variable with mean zero and variance σ2 =
8

∫∞
0 cov(|V (0)|, |V (c)− c|) dc.

Actually, this is precisely the theorem, as stated in Groeneboom (1985) (with the same
conditions). In that paper, however, a sketch of proof of two pages was given, whereas,
unfortunately, we need a lot more pages to write down all the details (an experience shared
with Cécile Durot in her work on the regression problem). The difficulty in proving a result
of this type stems from the fact that the Grenander estimator is a non-linear functional of
the empirical distribution function. For this reason methods of proof are needed that are
very different from those used in, e.g., Csörgö and Horvath (1988), where the linearity
of the kernel estimators is used in an essential way.

In Section 2 we show

‖f̂n − f‖1 =
∫ f(0)

f(1)
|Un(a)− g(a)| da + op(n−1/2), (1.4)

where g denotes the inverse of f (see Corollary 2.1). In this section we also obtain an
exponential upper bound for the tail probabilities of V E

n (a) = n1/3(Un(a)− g(a)).
In Section 3 the process a 7→ V E

n (a) is approximated (using Hungarian embedding)
by a process a 7→ V B

n (a), defined for the Brownian bridge. The process V B
n is in turn

approximated by a similar process a 7→ V W
n (a), defined for Brownian motion. A key tool

for the results in this section is Lemma 3.4, showing that the probability of a jump of V B
n

and V W
n in an interval of length hn−1/3 is of order h, if h is not too small. We suspect that

the restriction “not too small” is actually not needed, but this restriction arises naturally
in the present approach. The methods in this section are motivated by results that hold
in the “canonical setting” of the process V , studied in Groeneboom (1989).
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Another key observation that makes things work in Section 3 is that, although we can-
not construct a Brownian motion and a Brownian bridge which are close in the supremum
distance on [0, 1], we have that, if

W (F (t)) = B(F (t)) + ξF (t),

where B is the Brownian bridge on [0, 1], and ξ is a standard normal random variable,
independent of B, the associated processes of locations of maxima V B

n and V W
n , defined

for B ◦ F and W ◦ F , respectively, are very close indeed.
The results in Section 3 imply that it is sufficient to prove that

n1/6
∫ f(0)

f(1)

(

|V W
n (a)| − E|V W

n (a)|
)

da

tends in distribution to a normal distribution with expectation 0 and variance σ2, where σ2

is given in Theorem 1.1. In Section 3 the process V W
n is also shown to be strongly mixing.

This leads to a central limit theorem which is proved in Section 4 by using Bernstein’s
method of big blocks and small blocks. Throughout, it will be assumed that conditions
(A1) to (A3) hold.

2 Localization.

In this section we show that the distribution of the random variables

V E
n (a) = n1/3(Un(a)− g(a)) (2.1)

have exponentially fast decreasing tails. This will enable us to compare the process Un
locally with a similar process, defined for the Brownian bridge. For s ≤ t, we use the
following abbreviations:

Fn(s, t) = Fn(t)− Fn(s),

F (s, t) = F (t)− F (s).

Lemma 2.1 Let a ∈ [f(1), f(0)] and let t0 = g(a). Then

P{V E
n (a) > x} ≤ P

{

sup
t∈[t0+xn−1/3,1]

Fn(t0, t)
F (t0, t)

≥ f(t0)xn−1/3

F (t0, t0 + xn−1/3)

}

,

for each x such that t0 < t0 + xn−1/3 ≤ 1, and

P{V E
n (a) < −x} ≤ P

{

inf
t∈[0,t0−xn−1/3]

Fn(t, t0)
F (t, t0)

≤ f(t0)xn−1/3

F (t0 − xn−1/3, t0)

}

,

for each x such that 0 ≤ t0 − xn−1/3 < t0.
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Proof: For each x, such that t0 < t0 + xn−1/3 ≤ 1, we have

P{V E
n (a) > x} ≤ P{Fn(t0, t)− a(t− t0) ≥ 0, for some t ∈ (t0 + xn−1/3, 1]}, (2.2)

and for each x such that 0 ≤ t0 − xn−1/3 < t0:

P{V E
n (a) < −x} ≤ P{Fn(t, t0)− a(t0 − t) ≤ 0, for some t ∈ [0, t0 − xn−1/3)}. (2.3)

The probability on the right-hand side of (2.2) can be written as

P
{

Fn(t0, t)
F (t0, t)

≥ f(t0)(t− t0)
F (t0, t)

, for some t ∈ (t0 + xn−1/3, 1]
}

. (2.4)

Since the function

γ(t) =
f(t0)(t− t0)

F (t0, t)
,

is increasing for t ∈ (t0, 1) (using the monotonicity of f), it follows that (2.4) is bounded
above by

P

{

sup
t∈(t0+xn−1/3,1]

Fn(t0, t)
F (t0, t)

≥ f(t0)xn−1/3

F (t0, t0 + xn−1/3)

}

.

Similarly, the probability on the right-hand side of (2.3) can be bounded from above by

P

{

inf
t∈[0,t0−xn−1/3)

Fn(t, t0)
F (t, t0)

≤ f(t0)xn−1/3

F (t0 − xn−1/3, t0)

}

.

2

To bound the probabilities given in Lemma 2.1 we will apply Doob’s inequality to
suitably chosen martingales. These martingales are given in the next lemma.

Lemma 2.2 Let 0 ≤ t0 ≤ 1. Consider, for n fixed, the processes

t 7→ M1n(t) =
Fn(t0, t)
F (t0, t)

, t ∈ (t0, 1]

and

t 7→ M2n(t) =
Fn(t, t0)
F (t, t0)

, t ∈ [0, t0).

Let Fs = σ{Fn(t) : t ∈ [s, 1]} and Gs = σ{Fn(t) : t ∈ [0, s]}. Then, conditionally on Fn(t0),
the process M1n is a reverse time martingale with respect to the filtration {Fs : s ∈ (t0, 1]}
and M2n is a forward time martingale with respect to the filtration {Gs : s ∈ [0, t0)}.

Proof: Note that conditionally on Fn(t0) and Fn(t0, s), for t0 < t < s < 1, the random
variable nFn(t0, t) has a binomial distribution with parameter nFn(t0, s) and probability
of success p = F (t0, t)/F (t0, s). This shows that for t < s:

E0 [Fn(t0, t) | Fs] = Fn(t0, s)
F (t0, t)
F (t0, s)

,
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where E0(·) = E[· | Fn(t0)]. This implies that for t0 < t < s < 1, we have that

E0 [M1n(t) | Fs] = M1n(s).

Similarly, conditionally on Fn(t0) and Fn(s, t0), for 0 < s < t < t0, the random variable
nFn(t, t0) has a binomial distribution with parameters nFn(s, t0) and p = F (t, t0)/F (s, t0).
This leads to

E0 [M2n(t) | Gs] = M2n(s).

2

We have the following bounds for the martingales in Lemma 2.2.

Lemma 2.3 Let h(y) = 1− y + y log y, y > 0. Then, for t0 ∈ [0, 1), y ≥ 1 and δ > 0 such
that t0 + δ < 1:

P

{

sup
t∈[t0+δ,1]

M1n(t) ≥ y

}

≤ exp {−nF (t0, t0 + δ)h(y)}

and for t0 ∈ (0, 1], 0 < y ≤ 1 and δ > 0 such that t0 − δ > 0:

P

{

inf
t∈[0,t0−δ]

M2n(t)) ≤ y

}

≤ exp {−nF (t0 − δ, t0)h(y)} .

Proof: We start with the proof of the first inequality. According to Lemma 2.2 we have
that for each r > 0, conditionally on Fn(t0), the process exp{rM1n(t)} is a reverse time
submartingale. Hence, by Doob’s inequality,

P

{

sup
t∈[t0+δ,1]

M1n(t) ≥ y

}

= E

[

P

{

sup
t∈[t0+δ,1]

M1n(t) ≥ y
∣

∣

∣

∣

Fn(t0)

}]

= E

[

P

{

sup
t∈[t0+δ,1]

erM1n(t) ≥ ery
∣

∣

∣

∣

Fn(t0)

}]

≤ E
[

e−ryE
(

erM1n(t0+δ)
∣

∣

∣

∣

Fn(t0)
)]

= e−ryEerM1n(t0+δ).

Using that nFn(t0, t0+δ) has a binomial distribution with parameters n and p = F (t0, t0+
δ), we see that the last expression is equal to:

e−ry
(

1 + p(er/np − 1)
)n
≤ e−ry exp

(

np(er/np − 1)
)

= e−nph(y),

by putting r = np log y in the last equality. This proves the first exponential bound.
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For the proof of the second inequality we note that, for y ∈ (0, 1]:

P

{

inf
t∈[0,t0−δ]

M2n(t) ≤ y

}

= E

[

P

{

sup
t∈[0,t0−δ]

−M2n(t) ≥ −y
∣

∣

∣

∣

Fn(t0)

}]

≤ E
[

eryE
(

e−rM2n(t0−δ)
∣

∣

∣

∣

Fn(t0)
)]

= eryEe−rM2n(t0−δ),

where again Doob’s inequality is used. Taking p = F (t0 − δ, t0) and r = −np log y, we get

eryEe−rM2n(t0−δ) ≤ e−nph(y).

