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Abstract: We discuss software, written in C and used in Groeneboom and Jongbloed (2014), which
we make available on this site, using Rcpp, see, e.g., Eddelbuettel (2013). Parallel to this development,
we also create GUI (Graphical User Interface) applications for Mac OS 10.10 (Yosemite). The software
can be used to reproduce the results and pictures in Groeneboom and Jongbloed (2014).
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1. Introduction

In Groeneboom and Jongbloed (2014) frequent use is made of results of C programs, which implement
algorithms for computing estimators iteratively, or for computing test statistics using bootstrap procedures.
Unfortunately, these computer programs were written using standard routines from Numerical Recipes in C
(see Press et al. (1992)), and the authors of this book prohibit publication of code which even partly contains
routines from their book.

For this reason the computer programs were never made public and the only way we can make them
public now seems to remove all Numerical Recipes routines and use equivalent (preferably better) routines
from other sources or just to cook up these routines ourselves. This is indeed what we intend to do, and a
first attempt is the treatment of the MLE, SMLE and hazard for the Competing Risk model under Current
Status censoring, which has received a lot of attention from researchers, and is discussed at different spots in
the book. We also give several approaches to the computation of confidence intervals for the current status
model.

We try to link the C/C++ programs to R, using Rcpp. In this way the programs are immediately available
for Mac, Windows and Linux/Unix platforms and we also can connect to the graphical tools available in R.
Moreover, using C/C++ routines, the programs run very much faster than if we only would have implemented
the routines in R. Parallel to this development, we also create GUI (Graphical User Interface) applications
for Mac OS 10.10 (Yosemite), built in Xcode, allowing the user to open input files via the standard open file
dialogue and run bootstrap simulations for computing confidence intervals.

For using R, using Rcpp, Windows users may have to install Rtools:
http://cran.r-project.org/bin/windows/Rtools/index.html
Mac users may have to use Xcode, or at least the corresponding command line tools, see (with advices for
Windows, Mac and Linux users):
https://support.rstudio.com/hc/en-us/articles/200486498-Package-Development-Prerequisites
Mac users who use the GUI application, given in compriskGUI.tar.gz on:
http://dutiosc.twi.tudelft.nl/~pietg/software.html
do not have to download extra tools.

2. The competing risk model under current status censoring

2.1. The model

The competing risk model under current status censoring is described on p. 121 of Groeneboom and Jongbloed
(2014) and we take the formulation from there. Consider a situation where for a certain object there are
several (say K ∈ N) possible causes of failure and that at a random point T in time the object is inspected.
It is observed whether or not this object broke down before time T or not (its ‘current status’). In case the
object has broken down, it is also observed which of the K possible causes (competing risks) lead to the
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breakdown. Write X for the time of breakdown and Y ∈ {1, 2, . . . ,K} for the corresponding cause. Together
with inspection time T , the indicator vector

∆ = (∆1, . . . ,∆K) with ∆k = 1[X≤T,Y=k]

is observed. Note that if all indicators are zero, this means that X > T . If X ≤ T also the breakdown cause
is observed, so then exactly one of the K indicators equals 1. Assuming (X,Y ) to have joint distribution
function F and T to be independent of (X,Y ), this model is known as the competing risk model with current
status observations. Data of this type arise naturally in cross-sectional studies with several failure causes.

Note that, given T , the vector

(∆1,∆2, · · · ,∆K ,∆K+1) with ∆K+1 = 1−
K∑
k=1

∆k (2.1)

has a multinomial distribution with parameters 1 and (F1(T ), · · · , FK(T ), 1− F+(T )), where

Fk(t) = P (X ≤ t, Y = k), t ≥ 0, k = 1, 2, . . . ,K,

is the sub-distribution function of X for risk level k and F+ =
∑
k Fk is the marginal distribution function

of X. Denoting by ek the kth unit vector in RK , by # counting measure on D = {ek : k = 1, . . . ,K+ 1} and
G the distribution of T , we can define the measure µ = G×# on R×D. With respect to this (dominating)
measure, the density of a single observation (T,∆) is given by

pF (t, δ) =

K∏
k=1

Fk(t)δk(1− F+(t))1−δ+ , (2.2)

where δ+ =
∑K
k=1 δk.

Now consider an independent sample of size n, distributed as (T,∆1, . . . ,∆K),(
Ti,∆

i
)

=
(
Ti,∆

i
1, . . . ,∆

i
K

)
, i = 1, . . . , n,

where, for 1 ≤ i ≤ n

∆i =
(
∆i

1, . . . ,∆
i
K

)
with ∆i

k = 1{Xi≤Ti, Y=k}, k = 1, . . . ,K.

Also define

∆i
K+1 = 1−

K∑
k=1

∆i
k = 1{Xi>Ti} .

