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Abstract

We consider estimation of the upper boundary point point F−1(1) of a distribution function

F with finite upper boundary or “frontier” in deconvolution problems, primarily focusing on de-

convolution models where the noise density is decreasing on the positive halfline. Our estimates

are based on the (nonparametric) maximum likelihood estimator F̂n (MLE) of F . We show that

F̂−1

n
(1) is asymptotically never too small. If the convolution kernel has bounded support the

estimator F̂−1

n
(1) can generally be expected to be consistent. In this case we establish a rela-

tion between the extreme value index of F and the rate of convergence of F̂−1

n
(1) to the upper

support point for the “boxcar” deconvolution model. If the convolution density has unbounded

support, F̂−1

n
(1) can be expected to overestimate the upper support point. We define consistent

estimators F̂−1

n
(1 − βn), for appropriately chosen vanishing sequences (βn) and study these in

a particular case.

Keywords: (de)convolution, extreme value index, kernel estimation, non parametric

maximum likelihood estimators, upper support point

Running heading: support estimation in deconvolution models

1 Introduction

Let X1, X2, . . . be a sequence of independent identically distributed random variables, generated

by a distribution function F with finite upper support point

ϑ0 = F−1(1) = inf{x ∈ IR : F (x) = 1}.
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We consider the problem of estimating ϑ0 based on a sample Z1, Z2, . . . where Zi = Xi + Yi and

Y1, Y2, . . . are independent identically distributed random variables with known density function k,

independent of the Xi’s. Stated otherwise, we estimate ϑ0, based on a sample, generated by the

density

g(z) =

∫

k(z − x)dF (x). (1)

The problem has received a lot of attention the past few years. As stated in Hall & Simar (2002)

a range of problems in economics and statistics involve calculations of the boundary or frontier of

a distribution. Meister (2006) suggests a procedure for estimating the support by constructing

a sequence of estimators of moments of the convolution distribution. Moments of the unknown

distribution are estimated by solving sequences of convolution equations. Since the following type

of property is used:

(EXj)1/j ↑ R, j → ∞, if X has support [0, R], (2)

and since we also need

E(X + Y )j =

j
∑

l=0

(

j

l

)

EX lEY j−l, (3)

(the latter relations represent the convolution equations for the moments EX j which have to be

solved, after estimating the moments E(X + Y )j), one also has to decide how many moments

E(X +Y )j have to be estimated and, correspondingly, how many equations in l variables (3) (with

moments replaced by estimates of moments) have to be solved. The whole procedure seems rather

computer intensive.

Goldenshluger & Tsybakov (2004) study estimators for the case where the convolution density is

Gaussian and also for the case where the convolution density has bounded support from a minimax

point of view. We will briefly come back to the relation of our results with their work in Section 4.

Hall & Simar (2002) study estimators for the situation that the convolution density has a

variance, tending to zero with the sample size, which is a situation rather different from the situation

we consider, where the convolution density is kept fixed.

Delaigle & Gijbels (2006) study estimators based on kernel density estimation. In their sim-
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ulation study they consider Laplace and Gaussian error. We apply their methodology to the

exponential deconvolution problem and compare their results with ours in Section 6.

We motivate the choice of considering the nonparametric maximum likelihood estimator (MLE)

when estimating the upper support point in deconvolution models in Section 2, and also discuss

algorithmic aspects of the MLE in general deconvolution problems in this section. Since the MLE

of a distribution function is a natural estimator in a whole class of deconvolution models, the MLE

is also a natural candidate to use as plug-in estimator for the upper support point of a distribution.

In Section 3 we consider general locally consistent estimators F̂n of F. We prove that the

associated plug-in estimator

ϑ̂n = F̂−1
n (1) = inf{x ∈ IR : F̂n(x) = 1}

of ϑ0 is asymptotically never too small. This is proved without putting any additional conditions on

the distribution of X or Y and may perhaps come a bit as a surprise in view of the fact that F
−1
n (1)

is always a (finite sample) negatively biased estimate of the support point θ0 in non-contaminated

estimation, where we can consider the empirical distribution function Fn as the nonparametric

MLE. Furthermore we derive consistency and rate results for the estimator F̂−1
n (1 − βn) of ϑ0 for

appropriately chosen vanishing sequences {βn}.

In Sections 4 and 5 we specialize our results to two prototypes of decreasing (i.e., non-increasing)

kernels. As a prototype of a kernel with compact support we study the uniform kernel, and as a

prototype of a kernel with unbounded support we study the exponential kernel. The convolution

model with the uniform kernel is in fact the periodic boxcar deconvolution model described in

Johnstone & Raimondo (2004). For this model we establish a relation between the rate of conver-

gence of our estimator and the extreme value index of F . For the exponential kernel we show in

Section 5, not surprisingly, that F̂−1
n (1) does not estimate ϑ0 consistently. However, we introduce

a consistent modification of this estimator. The approach is likelihood-based and can be adopted

in more general deconvolution models.