2

Remark. The function y 7→ h(y), used in Lemma 2.3, but also in the sequel, is a well-
known function in large deviation theory. It is non-negative and convex on (0,∞). Its
minimum 0 is attained at y = 1. Actually h(y) =

∫ y
1 log u du, y > 0.

We are now ready to prove the following theorem.

Theorem 2.1 Let V E
n (a) be defined by (2.1). Then there exists a constant C > 0, only

depending on f , such that for all n ≥ 1, a ∈ [f(1), f(0)] and x > 0,

P{|V E
n (a)| > x} ≤ 2e−Cx3

.

Proof: We will write δn = xn−1/3. First consider the probability

P{V E
n (a) > x}. (2.5)

If g(a)+ δn ≥ 1, this probability is zero, in which case there is nothing to prove, so we can
restrict ourselves to values of x > 0, such that g(a) + δn < 1. Let

yn =
f(t0)δn

F (t0, t0 + δn)
,

where t0 = g(a). Note that yn > 1, since f is strictly decreasing. We also have, using
assumption (A1),

yn =
f(t0)δn

F (t0, t0 + δn)
≤ f(t0)

f(t0 + δn)
≤ f(0)

f(1)
< ∞.

Hence 1 < yn < c1, for a constant c1 > 0, independent of x such that t0 + δn < 1. By
Lemma 2.1, the probability in (2.5) is bounded above by

P

{

sup
t∈[t0+δn,1]

M1n(t) ≥ yn

}

.
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According to Lemma 2.3 this probability is bounded by

exp {−nF (t0, t0 + δn)h(yn)} . (2.6)

Using a Taylor expansion with a Lagrangian remainder term of the convex function u 7→
h(u) at u = 1, we get

h(yn) = 1
2h′′(ξn)(yn − 1)2 ≥ 1

2c−1
1 (yn − 1)2, (2.7)

where 1 ≤ ξn ≤ c1. But

|yn − 1| ≥
δn infu∈(0,1) |f ′(u)|

2f(0)
,

and hence, by (2.7),
h(yn) ≥ c2δ2

n,

for a constant c2 > 0, independent of x such that t0+δn < 1. Since F (t0, t0+δn) ≥ f(1)δn,
it now follows that (2.6) is bounded above by exp(−Cx3).

Now consider the probability

P{V E
n (a) < −x}. (2.8)

If g(a) − xn−1/3 ≤ 0, this probability is zero, so we can restrict ourselves to consider an
x > 0 such that g(a)− xn−1/3 > 0. Define

yn =
f(t0)δn

F (t0 − δn, t0)
.

The fact that f is strictly decreasing this time implies that yn < 1. Using Lemma 2.1 it
is seen that (2.8) is bounded above by

P

{

inf
t∈[0,t0−δn]

M2n(t) ≤ yn

}

,

which, by Lemma 2.3, leads to the upper bound

exp {−nf(1)δnh(yn)} .

We have, using h′′(x) ≥ 1, x ∈ (0, 1]:

h(yn) = 1
2h′′(ξn)(yn − 1)2 ≥ 1

2(yn − 1)2,

where in this case 0 < ξn ≤ 1. Following the same line of argument as above, we get the
upper bound exp{−Cx3}. 2

Lemma 2.3 also enables us to show that the difference between the L1 risk in (1.2) and
the integral

∫ f(0)

f(1)
|Un(a)− g(a)| da,

defined in terms of the inverse process, is of order op(n−1/2).
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Corollary 2.1 Let f̂n be the Grenander estimator and let Un be defined in (1.1). Then
∫ 1

0
|f̂n(t)− f(t)| dt−

∫ f(0)

f(1)
|Un(a)− g(a)| da = Op(n−2/3). (2.9)

Proof: The difference on the left-hand side of (2.9) can be written as
∫ 1

0
[f̂n(t)− f(0)]+ dt +

∫ 1

0
[f(1)− f̂n(t)]+ dt,

where x+ = max(0, x), x ∈ IR. We will show that the first term is Op(n−2/3). The second
term can be treated similarly.

We have that
∫ 1

0

[

f̂n(t)− f(0)
]+

dt =
∫ Un(f(0))

0

(

f̂n(t)− f(0)
)

dt = Fn(Un(f(0)))− f(0)Un(f(0))

= Fn(Un(f(0)))− F (Un(f(0))) + F (Un(f(0)))− f(0)Un(f(0)).

According to Theorem 2.1, for the second difference on the right-hand side we have

|F (Un(f(0)))− f(0)Un(f(0))| ≤ 1
2

sup |f ′|Un(f(0))2 = Op(n−2/3). (2.10)

Let Zn = Fn(Un(f(0)))− F (Un(f(0))) and δn = n−1/3 log n. Then write

Zn = Zn1{Un(f(0))>δn} + Zn1{Un(f(0))≤δn}.

Then according to Theorem 2.1

E|Zn|1{Un(f(0))>δn} ≤ 2P{Un(f(0)) > δn} ≤ 4e−C(log n)3 .

Hence by the Markov inequality we can conclude that

Zn1{Un(f(0))>δn} = op(n−2/3). (2.11)

Let (Bn) be a sequence of Brownian bridges given by the Hungarian embedding approxi-
mating n1/2(Fn − F ), cf. Komlos, Major and Tusnády (1975). Then

|Zn|1{Un(f(0))≤δn} ≤ n−1/2 sup
t∈[0,F (δn)]

|Bn(t)|+Op(n−1 log n).

Since Bn(t) d= W (t)+ tW (1), where W denotes Brownian motion, the right hand side can
be bounded by a random variable that has the same distribution as

n−1/2 sup
t∈[0,F (δn)]

|W (t)|+ n−1/2F (δn)|W (1)|+Op(n−1 log n).

Note that F (δn)|W (1)| = Op(δn). Furthermore, since for any ε > 0,

P

{

sup
t∈[0,F (δn)]

|W (t)| > ε

}

≤ 4P
{

W (1) ≥ ε
F (δn)1/2

}

,
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we have that
n−1/2 sup

t∈[0,F (δn)]
|W (t)| = op(n−2/3),

which implies that Zn1{Un(f(0))≤δn} = op(n−2/3). Together with (2.10) and (2.11) this
proves that

∫ 1

0

[

f̂n(t)− f(0)
]+

dt = Op(n−2/3).

2

3 Brownian motion approximation

In this section we show that it is sufficient to prove Theorem 1.1 for a similar process, with
Brownian motion replacing the empirical process. Let En denote the empirical process√

n(Fn−F ) and let V E
n (a) be defined as in (2.1). Then we have, for fixed a ∈ (f(1), f(0)),

V E
n (a) = argmax

t

{

DE
n (a, t)− n1/3at

}

, (3.1)

where t 7→ DE
n (a, t) is the drifting empirical process

DE
n (a, t) = n1/6

{

En(g(a) + n−1/3t)− En(g(a))
}

+n2/3
{

F (g(a) + n−1/3t)− F (g(a))
}

,

and where the argmax is taken over all values of t such that g(a) + n−1/3t ∈ [0, 1]. Here
the argmax function is the supremum of the times at which the maximum is attained (in
order to have a well-defined functional also on sets of probability zero).

Let Brownian bridge Bn and the uniform empirical process En◦F−1 be constructed on
the same probability space via the Hungarian embedding of Komlos, Major and Tusnády
(1975). Let

V B
n (a) = argmax

t

{

DB
n (a, t)− n1/3at

}

, (3.2)

where

DB
n (a, t) = n1/6

{

Bn(F (g(a) + n−1/3t))−Bn(F (g(a)))
}

(3.3)

+n2/3
{

F (g(a) + n−1/3t)− F (g(a))
}

.

Then (3.1) suggests that V E
n (a) is close to V B

n (a). We will show that this is indeed the
case. We define versions Wn of Brownian motion by

Wn(t) = Bn(t) + ξnt, t ∈ [0, 1], (3.4)

where ξn is a standard normal random variable, independent of Bn. Moreover, let

V W
n (a) = argmax

t

{

DW
n (a, t)− n1/3at

}

, (3.5)
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where

DW
n (a, t) = n1/6

{

Wn(F (g(a) + n−1/3t))−Wn(F (g(a)))
}

(3.6)

+n2/3
{

F (g(a) + n−1/3t)− F (g(a))
}

.

Note that V B
n (a) and V W

n (a) are defined in the same way as V E
n (a), but with En replaced

by Bn◦F and Wn◦F , respectively. For J = E, B, W , the argmax V J
n (a) can be seen as

the t-coordinate of the point that is touched first when dropping a line with slope n1/3a
on the process t 7→ DJ

n(a, t). Furthermore, note that for every fixed a, b ∈ (f(1), f(0)), we
have the following property

V J
n (b) + n1/3(g(b)− g(a)) = argmax

t

{

DJ
n(a, t)− n1/3bt

}

, (3.7)

where as before the argmax is taken over values of t such that g(a)+n−1/3t ∈ [0, 1]. Hence
(3.7) is the t-coordinate of the point that is touched first when dropping a line with slope
n1/3b on the process t 7→ DJ

n(a, t). Moreover, note that

c 7→ V J
n (c) + n1/3(g(c)− g(a)) jumps at b if and only if c 7→ V J

n (c) jumps at b. (3.8)

We have the following results for V B
n (a) and V W

n (a), analogous to Theorem 2.1.

Theorem 3.1 Let V B
n (a) and V W

n (a) be defined by (3.2) and (3.5), respectively. Then
there exist a constant C > 0, only depending on f , such that for all n ≥ 1, a ∈ (f(1), f(0))
and x > 0,

P{|V W
n (a)| > x} ≤ 2e−Cx3

and P{|V B
n (a)| > x} ≤ 4e−Cx3

.

Proof: Let a ∈ (f(1), f(0)) and let t0 = g(a). We first consider P{V W
n (a) > x}. If

t0 + xn−1/3 ≥ 1, this probability is zero, so we may assume t0 + xn−1/3 < 1. Let the
process t 7→ XW

n (a, t) be defined by

XW
n (a, t) = n1/6{Wn(F (g(a) + n−1/3t))−Wn(F (g(a)))}, t ∈ [0, n1/3(1− g(a))], (3.9)

and let, for r ∈ IR, the process Yn be defined by

Yn(t) =
erXW

n (a,t)

EerXW
n (a,t)

, t ∈ [0, n1/3(1− t0)]. (3.10)

Then Yn is a martingale with respect to the filtration induced by t 7→ XW
n (a, t), and

EerXW
n (a,t) = exp

{

1
2r2n1/3F (t0, t0 + n−1/3t)

}

.

We now define the stopping time τn by

τn = inf{t ∈ [x, n1/3(1− t0)] : ZW
n (a, t) ≥ 0},

10



where ZW
n (a, t) = DW

n (a, t) − n1/3at, with DW
n defined in (3.6). If ZW

n (a, t) < 0 for all
t ∈ [x, n1/3(1 − t0)], we define τn = ∞. By the optional stopping theorem (cf. Rogers
and Williams (1997), p.189) we have

EYn(τn ∧ n1/3(1− t0)) = EYn(0) = 1.

On the other hand,

EYn(τn ∧ n1/3(1− t0)) ≥ EYn(τn)1{τn<∞}

≥ E exp
{

−n2/3rF (t0, t0 + n−1/3τn) + n1/3raτn − 1
2r2n1/3F (t0, t0 + n−1/3τn)

}

1{τn<∞}

≥ E exp
{

c1rτ2
n − c2r2τn

}

1{τn<∞},

where c1 = 1
2 inft∈(0,1) |f ′(t)| and c2 = 1

2f(0). If we take r = c1x/(2c2) and C = c2
1/(4c2),

we conclude that

1 = EYn(τn ∧ n1/3(1− t0)) ≥ E exp{Cxτn(2τn − x)}1{τn<∞} ≥ exp{Cx3}P{τn < ∞}.

Hence we find

P{V W
n (a) > x} ≤ P

{

sup
t∈[x,n1/3(1−t0)]

ZW
n (a, t) ≥ 0

}

= P{τn < ∞} ≤ exp
{

−Cx3
}

.

For the opposite inequality we note that

P{V W
n (a) < −x} ≤ P

{

sup
t∈[x,n1/3t0]

ZW
n (a,−t) ≥ 0

}

.

This can be bounded in the same way as before, by introducing the stopping time

τ̃n = inf{t ∈ [x, n1/3t0] : ZW
n (a,−t) ≥ 0},

and applying the optional stopping argument to the backward time martingale

Ỹn(t) =
erXW

n (a,−t)

EerXW
n (a,−t)

, t ∈ [0, n1/3t0].

For the argmax associated with the Brownian bridge we have with (3.4),

V B
n (a) = argmax

t

{

ZW
n (a, t)− n1/6F (t0, t0 + n−1/3t)ξn

}

.

Now choose δ > 0 in such a way that δf(0) < 1
4 inft∈(0,1) |f ′(t)|, and note that for x < n1/3,

P{|ξn| > δn1/6x} ≤ exp{−1
2δ2n1/3x2} ≤ exp{−1

2δ2x3}.

11



Hence

P{V B
n (a) > x}

≤ P

{

sup
t∈[x,n1/3(1−t0)]

(

ZW
n (a, t) + δxn1/3F (t0, t0 + n−1/3t)

)

≥ 0

}

+ e−
1
2 δ2x3

≤ P

{

sup
t∈[x,n1/3(1−t0)]

(

XW
n (a, t)− c′1t

2
)

≥ 0

}

+ e−
1
2 δ2x3

,

with c′1 = 1
4 inft∈(0,1) |f ′(t)|. Repeating the above optional stopping argument with τn

replaced by the stopping time

τ ′n = inf
{

t ∈ [x, n1/3(1− t0)] : XW
n (a, t)− c′1t

2 ≥ 0
}

, (3.11)

the first probability in the last expression is bounded from above by e−C′x3
, where C ′ =

(c′1)
2/(4c2), with c2 as before. It follows that

P{V B
n (a) > x} ≤ 2e−Cx3

,

for all x > 0 and some C > 0, only depending on f . Similarly,

P{V B
n (a) < −x} ≤ P

{

sup
t∈[x,n1/3t0]

(

XW
n (a,−t)− c′1t

2
)

≥ 0

}

+ e−
1
2 δ2x3

.

The bound on P{V B
n (a) < −x} is obtained by using the stopping time

τ̃ ′n = inf
{

t ∈ [x, n1/3t0] : XW
n (a,−t)− c′1t

2 ≥ 0
}

,

and applying the optional stopping argument to the backward time martingale Ỹn(t). 2

Remark 3.1 Theorem 3.1 for V W
n holds more general. Let Ln(a) be the location of the

maximum of the process t 7→ XW
n (a, t) − ∆n(a, t), where XW

n is defined in (3.9) and
∆n(a, t) ≥ c1t2, uniformly for t ∈ [0, n1/3(t0 ∨ (1− t0))]. By the same argument as in the
proof of Theorem 3.1, it follows that P{|Ln(a)| > x} ≤ 2e−Cx3

, where C only depends on
c1.

The following theorem shows that properly normalized versions of V J
n (a) converge in

distribution to a centered version of (1.3). For a ∈ (f(1), f(0)), let

Jn(a) =
{

c : a− φ2(a)cn−1/3 ∈ (f(1), f(0))
}

,

and for J = E,B,W and c ∈ Jn(a), we define,

V J
n,a(c) = φ1(a)V J

n (a− φ2(a)cn−1/3), (3.12)
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where

φ1(a) =
|f ′(g(a))|2/3

(4a)1/3 > 0,

φ2(a) = (4a)1/3|f ′(g(a))|1/3 > 0.

For c ∈ IR, let
ξ(c) = V (c)− c, (3.13)

with V (c) defined in (1.3).

Theorem 3.2 For J = E, B, W , d ≥ 1, a ∈ (f(1), f(0)) and c ∈ Jn(a)d,we have joint dis-
tributional convergence of (V J

n,a(c1), . . . , V J
n,a(cd)) to the random vector (ξ(c1), . . . , ξ(cd)).

Proof: First consider V W
n,a(c) in the case d = 1. Using (3.7) with b = a− φ2(a)cn−1/3, we

have that

Ṽ W
n,a(c) = φ1(a)V W

n (a− φ2(a)cn−1/3) + φ1(a)n1/3
{

g(a− φ2(a)cn−1/3)− g(a)
}

,

is the argmax of the process t 7→ ZW
n,a(c, t), where

ZW
n,a(c, t) =

φ1(a)1/2

a1/2 n1/6
{

Wn(F (g(a) + n−1/3φ1(a)−1t))−Wn(F (g(a)))
}

+
φ1(a)1/2

a1/2 n2/3
{

F (g(a) + n−1/3φ1(a)−1t)− F (g(a))− n−1/3aφ1(a)−1t
}

+2ct.

Note that φ1(a)n1/3(g(a − φ2(a)cn−1/3) − g(a)) converges to c, as n → ∞. By using
Brownian scaling, a simple Taylor expansion and the uniform continuity of Brownian
motion on compacta, for each k = 1, 2, . . . and each c ∈ Jn(a) we have

sup
|t|≤k

|ZW
n,a(c, t)− Z(c, t)| P→ 0, as n →∞,

where

Z(c, t) =
(

φ1(a)
a

)1/2

W
(

at
φ1(a)

)

− (t2 − 2ct) d= W (t)− t2 + 2ct.

Now let d ≥ 1 and note that for t = (t1, . . . , td),

(Ṽ W
n,a(c1), . . . , Ṽ W

n,a(cd)) = argmax
t

d
∑

i=1

ZW
n,a(ci, ti),

(V (c1), . . . , V (cd)) = argmax
t

d
∑

i=1

Z(ci, ti).