As mentioned above, the relation with Delaigle & Gijbels (2006) is discussed in Section 6.
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2 Deconvolution model and algorithmic aspects of the MLE

Many nonparametric methods have been studied to estimate the distribution function F based on

a sample from density g in (1). If F is assumed to have a density function f , kernel methods are

often used to estimate f . See e.g. Carroll & Hall (1988) and Stefanski & Carroll (1990). Without

putting more restrictions on the density f , straightforward maximum likelihood estimation of f

as a proper density is not feasible. Penalizing or smoothing the likelihood can yield consistent

estimators for f . See e.g. Eggermont & LaRiccia (1997).

However, maximizing the log likelihood function directly in terms of the distribution function

F , where the log likelihood function is given by

F 7→
n
∑

i=1

log g(zi) =
n
∑

i=1

log

∫

k(zi − x) dF (x)

does lead to a well defined estimator under fairly general conditions. The log likelihood function

attains its maximum over all distribution functions at a discrete distribution function having at

most n points of jump, see e.g. Lindsay (1995) Section 1.5.

Groeneboom & Wellner (1992) show that if k is decreasing on [0,∞), the nonparametric maxi-

mum likelihood estimator (MLE) F̂n has all its mass concentrated on the set of observed Zi values.

Although it is only rarely possible to construct the MLE of F explicitly without using an iterative

algorithm, several algorithms are available for computing the MLE. For example, the EM algorithm

and variations of it, the iterative convex minorant algorithm (Groeneboom & Wellner, 1992, and

Jongbloed, 1998) and various types of vertex direction methods (Böhning, 1995).

So computing the MLE is not really a problem. In the case of the uniform and exponential

deconvolution problem there even exists a one step convex minorant algorithm for computing the

MLE. These problems will serve as examples in subsequent sections. Figure 1 shows the MLE

based on a sample of size 100 generated from the convolution of the uniform distribution on (0, 1)

and the density k(x) =
√

2
πe−

1
2
x2

with x ≥ 0. The observed data are tick marked on the x-axis.

To obtain Figure 1, we used a particular vertex direction method, the support reduction algorithm

described in Groeneboom et al. (2003). Clearly, the MLE is a step function.
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HERE FIGURE 1

It is often felt that the discreteness of the estimator of the distribution function, provided by

the MLE is unpleasant, which has motivated people to do EM with early stopping, etc. In this

connection it might be useful to note that the MLE can in fact be used for density estimation,

without using any early stopping of EM or a similar device. The point is that, if one wants to

assume certain smoothness properties of the underlying distribution, one can smooth the MLE to

achieve faster rates of convergence or to construct estimates of the density. To estimate the density

f , one simply can use a kernel density estimate of the form

f̂n,h(x) =

∫

Kh(x − y) dF̂n(y), Kh(u) = h−1K(u/h),

where F̂n is the MLE and K is one of the usual kernels for density estimation, e.g., the triweight

kernel

K(u) =
35

32

(

1 − u2
)3

.

or the triweight kernel, transformed to a boundary kernel. This method was used in Groeneboom

& Jongbloed (2003), where it was shown that, under certain conditions on F ,

n2/7
{

f̂n,h(x) − f(x)
}

D−→ N
(

µF , σ2
F

)

,

where the constants µF and σF depend on F and a bandwidth of order cn−1/7 is chosen, see

Theorem 5.1 of Groeneboom & Jongbloed (2003). This is the typical rate of convergence one can

expect in this situation for estimates of the density (note that the deconvolution step causes a

slower rate of convergence than we would get in direct density estimation), and indeed also other

types of estimators, for example based on Fourier inversion, can be found having the same rate of

convergence.

However, from a methodological point of view, smoothing the distribution did not seem to us

the most natural way to go, if one wants to estimate the upper support point of a distribution.

This has motivated us to study estimators, directly based on the MLE, without performing any
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additional smoothing.

3 Consistency

In this section we derive three results for general F and general noise density k. We consider the

behavior of F̂−1
n (1) and F̂−1

n (1 − βn). In the latter case, we have a consistency and rate result

under certain conditions on the vanishing sequence βn. The following theorem shows that, if F̂n is

a locally consistent estimator of F in a neighborhood of the upper support point, the associated

plug-in estimator F̂−1
n (1) of ϑ0 is asymptotically never too small.

Theorem 1 Let F̂n be a sequence of distribution functions and F a distribution function with

F−1(1) = ϑ0 < ∞. Moreover, suppose that for some ε0 > 0 the following holds:

|F̂n(x) − F (x)| → 0 in probability for all x ∈ [ϑ0 − ε0, ϑ0].

Let ϑ̂n = F̂−1
n (1). Then for all ε ∈ (0, ε0), limn→∞ P{ϑ̂n ≤ ϑ0 − ε} = 0.

Proof: Fix ε ∈ (0, ε0). Then

P{ϑ̂n ≤ ϑ0 − ε} = P{F̂n(ϑ0 − ε) = 1}

= P{F̂n(ϑ0 − ε) − F (ϑ0 − ε) = 1 − F (ϑ0 − ε)}

≤ P{|F̂n(ϑ0 − ε) − F (ϑ0 − ε)| ≥ 1 − F (ϑ0 − ε)} → 0

The last statement is true since F (θ0 − ε) < 1 and F̂n(ϑ0 − ε) → F (ϑ0 − ε) in probability. 2

Remark 1 Maximum likelihood estimators and isotonic inverse estimators (see Van Es et al.,

1998) are estimators that satisfy the condition given in Theorem 1.