13



Finally, because

sup
‖t‖≤k

∣

∣

∣

∣

∣

d
∑

i=1

ZW
n,a(ci, ti)−

d
∑

i=1

Z(ci, ti)

∣

∣

∣

∣

∣

≤
d

∑

i=1

sup
|ti|≤k

|ZW
n,a(ci, ti)− Z(ci, ti)|,

we conclude that the process t 7→
∑d

i=1 ZW
n,a(ci, ti) converges in the uniform topology on

compacta to the process t 7→
∑d

i=1 Z(ci, ti). The result for V W
n follows from Theorem 2.7

in Kim and Pollard (1990).
Using (3.4) we can prove the same result for V B

n by repeating the above steps, since
n−1/6ξnt → 0 in probability, uniformly in t on compacta of IR. Finally, by using
supt∈IR |DE

n (a, t)−DB
n (a, t)| = Op(n−1/2 log n), the same result follows for V E

n . 2

We will need some independence structure for the process {UW
n (a), a ∈ (f(1), f(0))},

where
UW

n (a) = argmax
t∈[0,1]

{Wn(F (t)) +
√

n(F (t)− at)}.

The mixing property of the process UW
n can be argued intuitively in the following way.

Observe that the event {UW
n (a) = x} is equivalent to

Wn(F (x))−Wn(F (t)) ≥
√

n(F (t)− F (x)) + a
√

n(x− t), t < x,

Wn(F (x))−Wn(F (t)) >
√

n(F (t)− F (x)) + a
√

n(x− t), t > x.

These are conditions on increments of Wn◦F . Since for large M , the event |UW
n (a)−g(a)| <

n−1/3M has a probability close to 1, we can restrict t and x to n−1/3M -neighborhoods of
g(a). The mixing property then follows from the fact that Brownian motion has indepen-
dent increments.

Theorem 3.3 The process {UW
n (a)) : a ∈ (f(1), f(0))} is strong mixing with mixing

function:
αn(d) = 12e−C1nd3

, (3.14)

where the constant C1 > 0 only depends on f . More specifically, for arbitrary a ∈
(f(1), f(0)) and a + d ∈ (f(1), f(0)):

sup |P (A ∩B)− P (A)P (B)| ≤ αn(d),

where the supremum is taken over all sets A ∈ σ{UW
n (c) : f(1) < c ≤ a} and B ∈

σ{UW
n (c) : a + d ≤ c < f(0)}.

Proof: Let a ∈ (f(1), f(0)) be arbitrary and take f(1) < a1 ≤ a2 ≤ · · · ≤ ak = a <
a + d = c1 ≤ c2 ≤ · · · ≤ cl < f(0) and consider the events

E1 = {UW
n (a1) ∈ A1, . . . , UW

n (ak) ∈ Ak},
E2 = {UW

n (c1) ∈ B1, . . . , UW
n (cl) ∈ Bl},
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for Borel sets A1, . . . , Ak and B1, . . . , Bl of IR. Note that cylinder sets of the form E1 and
E2 generate the σ-algebras σ{UW

n (c) : f(1) < c ≤ a} and σ{UW
n (c) : a + d ≤ c < f(0)},

respectively. Now take Mn = 1
4dn1/3 infu∈(0,1) |g′(u)| and consider the events

E′
1 = E1 ∩ {UW

n,Mn
(a) = UW

n (a)},
E′

2 = E2 ∩ {UW
n,Mn

(a + d) = UW
n (a + d)},

where

UW
n,Mn

(c) = argmax{n1/3|t− g(c)| ≤ Mn : Wn(F (t)) +
√

n(F (t)− ct)}.

By monotonicity of UW
n it follows that the event E′

1 depends only on the increments
of Brownian motion beyond time F (g(a) − n−1/3Mn) (note that g is decreasing) and
that the event E′

2 is only depending on the increments of Brownian motion before time
F (g(a + d) + n−1/3Mn). By definition of Mn, it follows that E′

1 and E′
2 are independent.

Since for all a ∈ (f(1), f(0)) we have that V W
n (a) = n1/3(UW

n (a) − g(a)), according to
Theorem 3.1,

|P (E1 ∩ E2)− P (E1)P (E2)|
≤ 3P{UW

n,Mn
(a) 6= UW

n (a)}+ 3P{UW
n,Mn

(a + d) 6= UW
n (a + d)}

= 3P{n1/3|UW
n (a)− g(a)| > Mn}+ 3P{n1/3|UW

n (a + d)− g(a + d)| > Mn}
≤ 12e−CM3

n ,

which proves the theorem. 2

Apart from this exponential bound on the mixing function we will need the following
two lemmas. The lemmas are analogous to Theorems 17.2.1 and 17.2.2 in Ibragimov and
Linnik (1971) and can be proven similarly, since in the quoted Theorems 17.2.1 and 17.2.2
the stationarity is not essential.

Lemma 3.1 If X is measurable with respect to σ{UW
n (c) : f(1) < c ≤ a} and Y is

measurable with respect to σ{UW
n (c) : a + d ≤ c < f(0)} (d > 0), and if |X| ≤ C2,

|Y | ≤ C3 a.s., then
|E(XY )− E(X)E(Y )| ≤ 4C2C3αn(d).

Lemma 3.2 If X is measurable with respect to σ{UW
n (c) : f(1) < c ≤ a} and Y is

measurable with respect to σ{UW
n (c) : a + d ≤ c < f(0)} (d > 0), and suppose that for

some δ > 0,
E|X|2+δ ≤ C4, E|Y |2+δ ≤ C5,

then
|E(XY )−E(X)E(Y )| ≤ C6(αn(d))δ/(2+δ),

where C6 > 0 only depends on C4 and C5.
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In the following, we shall need some properties of the process V , which are contained
in Groeneboom (1989) and Hooghiemstra and Lopuhaä (1998). They are stated in the
following lemma.

Lemma 3.3 Let V (0) be defined in (1.3) and for b, c ∈ IR, let Vb(c) be defined by

Vb(c) = argmax
t

{W (t)− b(t− c)2}. (3.15)

Then,

(i) V (0) has a bounded symmetric density.

(ii) for x →∞, P{|V (0)| > x} ∼ λx−1e−
2
3x3−κx, where λ, κ > 0.

(iii) for h ↓ 0, P {Vb jumps in (a− h, a + h)} ≤ β1h(1+ o(1)), where the constant β1 > 0
is independent of a.

Proof: ad(i)-(ii). The first statement follows immediately from the representation for
the density of V (0) given in Groeneboom (1989). The second statement is Lemma 2.1 in
Hooghiemstra and Lopuhaä (1998).

ad(iii). Let Ah = {V jumps in [0, h)}. Since the process c 7→ ξ(c) is stationary and
has jumps at the same points as the process c 7→ V (c), we have that

P {V jumps in (a− h, a + h)} = P {V jumps in (−h, h)}

≤ 2
∫ ∞

−∞
P {Ah | V (0) = x} fV (0)(x) dx,

where we also use the fact that −V (−c) d= V (c). In the proof of Theorem 3.1 in Hooghiem-
stra and Lopuhaä (1998) it is derived, that

lim
h↓0

P{Ah | V (0) = x}
h

= 2
∫ ∞

0

g1(u + x)
g1(x)

up(u) du

(see Groeneboom (1989) or Hooghiemstra and Lopuhaä (1998) for the exact definitions
of the functions g1 and p) and moreover that the right hand side is bounded uniformly in
x. This implies that

P{V jumps in (a− h, a + h)} ≤ β′1h + o(h), h ↓ 0,

where the constant β′1 is independent of a. By Brownian scaling we have that

Vb(c)
d= b−2/3V (cb2/3), (3.16)

so that
P{Vb jumps in (a− h, a + h)} ≤ b2/3β′1h + o(h), h ↓ 0,

which proves (iii). 2

Leaving the setting of the process V , it seems intuitively clear that the processes V B
n

and V W
n have the same qualitative behavior, and will in particular satisfy a property

analogous to Lemma 3.3(iii). This will be proved in the following lemma.
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Lemma 3.4 Let the interval Jn be defined by

Jn = [f(1) + n−1/3(log n)2, f(0)− n−1/3(log n)2].

Then there exists a constant β2 > 0, independent of a ∈ Jn, such that for J = B, W and
for all h ∈ (0, 1),

P
{

V J
n jumps in (a− hn−1/3, a + hn−1/3)

}

≤ β2δn,h + o(δn,h)

as δn,h ↓ 0, where δn,h = h ∨ (n−1/3(log n)2).

Proof: We first show the statement for V W
n . Let t0 = g(a). For notational convenience

define for |c| ≤ 1,

V W
n (a, c) = V W

n (a + n−1/3c) + n1/3{g(a + n−1/3c)− g(a)}.

Define the event An = {|V W
n (a, c)| ≤ log n, for all |c| ≤ 1}. From (3.7) it follows that the

process c 7→ V W
n (a, c) is nonincreasing. Therefore,

P{Ac
n} ≤ P{V W

n (a,−1) > log n}+ P{V W
n (a, 1) < − log n}.