We now show that under the additional assumption that F̂n is αn-consistent at each x > ϑ0,

F̂−1
n (1 − βn) converges in probability to θ0 whenever {βn} tends to zero more slowly than {αn}.
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Theorem 2 Suppose F̂n(x) → F (x) in probability ∀x ∈ [ϑ0 − ε0, ϑ0] and α−1
n (F̂n(x) − 1) is tight

for every x > ϑ0 with 0 ≤ αn → 0. Then

F̂−1
n (1 − βn) → ϑ0 in probability

whenever 0 ≤ βn → 0 and βn

αn
→ ∞.

Proof: We first show that for every ε > 0

P (F̂−1
n (1 − βn) > ϑ0 + ε) → 0

as n → ∞. Choose ε > 0 and δ > 0 and choose K > 0 such that P (α−1
n |F̂n(ϑ0 + ε) − 1| > K) < δ

for all n. Then for n sufficiently large such that βn

αn
> K it follows that

P (F̂−1
n (1 − βn) > ϑ0 + ε) = P (F̂n(ϑ0 + ε) < 1 − βn) = P (1 − F̂n(ϑ0 + ε) > βn)

= P

(

α−1
n (1 − F̂n(ϑ0 + ε)) >

βn

αn

)

≤ P
(

α−1
n (1 − F̂n(ϑ0 + ε)) > K

)

< δ.

Now note that

P
{

F̂−1
n (1 − βn) < ϑ0 − ε

}

≤ P
{

F̂n(ϑ0 − ε) ≥ 1 − βn

}

=

P
{

F̂n(ϑ0 − ε) − F (ϑ0 − ε) ≥ 1 − F (ϑ0 − ε) − βn

}

→ 0

since F (ϑ0 − ε) < 1, βn → 0 and F̂n(ϑ0 − ε) → F (ϑ0 − ε) in probability. 2

Strengthening the pointwise rate assumption for F̂n to a local uniform rate assumption in a left

neighborhood, we can derive the following rate result for F̂−1
n (1 − βn).

Theorem 3 Suppose

sup
x∈[ϑ0−ε,ϑ0]

|F̂n(x) − F (x)| = Op(αn)
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with 0 ≤ αn → 0. Furthermore assume there exists η > 0 and c > 0 such that

1 − F (x) ∼ c(ϑ0 − x)η for x ↑ ϑ0.

Then for all βn and γn such that γn → 0, βn

αn
→ ∞ and γn ≥ β

1
η
n it holds that

F̂−1
n (1 − βn) ≤ ϑ0

with probability tending to one and

γ−1
n

(

F̂−1
n (1 − βn) − ϑ0

)

= Op(1).

Proof: First we show that

P
(

F̂−1
n (1 − βn) > ϑ0

)

→ 0

as n → ∞. This holds since

P
(

F̂−1
n (1 − βn) > ϑ0

)

= P
(

1 − F̂n(ϑ0) > βn

)

≤ P

(

α−1
n |F̂n(ϑ0) − F (ϑ0)| >

βn

αn

)

→ 0

as n → ∞.

On the other hand we have for K >
(

2
c

)
1
η

P
(

F̂−1
n (1 − βn) < ϑ0 − Kγn

)

≤ P
(

F̂n(ϑ0 − Kγn) ≥ 1 − βn

)

= P
(

F̂n(ϑ0 − Kγn) − F (ϑ0 − Kγn) ≥ 1 − F (ϑ0 − Kγn) − βn

)

≤ P

(

sup
x∈[ϑ0−ε,ϑ0]

α−1
n |F̂n(x) − F (x)| ≥ α−1

n (1 − F (ϑ0 − Kγn) − βn)

)

≤ P

(

sup
x∈[ϑ0−ε,ϑ0]

α−1
n |F̂n(x) − F (x)| ≥

{

βn

αn

[ c

2
Kη − 1

]

}

)

→ 0.
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2

The theorem above implies that for e.g. η = 1, the case considered in Delaigle & Gijbels (2006),

any rate slower than αn can be achieved.

4 Noise density with compact support and extreme value index

In this section we consider a particular estimator, the MLE F̂n, in case that the noise density

has bounded support. Without loss of generality (because of rescaling), we restrict ourselves to

the situation that this support is equal to [0, 1]. Then a natural estimator is Z(n) − 1, where

Z(n) is the largest order statistic of the observations Zi. We first derive a general result that

F̂−1
n (1) ≥ Z(n) − 1 − Op(n

−1 log n). Then we show for the uniform deconvolution context, where

k(y) = 1[0,1](y), that also F̂−1
n (1) ≤ Z(n) − 1 + Op(n

−1 log n). Using this asymptotic equivalence of

Z(n) − 1 and F̂−1
n (1), we show that the asymptotic behavior of F̂−1

n (1) and its rate of convergence

in the uniform deconvolution model depend on F via its extreme value index.

Lemma 1 For the deconvolution problem where the noise has compact support [0, 1] and general

(nondegenerate) distribution functions F we have:

F̂−1
n (1) ≥ Z(n) − 1 − Op

(

log n

n

)

.

where the Op term is nonnegative.