Since n1/3|g(a ± n−1/3) − g(a)| ≤ supu∈(0,1) |g′(u)|, it follows from conditions (A1)-(A3)
and Theorem 3.1 that P{Ac

n} = O(e−C(log n)3). Hence we can restrict ourselves to An.
In order to transform t 7→ Wn(F (t0 +n−1/3t)) into a process y → Wn(F (t0)+n−1/3y),

define Hn by

Hn(y) = n1/3{H(F (t0) + n−1/3y)− t0}, y ∈ [−n1/3F (t0), n1/3(1− F (t0))], (3.17)

where H is the inverse of F . Consider the process V W
n as defined in (3.5), with t replaced

by Hn(y). Then by property (3.7) it follows that

V W
n (a, c) = sup

{

Hn(y) ∈ [−n1/3t0, n1/3(1− t0)] : W̃n(a, y)− pn(c, y) is maximal
}

,

where
W̃n(a, y) = n1/6{Wn(F (g(a)) + n−1/3y)−Wn(F (g(a)))}, (3.18)

and
pn(c, y) = −n1/3y + n1/3(a + n−1/3c)Hn(y). (3.19)

Conditions (A1)-(A3) imply that there exists a constant K1 > 0, only depending on f ,
such that on An we have

∣

∣

∣H−1
n

(

V W
n (a, c)

)∣

∣

∣ ≤ K1 log n.

Suppose that the process c 7→ V W
n (c) jumps in the interval (a−hn−1/3, a+hn−1/3). Then

from (3.8) if follows that the process c 7→ V W
n (a, c) has a jump at some c0 ∈ (−h, h). This

means that if we drop the function y 7→ pn(c0, y) + β, for varying β ∈ IR, on the process
y 7→ W̃n(a, y), it first touches W̃n(a, y) simultaneously in two points (y1, w1) and (y2, w2).
Note that on the event An, we have |y1 − y2| ≤ 2K1 log n. We first show that for each yi,
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y1 y2

Figure 1: The function pn(c0, y) (straight line) and parabolas πn(b1, y) and
πn(b2, y) (dotted) touching the process y 7→ W̃n(a, y) at y1 and y2.

i = 1, 2, we can construct a parabola that lies above pn(c0, y) for all |y| ≤ K1 log n, and
that touches pn(c0, y) at (yi, wi).

To this end consider the second derivative of pn(c, y). Conditions (A1)-(A3) imply
that for |c| < 1, there exists a constant K2 > 0, only depending on f , such that

p′′n(c, y) =
d2pn(c, y)

dy2 ≤ aH ′′(F (t0))
{

1 + K2n−1/3|1 + y|
}

.

Choose M > K2 and define the parabola

πn(c, y) = ca−1y + αny2, (3.20)

where αn = 1
2aH ′′(F (t0))

{

1 + Mn−1/3(1 + K1 log n)
}

. Then it follows immediately that
for all |y| ≤ K1 log n, |c| < 1 and b ∈ IR:

π′′n(b, y) > p′′n(c, y).

If we choose b1 such that b1a−1 + 2αny1 = p′n(c0, y1), then πn(b1, y) and pn(c0, y) have
the same tangent at y1. If we also take β1 = pn(c0, y1) − πn(b1, y1), then it follows that
the parabola πn(b1, y) + β1 lies above pn(c0, y) and touches pn(c0, y) at y1. This implies
that if we drop πn(b1, y) + β, for varying β ∈ IR, on the process y 7→ W̃n(a, y) it first
touches W̃n(a, y) at y1. A similar construction holds at y2 with a suitable choice for b2
(see figure 1). Hence if we define

V π
n (c) = sup

{

y ∈ [−n1/3F (t0), n1/3(1− F (t0))] : W̃n(a, y)− πn(c, y) is maximal
}

,

then from the above construction, it follows that the process c 7→ V π
n (c) has a jump in

the interval [b1, b2] of maximal size |y1 − y2| ≤ 2K1 log n. Since p′n(c0, yi) = π′n(bi, yi), for
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i = 1, 2, it follows from conditions (A1)-(A3) that there exists a constant K3 > 0, only
depending on f , such that

|bi − c0| ≤ K3yin−1/3 log n, i = 1, 2.

Because c0 ∈ (−h, h), this means that the interval [b1, b2] is contained in

In = (−K4(h ∨ n−1/3(log n)2),K4(h ∨ n−1/3(log n)2)).

for some K4 > (1∨K1K3). We conclude that, on the event An, we have that if c 7→ V W
n (c)

jumps in the interval (a − hn−1/3, a + hn−1/3), then the process c 7→ V π
n (c) jumps in the

interval In. However, the process y 7→ W̃n(a, y) is distributed like Brownian motion W ,
so V π

n (c) is distributed as

sup
{

y ∈ [−n1/3F (t0), n1/3(1− F (t0))] : W (y)− ca−1y − αny2 is maximal
}

.

On the event An, this random variable is only different from

Vn(c) = argmax
y∈IR

{

W (y)− αn

(

y +
c

2aαn

)2
}

,

if Vn(c) is outside [−K1 log n,K1 log n]. Hence

P{V π
n jumps in In, An} ≤ P{Vn jumps in In, An}+ P

{

sup
c∈In

|Vn(c)| > K1 log n,An

}

.

According to Lemma 3.3, the first probability is of the order h ∨ (n−1/3(log n)2). From
the monotonicity of the process c 7→ Vn(c), property (3.16), the stationarity of the process
c 7→ ξ(c) and Lemma 3.3, it follows that the second probability is of smaller order. This
proves the result for V W

n .
Turning to the Brownian bridge and the process c 7→ V B

n (c), for |c| ≤ 1 let

V B
n (a, c) = V B

n (a + n−1/3c) + n1/3{g(a + n−1/3c)− g(a)}

and
B̃n(a, y) = n1/6{Bn(F (g(a)) + n−1/3y)−Bn(F (g(a)))}.

Then

V B
n (a, c) = sup

{

Hn(y) ∈ [−n1/3t0, n1/3(1− t0)] : B̃n(a, y)− pn(c, y) is maximal
}

where pn(c, y) is defined in (3.19). Now define ψn(c) by

ψn(c) = sup
{

y ∈ [−n1/3F (t0), n1/3(1−F (t0))] : B̃n(a, y)−pn(c−n−1/6aξn, y) is maximal
}

.

Then V B
n (a, c) = Hn(ψn(c + n−1/6aξn)). Using (3.4), we have

ψn(c) = sup
{

y ∈ [−n1/3F (t0), n1/3(1− F (t0))] : W̃n(a, y)− qn(c, y) is maximal
}

,
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where W̃n is defined in (3.18) and

qn(c, y) = n−1/6ξny − n1/3y + n1/3(a + n−1/3c− n−1/2aξn)Hn(y).

Consider the event A′n ∩A′′n where

A′n =
{

|V B
n (a, c)| ≤ log n, for all c ∈ (−h, h)

}

and A′′n = {|ξn| ≤ n1/6/ log n}.

Similar to the event An, we have that P{(A′n)c} is of the order e−C(log n)3 . Furthermore,
P{(A′′n)c} = 2(1 − Φ(n1/6/ log n)), which is of smaller order than n−1/3(log n)2. Hence
we can restrict ourselves to the event A′n ∩ A′′n. Now suppose that c 7→ V B

n (c) jumps in
the interval (a − hn−1/3, a + hn−1/3). This means that the process c 7→ ψn(c) jumps in
the interval (−h + n−1/6aξn, h + n−1/6aξn). In that case a completely similar argument
as before, involving a comparison of the derivatives of qn(c, y) and the parabola πn(c, y)
defined in (3.20), yields that there exists a constant K5 > 0, only depending on f , such
that the process c 7→ V π

n (c) jumps in the interval

I ′n = [−K5(h ∨ n−1/3(log n)2), K5(h ∨ n−1/3(log n)2)].

Hence on the event A′n ∩ A′′n, it follows that the probability that the process c 7→ V π
n (c)

has a jump in the interval I ′n, is bounded by a probability of the order h∨ (n−1/3(log n)2).
The result for V B

n now follows. 2

Corollary 3.1 Let V E
n be defined as in (3.1) and let V B

n be defined as in (3.2). Then

∫ f(0)

f(1)
|V E

n (a)− V B
n (a)| da = Op(n−1/3(log n)3).

Proof: Let the empirical process En and the Brownian bridge Bn be constructed on the
same probability space. Then by the Hungarian embedding, we may assume

sup
t∈[0,1]

|En(t)−Bn(F (t))| = Op(n−1/2 log n).

If Kn denotes the event {supt∈[0,1] |En(t)−Bn(F (t))| ≤ n−1/2(log n)2}, then P{Kn} → 1,
as n →∞. Also let

An =
{

|V E
n (a)| ≤ log n, |V B

n (a)| ≤ log n
}

and write A′n = Kn∩An. Then by Theorem 2.1 and 3.1, we have P{Kn∩Ac
n} ≤ 6e−C(log n)3 .

Hence, since |V E
n (a)− V B

n (a)| ≤ 2n1/3, we have for a ∈ (f(1), f(0)),

E|V E
n (a)− V B

n (a)|1Kn ≤ E|V E
n (a)− V B

n (a)|1A′n + 12n1/3e−C(log n)3 .
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Now define εn = n−1/3(log n)3 and note that

E|V E
n (a)− V B

n (a)|1A′n ≤
∫ εn

0
P{|V E

n (a)− V B
n (a)| > x, A′n} dx

+
∫ 2 log n

εn

P{|V E
n (a)− V B

n (a)| > x, A′n} dx.

The first term on the right hand side is bounded by εn. To bound the second probability,
consider the process t 7→ ZB

n (a, t) be defined by

ZB
n (a, t) = DB

n (a, t)− n1/3at, t ∈ [−n1/3g(a), n1/3(1− g(a))],

where DB
n is defined in (3.3), and let δn = n−1/3(log n)2. Since n1/6|En(t)−Bn(F (t))| ≤ δn

on the event A′n, we can only have |V E
n (a)− V B

n (a)| > x, if

|ZB
n (a, V B

n (a))− ZB
n (a, t)| ≤ 2δn (3.21)

for some t ∈ [−n1/3g(a), n1/3(1− g(a))], such that |t− V B
n (a)| > x.

Consider the line through the points (V B
n (a), DB

n (a, V B
n (a))) and (t,DB

n (a, t)). This
line has slope

n1/3b =
DB

n (a, t)−DB
n (a, V B

n (a))
t− V B

n (a)
=

ZB
n (a, t)− ZB

n (a, V B
n (a))

t− V B
n (a)

+ n1/3a.

Hence it follows that
|b− a| ≤ 2n−1/3 δn

x
.

This means that if we drop a line with slope n1/3b, it either first touches the process
s 7→ DB

n (a, s) simultaneously in the two (different) points t and V B
n (a), or in a third point

different from both t and V B
n (a). Property (3.7) implies that the process

c 7→ V B
n (c) + n1/3(g(c)− g(a))

must have a jump in the interval In(x) = [a− 2n−1/3δn/x, a+2n−1/3δn/x], and according
to property (3.8) this means that the process c 7→ V B

n (c) jumps in the interval In(x).
Hence, we get from Lemma 3.4,

E|V E
n (a)− V B

n (a)|1A′n ≤ εn +
∫ 2 log n

εn

P{V B
n jumps in In(x), A′n} dx

≤ εn + β2δn

∫ 2 log n

εn

(

2
x
∨ 1

)

dx = O(n−1/3(log n)3),

where the term O(n−1/3(log n)3) is uniform in a ∈ (f(1), f(0)). The result now follows
from the Markov inequality. 2

The following corollary will enable us to replace E
∫

|V W
n (a)| da by the asymptotic expec-

tation µ, given in Theorem 1.1.
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Corollary 3.2 Let V W
n be defined by (3.5), and let µ be defined as in Theorem 1.1.

Moreover, let V (0) be defined by (1.3). Then,

(i) for all a such that

n1/3{F (g(a)) ∧ (1− F (g(a)))} ≥ log n, (3.22)

we have

E|V W
n (a)| = E|V (0)| (4a)1/3

|f ′(g(a))|2/3 +O(n−1/3(log n)4),

where the term O(n−1/3(log n)4) is uniform in all a, satisfying (3.22).

(ii)

lim
n→∞

n1/6

{

∫ f(0)

f(1)
E|V W

n (a)| da− µ

}

= 0.

Proof: ad (i). Write t0 = g(a), so that

V W
n (a) = sup

{

t ∈ [−n1/3t0, n1/3(1− t0)] : ZW
n (a, t) is maximal

}

,

where ZW
n (a, t) = DW

n (a, t) − n1/3at, with DW
n as defined in (3.6). Let Ṽ π

n (a) be the
argmax defined by

Ṽ π
n (a) = sup

{

t ∈ [−n1/3t0, n1/3(1− t0)] : Zπ
n (a, t) is maximal

}

where

Zπ
n (a, t) = XW

n (a, t)− n2/3 |f ′(g(a))|
2a2

(

F (g(a) + n−1/3t)− F (g(a))
)2

,

with XW
n as defined in (3.9). It follows immediately that

sup
|t|≤log n

|ZW
n (a, t)− Zπ

n (a, t)| ≤ δn, (3.23)

where δn = K1n−1/3(log n)3, with K1 > 0 only depending on f . Let An be the event
An = {|Ṽ π

n (a)| ≤ log n, |V W
n (a)| ≤ log n}. Since P{|Ṽ π

n (a)| > x} ≤ 2e−Cx3
, which can be

seen by using the exponential martingale Yn from (3.10) and a stopping time similar to
(3.11), it follows, also using Theorem 3.1, that P (Ac

n) = O(e−C(log n)3). Hence

E|V W
n (a)− Ṽ π

n (a)| ≤ E|V W
n (a)− Ṽ π

n (a)|1An +O(n1/3e−C(log n)3),

where the term O(n1/3e−C(log n)3) is uniform in a ∈ (f(1), f(0)). Write εn = n−1/3(log n)4,
and

E|V W
n (a)− Ṽ π

n (a)|1An =
∫ εn

0
P{|V W

n (a)− Ṽ π
n (a)| > x,An} dx

+
∫ 2 log n

εn

P{|V W
n (a)− Ṽ π

n (a)| > x, An} dx.
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The first term on the right hand side is bounded by εn. Because (3.23) applies on An, we
obtain, using the same argument as used in the proof of Corollary 3.1, that

sup
a∈(f(1),f(0))

E|V W
n (a)− Ṽ π

n (a)| = O(n−1/3(log n)4). (3.24)

By change of variables t = Hn(y), with Hn defined in (3.17), we have that

Ṽ π
n (a) = sup

{

Hn(y) ∈ [−n1/3t0, n1/3(1− t0)] : XW
n (a, Hn(y))− |f ′(t0)|

2f(t0)2
y2 is maximal

}

.

Since y 7→ XW
n (a,Hn(y)) is distributed like Brownian motion W , we find that Ṽ π

n (a) is
distributed as Hn(Vn,b), where with b = 1

2 |f
′(t0)|/f(t0)2,

Vn,b = sup
{

y ∈ [−n1/3F (t0), n1/3(1− F (t0))] : W (y)− by2 is maximal
}

.

Now consider Vb(0) as defined in (3.15), and write

E|Hn(Vn,b)| = E|Hn(Vb(0))|+ E(|Hn(Vn,b)| − |Hn(Vb(0))|). (3.25)

From conditions (A1)-(A3) and relation (3.16) we find that

E|Hn(Vb(0))| = a−1E|Vb(0)|+O(n−1/3) = E|V (0)| (4a)1/3

|f ′(g(a))|2/3 +O(n−1/3).

Since n1/3{F (t0)∧ (1− F (t0))} ≥ log n, the location Vn,b can only be different from Vb(0)
if |Vb(0)| > log n. By using (3.16) and Lemma 3.3 we find that P{|Vb(0)| > log n} ≤
Ke−

2
3 (log n)3 , where K > 0 only depends on f . Hence from (3.25) we conclude that

E|Ṽ π
n (a)| = E|Hn(Vn,b)| = E|V (0)| (4a)1/3

|f ′(g(a))|2/3 +O(n−1/3).

Together with (3.24) this proves (i).
ad (ii). This follows immediately from (i), since the values of a for which (3.22) does

not hold only give a contribution of order n−1/3 log n to the integral

∫ f(0)

f(1)
E|V W

n (a)| da,

and since

µ = E|V (0)|
∫ f(0)

f(1)

(4a)1/3

|f ′(g(a))|2/3 da. 2

The following result shows that we only have to prove the asymptotic normality result for
the process V W

n .
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Corollary 3.3 Let V B
n and V W

n be defined as by (3.2) and (3.5), respectively. Then

n1/6
∫ f(0)

f(1)

(

|V B
n (a)| − |V W

n (a)|
)

da = op(1).

Proof: Let, as before, Wn and Bn be linked by (3.4). Consider DB
n and DW

n as defined
in (3.3) and (3.6). Let An be the event

An = {|ξn| ≤ log n, |V W
n (a)| ≤ log n, |V B

n (a)| ≤ log n}.

Then on the event An, for all |t| ≤ log n, we have |DW
n (a, t)−DB

n (a, t)| ≤ K1n−1/6(log n)2,
for some constant K1 > 0 only depending on f . By a similar argument as in the proof of
Corollaries 3.1 and 3.2, we get

sup
a∈(f(1),f(0))

E|V B
n (a)− V W

n (a)| = O(n−1/6(log n)3). (3.26)

This shows that in this way we cannot find a sufficiently small bound for the integral
n1/6 ∫

{|V B
n (a)| − |V W

n (a)|} da.
Therefore, for a belonging to the set

Jn = {a : both a and a(1− ξnn−1/2) ∈ (f(1), f(0))},

we introduce

V B
n (a, ξn) = V B

n (a− an−1/2ξn) + n1/3
{

g(a− an−1/2ξn)− g(a)
}

.

By property (3.7) we have that

V B
n (a, ξn) = sup

{

t ∈ [−n1/3t0, n1/3(1− t0)] : Zξ
n(a, t) is maximal

}

,

where

Zξ
n(a, t) = ZW

n (a, t)− n1/6ξn

{

F (t0 + n−1/3t)− F (t0)
}

+ n−1/6ξnf(t0)t.

Let the event A′n be defined by

A′n = {|ξn| ≤ n1/6, |V W
n (a)| ≤ log n, |V B

n (a, ξn)| ≤ log n}.