Proof: Note that with probability tending to one (for n → ∞),

max
{

Zj : Zj < Z(n) − 1
}

= Z(n∗)

exists. We show that then F̂−1
n (1) > Z(n∗). Indeed, suppose that F̂−1

n (1) ≤ Z(n∗). Then F (Z(n∗)) =

1 and

ĝn(Z(n)) =

∫ Z(n)

Z(n)−1
k(Z(n) − x)dF̂n(x) = 0,
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since k has support [0, 1]. This, however, implies that the log likelihood is minus infinity, a contra-

diction. We conclude by using Lemma 4

0 ≤ Z(n) − 1 − Z(n∗) ≤ Z(n∗+1) − Z(n∗) ≤ max(spacing near ϑ0) = Op

(

log n

n

)

.

2

If k is the uniform (0, 1) density we can write

g(z) =

∫ z

z−1
1dF (x) = F (z) − F (z − 1),

and we get the following result.

Lemma 2 For uniform (0, 1) noise distribution and general distribution functions F ,

F̂−1
n (1) ≤ Z(n) − 1 + Op

(

log n

n

)

,

where the Op term is nonnegative.

Proof: Define

Z(i∗) = min{Zi : Zi ≥ Z(n) − 1}.

We first show that F̂n(Z(i∗)) = 1. Suppose that F̂n(Z(i∗)) < 1 and define

F̄n(x) =











F̂n(x) if x < Z(i∗)

1 if x ≥ Z(i∗).

Now, defining ḡ(z) =
∫

k(z − x) dF̄n(x), we have

ḡ(z) − ĝn(z) = F̄ (z) − F̂n(z) − F̄ (z − 1) + F̂n(z − 1)
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and thus

ḡ(z) − ĝn(z) =











0 if z < Z(i∗)

1 − F̂n(z) if Z(i∗) ≤ z ≤ ϑ0 + 1

This implies that the likelihood function at F̄ is strictly larger than the likelihood function at F̂n,

contradicting that F̂n is the MLE. Hence, F̂n

(

Z(i∗)

)

= 1 and by Lemma 4

F̂−1
n (1) ≤ Z(i∗) ≤ Z(n) − 1 + max(spacing near ϑ0) = Z(n) − 1 + Op

(

log n

n

)

.

2

In the following lemma we assume that 1− F (x) ∼ c(ϑ0 − x)
−1
γ with γ < 0 and c > 0. This can be

rewritten as

1 − F (ϑ0 − xh)

1 − F (ϑ0 − h)
=

c(xh)
−1
γ

c(h)
−1
γ

= x
−1
γ .

By e.g. Gnedenko (1943), we see that γ is the extreme value index of F. For convenience we replace

−1
γ by η in the following lemma. If F is the uniform (0, 1) distribution, we see that η = 1.

Theorem 4 Suppose that for some η > 0

1 − F (x) ∼ c(ϑ0 − x)η

when x ↑ ϑ0. I.e.

1 − F (x)

c(ϑ0 − x)η
→ 1. (4)

Then, for the uniform noise distribution

(

cn

η + 1

)
1

η+1 (

ϑ0 − F̂−1
n (1)

)

→ Wη (5)

in distribution where Wη ∼ Weibull(η + 1).
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Proof: By Lemma 1 and Lemma 2 we have that Z(n) − 1 − F̂−1
n (1) = Op

(

log n
n

)

. Furthermore,

1

η + 1
=

η + 1 − η

η + 1
= 1 − η

η + 1
, so n

1
η+1

logn

n
= n−

η
η+1 logn → 0

for n → ∞. By Slutsky it now suffices to prove (5) with F̂−1
n (1) replaced by Z(n) − 1. Let w > 0

and write wn = w
(

η+1
cn

)
1

η+1

Then

P

{

ϑ0 − Z(n) + 1 ≤ w

(

η + 1

cn

)
1

η+1

}

= P{ϑ0 − Z(n) + 1 ≤ wn} =

P{Z(n) ≥ ϑ0 + 1 − wn} = 1 − P{Z(n) < ϑ0 + 1 − wn} =

1 − (P{Zi < ϑ0 + 1 − wn})n = 1 − (1 − P{Zi ≥ ϑ0 + 1 − wn})n.

If 1 + ϑ0 − wn ≥ 1 (which holds for n sufficiently large), then

P{Zi ≥ ϑ0 + 1 − wn} =

∫ ϑ0+1

ϑ0+1−wn

g(z)dz

=

∫ ϑ0+1

ϑ0+1−wn

(1 − F (z − 1))dz =

∫ ϑ0

ϑ0−wn

(1 − F (z))dz.

By (4), we see that for each ε > 0 there exists a δ > 0 such that

(1 − ε)c(ϑ0 − x)η ≤ 1 − F (x) ≤ (1 + ε)c(ϑ0 − x)η ∀x ∈ [ϑ0 − δ, ϑ0].

We therefore have that

∫ ϑ0

ϑ0−wn

(1 − F (z))dz ∼ −c

η + 1
(ϑ0 − x)η+1|ϑ0

ϑ0−wn

=
c

η + 1
wη+1

n =
c

η + 1
· η + 1

cn
wη+1 =

wη+1

n
.

Then, for n → ∞

P

{

(

cn

η + 1

)
1

η+1

(ϑ0 − Z(n) + 1) ≤ w

}

∼ 1 −
(

1 − wη+1

n

)n

→ 1 − e−wη+1
.
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Remark 2 Goldenshluger & Tsybakov (2004) show that the simple estimator Z(n) − r attains an

optimal minimax convergence rate n1/(α+β+2) if the support of k is [−r, r], for some r > 0, and if

f(x) ≥ c1(θ0 − x)α, k(y) ≥ c2(r − y)β, θ0 − h < x < θ0, r − h < y < r,

for some α, β > 0 and h > 0, see their Theorem 3 on page 44. It is clear that in our particular case

F̂−1
n (1) will also attain the required rate, by the asymptotic equivalence of F̂−1

n (1) and Z(n) − 1.

In fact, we could also have deduced Theorem 4 from their Theorem 3, using this asymptotic

equivalence. An intriguing question is whether this asymptotic equivalence holds more generally.

5 Noise density with unbounded support

In this section we take a closer look at situations where the noise density has unbounded support.

One particular example of this is the exponential deconvolution problem, i.e. k(y) = e−y1[0,∞)(y).

By studying this specific problem, we show how other situations where the noise density has

infinite support could be handled. A consistent estimator of F in the exponential deconvolution

problem is the MLE F̂n described in Jongbloed (1998). This estimator can be explicitly constructed.

We show that the MLE F̂−1
n (1) is not a consistent estimator of ϑ0. Then we consider the general

‘high quantile’ estimator F̂−1
n (1 − βn) as introduced in Section 3.

To prove inconsistency of F̂−1
n (1) as an estimator of the upper support point in case of the

exponential deconvolution model, we exploit the relation between the exponential deconvolution

problem and the uniform random fraction problem by considering Wi = e−Zi . The largest Z values

in the exponential deconvolution problem then correspond to the smallest W values in the uniform

random fraction problem.

Then we apply known asymptotic results for the Grenander (maximum likelihood) estimator of

a decreasing density, to obtain the inconsistency of F̂−1
n (1) as an estimator of ϑ0. The Grenander

estimator ĝn,W (w) of gW (w), is the left derivative of the concave majorant Ĝn,W of the empirical
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distribution function of the Wi’s evaluated at w. For the Grenander estimator see Grenander (1956)

and Groeneboom & Lopuhaä (1993).

First we rewrite the problem and derive several results we use to prove inconsistency of F̂−1
n (1).

Lemma 3 Define W = e−Z , V = e−X and U = e−Y . Then

Z = X + Y ⇒ W = V U,

where U has the uniform (0, 1) density. Furthermore

1. gW (e−z) e−z = gZ(z), z ∈ (0,∞).

2. gW (w) is constant for w < e−ϑ0 .

3. 1 − F (x) = GW (e−x) − e−xgW (e−x) .

4. ϑ0 = F−1(1) = − log( sup{w ≥ 0 : gW (w) = gW (0+)}).

5. ϑ̂n = F̂−1
n (1) = − log( sup{w ≥ 0 : ĝn,W (w) = ĝn,W (0+)}), where ĝn,W is the Grenander

estimator.

Proof: By definition we have that P (W ≤ w) = 1 − GZ(−log(w)), where w ∈ (0, 1). Taking the

derivative of both sides and replacing w by e−z, we obtain 1.

By rewriting gZ(z) and using that −logw > ϑ0 implies w < e−ϑ0 , we obtain that gW (w) =
∫ ϑ0

0 eudF (u) for w < e−ϑ0 and thus 2.

Now 3. follows by Fubini, see e.g. Jongbloed (1998). We derive that

1 − F (x) = 1 − GZ(x) − gZ(x) = GW

(

e−x
)

− e−xgW

(

e−x
)

.

Furthermore we define

F̃ (v) =

∫ v
0

1
ydFV (y)

∫ 1
0

1
ydFV (y)

, so that
dFV

dF̃
(v) = cv,
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where c =
∫ 1
0

1
ydFV (y) < ∞ since FV

(

e−ϑ0
)

= 0. Using integration by parts we get

P (W ≤ w) = c

∫ w

0
(1 − F̃ (v))dv, so that gW (w) = c

(

1 − F̃ (w)
)

. (6)

Furthermore F (x) = 1 − FV

(

(e−x)
−
)

. By (6) we see that gW (w) is decreasing as function of w.

Note that if ϑ0 ∈ [0,∞) all bounded non-increasing densities can occur. Furthermore the support

of F̃ is the same as the support of FV . By using (6) we can rewrite ϑ0 as follows and obtain 4.:

ϑ0 = F−1(1) = inf{x ≥ 0 : F (x) = 1} = − log( sup{v ≥ 0 : FV (v) = 0})

= − log( sup{v ≥ 0 : 1 − FV (v) = 1}) = − log( sup{w ≥ 0 : gW (w) = gW (0+)}).

For 5. we use that there is a one-to-one relation between gW and F. Given a realization z1, z2, . . .

the log likelihood as a function of g (or, equivalently of F ) is given by

l(F ) =
1

n

n
∑

i=1

log (gW (wi)) − zn.

The log likelihood l(F ) is maximized if we take the Grenander estimator ĝn,W of gW (w). For a

proof of this fact see Grenander (1956) or Groeneboom & Lopuhaä (1993). 2

We now prove that F̂−1
n (1) is an inconsistent estimator of ϑ0.