Then on A′n, for all |t| ≤ log n we have that |ZW
n (a, t) − Zξ

n(a, t)| ≤ K2n−1/3(log n)2, for
some constant K2 > 0 not depending on a. Again by a similar argument as in the proof
of Corollaries 3.1 and 3.2, we get

sup
a∈Jn

E|V B
n (a, ξn)− V W

n (a)| = O(n−1/3(log n)3),
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With A′n as defined in the manuscript, we have that

P{(A′n)c} ≤ P{|ξn| > n1/6}+ P{|V W
n (a)| > log n}+ P{|V B

n (a, ξn)| > log n}.

Since n1/3|g(a− an−1/2ξn)− g(a)| ≤ sup |g′|an−1/6ξn, for n sufficiently large

P{|V B
n (a, ξn)| > log n} ≤ P{|V B

n (a− an−1/2ξn)| > 1
2 log n}

=

∫

P{|V B
n (a− an−1/2y)| > 1

2 log n}φ(y) dy

≤ 4e−C( 1
2 log n)3 .

Hence
E|V B

n (a, ξn)− V W
n (a)| ≤ E|V B

n (a, ξn)− V W
n (a)|1A′n

+O(n1/3e−C(log n)3 ),

where the term O(n1/3e−C(log n)3 ) is uniform in a ∈ (f(1), f(0)). Write εn = n1/3(log n)3, and

E|V B
n (a, ξn)− V W

n (a)|1A′n
=

∫ εn

0

P{|V B
n (a, ξn)− V W

n (a)| > x, A′n} dx

+

∫ 2 log n

εn

P{|V B
n (a, ξn)− V W

n (a)| > x, A′n} dx

The first term on the right hand side is bounded by εn. Note that on A′n,

sup
|t|≤log n

|ZW
n (a, t)− Zξ

n(a, t)| ≤ δn

where δn = K2n−1/3(log n)2, with K2 not depending on a.

If |V B
n (a, ξn)−V W

n (a)| > x, then for some t ∈ [−n1/3g(a), n1/3(1−g(a))] we must have |t−V W
n (a)| >

x. Similar as in the proof of Corollary 3.1, if follows that for such a t,

|ZW
n (a, V W

n (a))− ZW
n (a, t)| ≤ 2δn.

Consider the line through the points (V W
n (a), DW

n (a, V W
n (a))) and (t, DW

n (a, t)). This line has slope

n1/3b =
DW

n (a, t)−DW
n (a, V W

n (a))
t− V W

n (a)
=

ZW
n (a, t)− ZW

n (a, V W
n (a))

t− V W
n (a)

+ n1/3a

Hence it follows that

|b− a| ≤ 2n−1/3 δn

x
.

This means that if we slide down a line with slope n1/3b, it either first touches the process s 7→
DW

n (a, s) simultaneously in two different points t and V W
n (a), or in a third point different from t and

V W
n (a). According to property (3.7), this implies that the process

c 7→ V W
n (c) + n1/3(g(c)− g(a))

must have a jump in the interval In(x) = [a−2n−1/3δn/x, a+2n−1/3δn/x], and from property (3.8)
this means that the process c 7→ V W

n (c) has a jump in the interval In(x). Hence, we get from Lemma
3.4, with h = 2δn/x = 2K2n−1/3(log n)2/x:

∫ 2 log n

εn

P{|V W
n (a)− Ṽ π

n (a)| > x, An} dx =

∫ 2 log n

εn

P{V W
n has a jump in In(x), An} dx

≤ β3n−1/3(log n)2
∫ 2 log n

εn

(

2K2x−1 ∨ 1
)

dx

= O(n−1/3(log n)3),

where the term O(n−1/3(log n)3) is uniform in a ∈ (f(1), f(0)).

25



and hence
n1/6

∫

a∈Jn

E|V B
n (a, ξn)− V W

n (a)| da = o(1).

From Theorem 3.1 it follows that E|V B
n (a)| = O(1) and E|V W

n (a)| = O(1) uniformly in
a ∈ (f(1), f(0)). Hence the contribution of the integrals over [f(1), f(0)] \Jn is negligible,
and it remains to show that

n1/6
∫

a∈Jn

{|V B
n (a, ξn)| − |V B

n (a)|} da = op(1). (3.27)

Note that for the same reason

n1/6
∫

a∈Jn

|V W
n (a)| da = n1/6

∫ f(0

f(1)
|V W

n (a)| da +Op(n−1/3),

and that by change of variables we get

n1/6
∫

a∈Jn

|V B
n (a, ξn)| da = n1/6

∫ f(0)

f(1)
|V B

n (a)− ag′(a)ξnn−1/6| da +Op(n−1/3).

Therefore

n1/6
∫

a∈Jn

{|V B
n (a, ξn)| − |V B

n (a)|} da

= n1/6
∫ f(0)

f(1)
{|V B

n (a)− ag′(a)ξnn−1/6| − |V B
n (a)|} da +Op(n−1/3).

Let ε > 0. Then

n1/6
∫ f(0)

f(1)
{|V B

n (a)− ag′(a)n−1/6ξn| − |V B
n (a)|} da (3.28)

= n1/6
∫ f(0)

f(1)
{|V B

n (a)− ag′(a)n−1/6ξn| − |V B
n (a)|}1[0,ε](|V B

n (a)|) da

+n1/6
∫ f(0)

f(1)
{|V B

n (a)− ag′(a)n−1/6ξn| − |V B
n (a)|}1(ε,∞)(|V B

n (a)|) da.

We clearly have, using the independence of ξn and V B
n , that the expectation of first term

on the right hand side of (3.28) is bounded above by

E|ξn|
∫ f(0)

f(1)
|ag′(a)|P{|V B

n (a)| ≤ ε} da.

According to Theorem 3.2 it follows that P{|V B
n (a)| ≤ ε} → P{|ξ(0)| ≤ φ1(a)ε}. Hence

from Lemma 3.3 and conditions (A1)-(A3) it follows that there exists a K3 > 0, such that
for any ε > 0,

lim sup
n→∞

En1/6
∫ f(0)

f(1)

∣

∣

∣|V B
n (a)− ag′(a)n−1/6ξn| − |V B

n (a)|
∣

∣

∣ 1[0,ε](|V B
n (a)|) da ≤ K3ε. (3.29)
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For the second term on the right hand side of (3.28) we have

n1/6
∫ f(0)

f(1)
{|V B

n (a)− ag′(a)n−1/6ξn| − |V B
n (a)|}1(ε,∞)(|V B

n (a)|) da

=
∫ f(0)

f(1)
1(ε,∞)(|V B

n (a)|) −2ξnag′(a)V B
n (a) + n−1/6ξ2

n(ag′(a))2

|V B
n (a)− ag′(a)n−1/6ξn|+ |V B

n (a)|
da

=
∫ f(0)

f(1)
1(ε,∞)(|V B

n (a)|) −2ξnag′(a)V B
n (a)

|V B
n (a)− ag′(a)n−1/6ξn|+ |V B

n (a)|
da +Op(n−1/6)

= −ξn

∫ f(0)

f(1)
ag′(a)sign(V B

n (a))1(ε,∞)(|V B
n (a)|) da +Op(n−1/6), (3.30)

using that for |V B
n (a)| > ε,

∣

∣

∣

∣

∣

2V B
n (a)

|V B
n (a)− ag′(a)n−1/6ξn|+ |V B

n (a)|
− V B

n (a)
|V B

n (a)|

∣

∣

∣

∣

∣

≤ |ag′(a)n−1/6ξn|
ε

= Op(n−1/6).

For a ∈ (f(1), f(0)), let SB
n (a) = sign(V B

n (a))1(ε,∞)(|V B
n (a)|) and similarly, let SW

n (a) =
sign(V W

n (a))1(ε,∞)(|V W
n (a)|). Then

E

{

ξn

∫ f(0)

f(1)
ag′(a)SB

n (a) da

}2

= 2
∫ ∫

f(1)<a<b<f(0)
abg′(a)g′(b)E SB

n (a)SB
n (b) da db.

Furthermore

|E SB
n (a)SB

n (b)−E SW
n (a)SW

n (b)| ≤ E|SB
n (a)− SW

n (a)|+ E|SB
n (b)− SW

n (b)|.

Note that for every a ∈ (f(1), f(0)),

E|SB
n (a)− SW

n (a)| ≤ 2P{|V B
n (a)− V W

n (a)| > 2ε}+ P{|V B
n (a)| ≤ ε}+ P{|V W

n (a)| ≤ ε}.

By using the Markov inequality together with (3.26), the first probability on the right
hand side tends to zero, uniformly in a ∈ (f(1), f(0)). According to Theorem 3.2 both
P{|V B

n (a)| ≤ ε} and P{|V W
n (a)| ≤ ε} tend to P{|ξ(0)| ≤ φ1(a)ε}, which is O(ε) according

to Lemma 3.3 and conditions (A1)-(A3). Hence, there exists a K4 > 0 such that for any
ε > 0,

lim sup
n→∞

E

{

ξn

∫ f(0)

f(1)
ag′(a)SB

n (a) da

}2

≤ lim sup
n→∞

2
∫ ∫

f(1)<a<b<f(0)
abg′(a)g′(b)E SW

n (a)SW
n (b) da db + K4ε.