Theorem 5 The estimator F̂−1
n (1) is inconsistent for θ0.

Proof: First we notice that ng(0)W(1:n) has asymptotically the standard exponential distribution.

Then

P (ĝn,W (0+) ≥ 2g(0)) ≥ P

(

1

nW(1:n)
≥ 2g(0)

)

= P

(

nW(1:n)g(0) ≤ 1

2

)

→ 1 − e−
1
2 .
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Consistency of ĝn,W (w) for w > 0 (see Woodroofe & Sun, 1993) gives

P

(

ĝn,W

(

e−2ϑ0

)

≤ 3

2
g(0)

)

→ 1.

Furthermore, using that P (A ∩ B) = P (A) + P (B) − P (A ∪ B) ≥ P (A) + P (B) − 1, we obtain

P
(

F̂−1
n (1) ≥ 2ϑ0

)

= P
(

sup{w : ĝn,W (w) = ĝn,W (0+)} ≤ e−2ϑ0

)

≥ P

(

ĝn,W (0+) ≥ 2gW (0) ∧ ĝn,W

(

e−2ϑ0

)

≤ 3

2
gW (0)

)

≥ P (ĝn,W (0+) ≥ 2gW (0)) + P

(

ĝn,W

(

e−2ϑ0

)

≤ 3

2
gW (0)

)

− 1

≥ 1 − e−
1
2 + o(1) as n → ∞. 2

Inspired by work on the Grenander estimator, we now prove consistency of a likelihood based

estimator for ϑ0: ϑ̂n = F̂−1
n (1 − βn), with βn ↓ 0. Consistency follows from the general result of

Theorem 2.

Theorem 6 For 0 < δ < 1
2

F̂−1
n

(

1 − n−δ
)

→ ϑ0

in probability.

Proof: By Theorem 2 it suffices to show that

n
1
2

(

1 − F̂n(x)
)

= Op(1)

for every x > ϑ0. From Marshall’s lemma (Robertson et al., 1988, page 329), and the Glivenko

Cantelli theorem, we obtain for the concave majorant Ĝn,W of the empirical distribution function

of the sample W1,W2, . . . ,Wn that

sup
w≥0

|Ĝn,W (w) − GW (w)| = Op

(

n− 1
2

)

. (7)
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By Lemma 3 it follows that for x > ϑ0

n
1
2

(

1 − F̂n(x)
)

= n
1
2

(

Ĝn,W

(

e−x
)

− e−xĝn,W

(

e−x
)

)

= n
1
2

(

Ĝn,W

(

e−x
)

− GW

(

e−x
)

)

+ n
1
2
(

GW

(

e−x
)

− e−xĝn,W

(

e−x
))

= n
1
2

(

Ĝn,W

(

e−x
)

− GW

(

e−x
)

)

+ n
1
2

(

e−xgW

(

e−x
)

− e−xĝn,W

(

e−x
))

= n
1
2

(

Ĝn,W

(

e−x
)

− GW

(

e−x
)

)

+ n
1
2 e−x

(

gW

(

e−x
)

− ĝn,W

(

e−x
))

.

Here we use that gW (e−x) = gW (0) for every x > ϑ0. The first term is Op(1) by (7). The second

term is Op(1) by Lemma 5. 2

To conclude this section, we state the following result about the rate of convergence.

Corollary 1 Assume 1−F (x) ∼ c(ϑ0 − x)η for x ↑ ϑ0 with η = 1. Then for any sequence βn such

that n1/3βn/ log n → ∞ and βn = γn,

γ−1
n

(

F̂−1
n (1 − βn) − ϑ0

)

= Op(1).

Note that one could take, for any ε > 0, βn = γn = n− 1
3 (log n)1+ε.

Proof: It suffices to show that Theorem 3 holds for αn = n− 1
3 log n. First we notice that

supx∈[ϑ0−ε,ϑ0]|F̂n(x) − F (x)| = supx∈[e−ϑ0 ,e−ϑ0+δ]|ĝn,W (x) − gW (x)|.

Then by defining

Un = n
1
3 (log n)−1supx∈[e−ϑ0 ,e−ϑ0+δ]|ĝn,W (x) − gW (x)|,

we know by Kulikov & Lopuhaä (2005) that Un = Op(1). 2
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6 Other methods and simulations

In this section we compare our ‘high quantile of the MLE’-method described in Section 5: ϑ̂n =

F̂−1
n (1−βn), βn ↓ 0 to the kernel estimation method of the upper support point described in Delaigle

& Gijbels (2006). There only the case of symmetric noise density k is considered in the simulation

study. We apply the kernel estimation method to the exponential deconvolution problem. Hereby

we use a simulation-based approach to find an approximately MSE-optimal band-width. The kernel

estimation method cannot be used in the uniform deconvolution problem.

We first give a short description of the kernel estimation method proposed by Delaigle & Gijbels

(2006). Assume that the density of X, f, is smooth except for a discontinuity at the boundary

points of the support and construct a smooth kernel estimate of f. First define φU (t) = E
(

eitU
)

=
∫

eitxfU (x)dx as the characteristic function of a random variable U having density fU . In Stefanski

& Carroll (1990) the following estimator f̂X(x;hn) is derived for the density f of X:

f̂X(x;hn) =
1

nhn

n
∑

j=1

KY

(

x − Zj

hn
;hn

)

(8)

with

KY (x;hn) =
1

2π

∫

e−itx φK(t)

φY

(

t
hn

)dt. (9)

Here K is a kernel function, supported on IR and real-valued, and hn is the bandwidth, depending

on n, such that hn → 0 as n → ∞. For simplicity we denote hn by h.

Remark 3 Note that in Delaigle & Gijbels (2006) Z is the noise variable instead of Y in this

paper. Also note that a condition that is needed for (9) to be well defined, is that φY (t) 6= 0 for all

t, which does not hold in the uniform deconvolution problem.

The method of Delaigle & Gijbels (2006) relies on derivative estimation. In the case of a single

boundary point ϑ0, we define the estimator of ϑ0 by

τ̂n = argmaxx|Ĵ(x)|, (10)
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where the diagnostic function Ĵ(x) is given by

Ĵ(x) =
1

nh

n
∑

i=1

K ′
Y

(

x − Zi

h

)

= h
d

dx
f̂X(x;h). (11)

Here the derivative of KY (.;h) is denoted by K ′
Y . In (11) we first compute K ′

Y (u) and then substitute

x−Zi

h for u.

Since the density of X, f, is assumed to be discontinuous in the upper support point and the

kernel estimate of f is a smooth function, it is to be expected that f̂X will have a large (negative)

derivative at the upper support point. This is the motivation behind estimator (10). Figure 5

shows a typical picture of Ĵ .

We now derive an explicit expression of K ′
Y in case of the exponential deconvolution problem.

We choose K to be the standard normal density, i.e.

K(x) =
1√
2π

e−
1
2
x2

.

It is well known (see e.g. Ross, 1993), that φK(t) = e−
1
2
t2 and φY (t) = (1 − it)−1. Substituting

these expressions in (9) we obtain

KY (x, h) =
1√
2π

(

e−
1
2
x2 − 1

h
xe−

1
2
x2

)

.

By differentation it follows that

K ′
Y (x, h) =

1√
2π

{

−xe−
1
2
x2 − 1

h
e−

1
2
x2

+
1

h
x2e−

1
2
x2

}

. (12)

Now h must be chosen appropriately. In Delaigle & Gijbels (2006) asymptotically optimal

bandwidths are studied. In their simulation study Y is symmetrically distributed (Laplace and

Gaussian error).

We therefore compare the two estimators in a simulation study to be described below. For the
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simulation, we use the following underlying distribution function F :

F (x) =
27

26
− (4 − x)3

26
for x ∈ [1, 3]. (13)

This distribution function corresponds to density 5 proposed in Delaigle & Gijbels (2006) and has

a jump continuity at ϑ0 as required for their method to work.

We first experimentally approximate the optimal choices for the parameters needed to compute

the estimators by simulation. More specifically, for a fixed sample size n, we repeat the following

procedure 500 times. First, generate a sample of size n from the convolution of the standard

exponential density and F given in (13). Then, for a whole range of values of p (for our method)

and h (for the kernel based method), compute the associated estimates of ϑ0 = 3. Then compute

the squared error of all these estimates. Having 500 squared errors for each value of p and h,

compute the mean over these 500 values to obtain an estimate of the mean squared errors (MSE)

of the estimators, depending on p and h respectively. Finally, define as ‘simulation based optimal

parameters’ those p and h that minimize the estimated MSE.

Having followed this procedure for n = 1000, we obtained as approximate MSE optimal pa-

rameters p = 0.965 and h = 0.90. Using these parameters, we computed both estimators for 500

newly generated data sets (for one generated data set, this is illustrated in Figure 4 and 5). Figure

2 shows boxplots of the estimators thus obtained. From this picture it is clear that our estimator

outbeats the kernel-based estimator in terms of the MSE criterion. It is the bias of the kernel-based

estimator that dominates the MSE, whereas the variance of our estimator dominates the MSE. For

n = 2000 we followed the same procedure, resulting in optimal parameters p = 0.975 and h = 0.90.

Figure 3 shows a similar picture as Figure 2.

HERE FIGURE 2, 3, 4 AND 5

7 Discussion

The maximum likelihood estimator of a distribution function is a natural estimator in a whole class

of deconvolution models. As such, it provides a natural candidate to use as plug-in estimator for
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the upper support point of a distribution in such models.

In this paper, we study this plug-in estimator and variants thereof, proving general results of

consistency. The two specific problems considered in more detail are prototypes of deconvolution

problems where the kernel has bounded or unbounded support. For these problems, where the

MLE can be explicitly computed, we derive more precise asymptotic results. A simulation study

shows that the method can compete with other methods used in practice.
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Kulikov, V.N. and Lopuhaä H.P. (2005). Asymptotic normality of the Lk− error of the Grenander

estimator. Ann. Statist., 33, 2228-2255.

Lindsay, B.G. (1995). Mixture models: theory, geometry and applications. NSF-CBMS Regional

Conference Series in Probability and Statistics, Vol 5.

Meister, A. (2006). Support estimation via moment estimation in presence of noise. Statistics, 40,

259-275.