Finally, write

E SW
n (a)SW

n (b) = cov(SW
n (a), SW

n (b)) + E SW
n (a) E SW

n (b).
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According to Lemma 3.1 and Theorem 3.3, for every f(1) < a < b < f(0) we get that

|cov(SW
n (a), SW

n (b))| ≤ 48e−C1n(b−a) → 0.

Also for every a ∈ (f(1), f(0)), according to Theorem 3.2,

E SW
n (a) = P{V W

n (a) > ε} − P{V W
n (a) < −ε}

→ P{ξ(0) > φ1(a)ε} − P{ξ(0) < −φ1(a)ε} = 0,

because the distribution of ξ(0) is symmetric (Lemma 3.3). It follows that there exists a
K4 > 0 such that for any ε > 0,

lim sup
n→∞

E

{

ξn

∫ f(0)

f(1)
ag′(a)SB

n (a) da

}2

≤ K4ε.

Together with (3.29) and (3.28), this proves (3.27) and the result follows. 2

4 Asymptotic normality

From Section 3 it follows that for proving Theorem 1.1, it suffices to prove that

TW
n = n1/6

∫ f(0)

f(1)

(

|V W
n (a)| − E|V W

n (a)|
)

da (4.1)

is asymptotically normal. We first derive the asymptotic variance of TW
n . Theorem 3.2

together with Theorem 3.1, which guarantees the uniform integrability of the sequence
V W

n,a(c) for a and c fixed, imply convergence of moments of (V W
n,a(0), V W

n,a(c)) to the corre-
sponding moments of (ξ(0), ξ(c)). This leads to the following lemma.

Lemma 4.1 For n →∞,

var

(

n1/6
∫ f(0)

f(1)
|V W

n (a)| da

)

→ 8
∫ ∞

0
cov(|ξ(0)|, |ξ(c)|) dc.

Proof: We have that

var

(

n1/6
∫ f(0)

f(1)
|V W

n (a)| da

)

= 2n1/3
∫ f(0)

f(1)

∫ f(0)

a
cov(|V W

n (a)|, |V W
n (b)|) db da

= 8
∫ f(0)

f(1)
ag′(a)

∫ n1/3φ2(a)−1(a−f(0))

0
cov(|V W

n,a(0)|, |V W
n,a(c)|) dc da,

by change of integration variables b = a−φ2(a)cn−1/3. As noted above we have for a and
c fixed

cov(|V W
n,a(0)|, |V W

n,a(c)|) → cov(|ξ(0)|, |ξ(c)|).

28



Theorem 3.1 and the assumptions (A1)-(A2) also imply that, uniformly in n, a and c,

E|V W
n,a(0)|3 ≤ C4 and E|V W

n,a(c)|3 ≤ C5.

Hence by Lemma 3.2 together with (3.14), it follows that

|cov(|V W
n,a(0)|, |V W

n,a(c)|)| ≤ C6(αn(|n−1/3φ2(a)c|))1/3 ≤ D1e−D2|c|3 ,

where D1, D2 > 0 do not depend on n, a and c. It follows by dominated convergence that

var

(

n1/6
∫ f(0)

f(1)
|V W

n (a)| da

)

→ 8
∫ f(0)

f(1)
ag′(a)

∫ −∞

0
cov(|ξ(0)|, |ξ(c)|) dc da.

Since the process c 7→ ξ(c) is stationary,
∫ −∞

0
cov(|ξ(0)|, |ξ(c)|) dc = −

∫ ∞

0
cov(|ξ(0)|, |ξ(c)|) dc.

Furthermore

−
∫ f(0)

f(1)
ag′(a) da = −

∫ 0

1
f(x) dx = 1.

This proves the lemma. 2

Theorem 4.1 Let TW
n be defined by (4.1). Then

TW
n

d→ N (0, σ2),

where
σ2 = 8

∫ ∞

0
cov(|ξ(0)|, |ξ(c)|) dc.

Proof: Define
W ′

n(a) = |V W
n (a)| − E|V W

n (a)|.

Let

Ln = (f(0)− f(1))n−1/3(log n)3,

Mn = (f(0)− f(1))n−1/3 log n,

Nn = [(f(0)− f(1))/(Ln + Mn)] =

[

n1/3

log n + (log n)3

]

,

where [x] denotes the integer part of x. We divide the interval (f(1), f(0)) into blocks of
alternating lengths

Aj = (f(1) + (j − 1)(Ln + Mn), f(1) + (j − 1)(Ln + Mn) + Ln),

Bj = (f(1) + (j − 1)(Ln + Mn) + Ln, f(1) + j(Ln + Mn)),
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where 1 ≤ j ≤ Nn. Now write
T ′n = S′n + S′′n + Rn,

where

S′n = n1/6
Nn
∑

j=1

∫

Aj

W ′
n(a) da,

S′′n = n1/6
Nn
∑

j=1

∫

Bj

W ′
n(a) da,

Rn = n1/6
∫ f(0)

f(1)+Nn(Ln+Mn)
W ′

n(a) da.

According to Theorem 3.1, and the Cauchy-Schwarz inequality, for all a, b ∈ (f(1), f(0))

E|W ′
n(a)W ′

n(b)| < K (4.2)

where the constant K > 0 is uniformly in n, a and b. Together with the fact that

f(0)− f(1)−Nn(Ln + Mn) ≤ Ln + Mn = O(n−1/3(log n)3),

this shows that ER2
n → 0, and hence Rn = op(1).

Next we show that the contribution of the small blocks (of length Mn) is negligible.
To this end consider

E(S′′n)2 = n1/3
Nn
∑

j=1

E

(

∫

Bj

W ′
n(a) da

)2

+ n1/3
∑

i6=j

∫

Bi

∫

Bj

EW ′
n(a)W ′

n(b) da db.

We have
|EW ′

n(a)W ′
n(b)| = |cov(|V W

n (a)|, |V W
n (b)|)| ≤ D3e−D4n|b−a|3

where D3, D4 > 0 only depend on f , by using Lemma 3.2 and (3.14). For a ∈ Bi and
b ∈ Bj , i 6= j, we have that |b− a| ≥ n−1/3(log n)3. Since Nn ∼ n1/3/(log n)3, this implies
that

∣

∣

∣

∣

∣

∣

n1/3
∑

i 6=j

∫

Bi

∫

Bj

EW ′
n(a)W ′

n(b) da db

∣

∣

∣

∣

∣

∣

≤ n1/3N2
nM2

nD3e−D4(log n)9 → 0.

Hence

E(S′′n)2 = n1/3
Nn
∑

j=1

E

(

∫

Bj

W ′
n(a) da

)2

+ o(1).

Using (4.2) we obtain
E(S′′n)2 = O(n1/3NnM2

n) → 0,

and hence that the contribution of the small blocks is negligible.
Put

Yj = n1/6
∫

Aj

W ′
n(a)da and σ2

n = var





Nn
∑

j=1

Yj



 ,
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so that S′n =
∑Nn

j=1 Yj and σ2
n = var(S′n). We have

∣

∣

∣

∣

∣

∣

E exp







iu
σn

Nn
∑

j=1

Yj







−
Nn
∏

j=1

E exp
{

iu
σn

Yj

}

∣

∣

∣

∣

∣

∣

≤
Nn
∑

k=2

∣

∣

∣

∣

∣

∣

E exp







iu
σn

k
∑

j=1

Yj







−E exp







iu
σn

k−1
∑

j=1

Yj







E exp
{

iu
σn

Yk

}

∣

∣

∣

∣

∣

∣

≤ 4(Nn − 1)αn(Mn),

where the last inequality follows from Lemma 3.1. Observe that Nnαn(Mn) → 0, which
means that we can in fact apply the central limit theorem to independent copies of Yj .
The asymptotic normality of S′n, hence follows if we show that the contributions of the
large blocks, Yj , satisfy the Lindeberg condition e.g., for each ε > 0,

1
σ2

n

Nn
∑

j=1

EY 2
j 1{|Yj |>εσn} → 0, n →∞.

Note that by the Markov inequality

EY 2
j 1{|Yj |>εσn} ≤

1
εσn

E(|Yj |3).

Again using Cauchy-Schwarz and the uniform boundedness of the moments of |W ′
n(a)| we

obtain
sup

1≤j≤Nn

E(|Yj |3) = n1/2O(|Aj |3) = O(n−1/2(log n)9).

Hence

1
σ2

n

Nn
∑

j=1

EY 2
j 1{|Yj |>εσn} ≤

1
εσ3

n
Nn sup

1≤j≤Nn

E(|Yj |3) = O(σ−3
n n−1/6(log n)6).

Note that
σ2

n = var(S′n) = var(T ′n) + var(S′′n + Rn)− 2ET ′n(S′′n + Rn).

Using the obtained limit results for E(S′′n)2 and ER2
n and the inequality of Cauchy-Schwarz

we conclude that

var(S′′n + Rn) = E(S′′n)2 + ER2
n + 2E(S′′nRn) → 0,

and that according to Lemma 4.1

ET ′n(S′′n + Rn) ≤
√

E(T ′n)2var(S′′n + Rn) → 0.

So we find that
σ2

n = var(S′n) = σ2 + o(1),
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which implies that

1
σ2

n

Nn
∑

j=1

EY 2
j 1{|Yj |>εσn} = O(n−1/6(log n)6) → 0.

This proves the theorem. 2
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