22



Robertson, T., Wright, F.T. and Dykstra, R.L. (1988). Order restricted statistical inference, Wiley,

New York.

Ross, S.M. (1993). Introduction to probability models, Fifth Edition, Academic Press, Inc., San

Diego.

Stefanski, L. and Carroll, R.J. (1990). Deconvoluting kernel density estimators. Statistics, 2, 169-

184.

Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimate of f(0+) when f is

non-increasing. Statist. Sinica, 3, 501-515.

Corresponding author:

G. Jongbloed, Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1081a,

1081 HV Amsterdam, The Netherlands.

E-mail: G.Jongbloed@few.vu.nl

Appendix

Lemma 4 Let Z1, Z2, . . . be independent identically distributed with distribution function G. Sup-

pose that g = G′ exists on an interval Iδ = (z0 − δ, z0 + δ) and that there is a c > 0 such that

1
c < g(z) < c for all z ∈ Iδ. Then

max{Z(i) − Z(i−1) : Z(i), Z(i−1) ∈ Iδ} = Op

(

log n

n

)

.

Proof: Let E1, E2, . . . be independent identically distributed random variables with the standard

exponential density and U1, U2, . . . i.i.d. uniformly distributed random variables on (0, 1). Note

that
(

Ej
∑n+1

i=1 Ei

)n

j=1

D
=
(

U(1:n), U(2:n) − U(1:n), . . . , U(n:n) − U((n−1):n)

)

,

where U(i:n) is the i-th order statistic in the sample U1, . . . , Un. Defining Mn = max1≤i≤n Ei, we
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get that

P (Mn − log n ≤ k) = P (Ei ≤ log n + k)n → e−e−k

implying Mn = Op(log n) and hence

max
1≤i≤n

(

U(i) − U(i−1)

)

= Op(n
−1 log n).

Using that
(

Z(i:n)

)n

i=1

D
=
(

G−1(U(i:n))
)n

i=1
,

we obtain that

max{Z(i:n) − Z((i−1):n) : Z(i:n), Z((i−1):n) ∈ Iδ)
D
=

max{G−1(U(i:n)) − G−1(U((i−1):n)) : G−1(U(i:n)), G
−1(U((i−1):n)) ∈ Iδ) ≤

cmax{U(i:n) − U((i−1):n) : 1 ≤ i ≤ n} = Op(n
−1 log n). 2

Lemma 5 Let W1,W2, . . . be independent identically distributed variables with decreasing density

gW and gW (w) = gW (0) for every w ∈ (0, δ). Let ĝn,W be the Grenander estimator based on

W1, . . . ,Wn. Then for every w ∈ (0, δ):

√
n (ĝn,W (w) − gW (w)) = Op(1).

Proof: Fix w ∈ (0, δ). Suppose that for a certain M,

ĝn,W (w) > gW (w) +
M√
n

= gW (0) +
M√
n

.

This implies that

Ĝn,W (w) =

∫ w

0
ĝn,W (u)du ≥

∫ w

0
ĝn,W (w)du > gW (0)w +

M√
n

w = GW (w) +
M√
n

w.
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Hence,

P

(

ĝn,W (w) > gW (w) +
M√
n

)

≤ P

(

Ĝn,W (w) − GW (w) >
Mw√

n

)

which, by (7), can be made arbitrarily small uniformly in n, by choosing M sufficiently large. On

the other hand, suppose for some w ∈ (0, δ) that

ĝn,W (w) < gW (w) − M√
n

= gW (0) − M√
n

.

Then

Ĝn,W (δ) − Ĝn,W (w) ≤ ĝn,W (w)(δ − w) < gW (0)(δ − w) − (δ − w)
M√
n

= GW (δ) − GW (w) − (δ − w)
M√
n

.

Now either

Ĝn,W (δ) − GW (δ) < −1

2
(δ − w)

M√
n

or GW (w) − Ĝn,W (w) < −1

2
(δ − w)

M√
n

.

Hence, again using (7),

P

(

ĝn,W (w) < gW (w) − M√
n

)

≤ P

(

Ĝn,W (δ) − GW (δ) < −1

2
(δ − w)

M√
n

)

+

P

(

GW (w) − Ĝn,W (w) < −1

2
(δ − w)

M√
n

)

which can be made arbitrarily small uniformly in n, by choosing M sufficiently large. 2
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Figure 1: The true standard uniform F and the MLE F̂n of F based on a sample of size 100.
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Figure 2: The upper support point is ϑ0 = 3. The samples have size 1000, pn = 0.965 and hn = 0.90.
The left boxplot corresponds to the high quantile estimator proposed here and the right boxplot to
the kernel based method of Delaigle & Gijbels (2006)

26



1 2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

V
al

ue
s

MSE=0.0647 MSE=0.0981 

Figure 3: The upper support point is ϑ0 = 3. The samples have size 2000, pn = 0.975 and hn = 0.90.
The left boxplot corresponds to the high quantile estimator proposed here and the right boxplot to
the kernel based method of Delaigle & Gijbels (2006)
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Figure 4: The MLE F̂n of F based on a sample of size 1000. We detect ϑ̂n for a given pn. Here
pn = 0.965.
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Figure 5: The diagnostic function Ĵ(x) for hn = 0.90 based on the same sample used for Figure 3.
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