Using (2.2) and independence of the observations, the log likelihood (divided by n) is given by

`(F ) =

∫
log pF (t, δ) dPn(t, δ)

=

∫ { K∑
k=1

δk logFk(t) + (1− δ+) log(1− F+(t))
}
dPn(t, δ). (2.3)

where Pn is the empirical distribution of (Ti,∆
i), i = 1, . . . , n. An MLE F̂ = (F̂1, . . . , F̂K) can then be

defined by the property

`(F̂ ) = max
F∈FK

`(F ) (2.4)

where

FK = {F = (F1, . . . , FK) : F1, . . . , FK are sub-distribution functions,

such that for all x ≥ 0 :

K∑
k=1

Fk(x) ≤ 1}. (2.5)
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2.2. The Bangkok Metropolitan Administration cohort study

The Bangkok Metropolitan Administration injecting drug users cohort study (Kitayaporn et al. (1998) and
Vanichseni et al. (2001)) was started in 1995 to assess (among other things) the feasibility of conducting
a phase III HIV vaccine efficacy trial for injecting drug users in Bangkok. The data on a subset of 1365
injecting drug users who were below 35 years of age in this study were analyzed by Maathuis and Hudgens
(2011) and Li and Fine (2013). In this group, 392 were HIV positive, with 114 infected with subtype B, 237
infected with subtype E, 5 infected by another mixed subtype and 36 infected with missing subtype. The
subjects with other, mixed or missing subtypes were grouped in a single category.

In Maathuis and Hudgens (2011), the maximum likelihood estimator (MLE) for these data is computed
and also a so-called naive estimator, based on analyzing one category such as the type B subjects, ignoring
the data on the other types. In Li and Fine (2013) both the regular MLE and a smoothed version of the
MLE (called the SMLE) are computed and theory developed in Groeneboom, Jongbloed and Witte (2010) is
used for constructing confidence intervals. They also estimate the hazard and construct confidence intervals
for the hazard, again using Groeneboom, Jongbloed and Witte (2010). The regular MLE cannot directly be
used for this purpose because it corresponds to a discrete distribution, so that some kind of smoothing is
needed to estimate the hazard and to construct the confidence intervals.

15 20 25 30 35
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Fig 1: The MLE for the three categories in the Bangkok cohort study. The piecewise constant curves give
the subdistribution functions, based on the MLE, for the different categories; dotted: type E, solid: type B,
dashed; other types. The smooth solid curves give the corresponding estimates, based on the SMLE.

2.3. The iterative convex minorant algorithm

The iterative convex minorant algorithm is derived from Corollary 2.10 in Groeneboom, Maathuis and
Wellner, 2008, which is given below.
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Lemma 2.1 (Corollary 2.10, Groeneboom, Maathuis and Wellner, 2008). Let λ be given by

λ = 1−
∫

δK+1

1− F̂+(u)
dPn(u, δ) ≥ 0. (2.6)

Then F̂ = (F̂1, . . . , F̂K) is an MLE if, for all k = 1, . . . ,K and each point of jump τki of F̂k:∫
u∈[τki,s)

{
δk

F̂k(u)
− δK+1

1− F̂+(u)

}
dPn(u, δ) ≥ λ1[τki,s)(T(p)), s ∈ R, (2.7)

where equality holds if s > τki is a point of increase of F̂k or if s > T(p), where T(p) is the largest of the
strictly ordered order statistics.

To force (2.7) to hold, we can set up an iterative convex minorant algorithm. This algorithm is implemented
in the C++ file icm.cpp and in particular in the routine ICM_iteration. A so-called cusum diagram is formed,
with points (0, 0) and points(

j∑
i=1

wki,

j∑
i=1

(wkiyki + vki)− λ1{j=nk}

)
, j = 1, . . . , nk, (2.8)

where λ is as in (2.6), with F̂+ replaced by the F+ at the present iteration step,

wki =

∫
u∈[Ti,Tj)

{
δk

Fk(u)2
+

δK+1

{1− F+(u)}2

}
dPn(u, δ),

and Ti and Tj are successive points where δk = 1,

vki =

∫
u∈[Ti,Tj)

{
δk

Fk(u)
− δK+1

1− F+(u)

}
dPn(u, δ),

and where yki is the value of the subdistribution function Fk at the point Ti at the present iteration; nk is
the number of points where δk = 1. As explained in Groeneboom and Jongbloed (2014), the wik have an
interpretation via the diagonal of the Hessian matrix of the maximization problem.

We next determine the greatest convex minorant of the cusum diagram (2.8) and use its left derivative
for forming the new values of Fk. The Lagrange multiplier λ is computed after each iteration via (2.6), using
the values of the Fk at that iteration. We only have to determine the values of Fk at the points where δk = 1,
since these are the only points where the subdistribution function can have mass. It can be seen that at a
stationary point of these iterations the conditions (2.7) are satisfied and hence an MLE is found. To go from
one iteration to the next we determine the step size by a golden section search algorithm.

In our experience, this algorithm is at present the fastest algorithm for finding the MLE. It can easily be
extended to interval censoring with more observations, like case 2 interval censoring, or so-called mixed case
interval censoring, but we concentrate for the moment on the current status model.

2.4. The SMLE

The SMLE (smoothed maximum likelihood estimator) is computed using (9.75) in Groeneboom and Jong-
bloed (2014), where we use boundary correction on the left and right. The SMLE is defined on p. 367 of
Groeneboom and Jongbloed (2014) for the data of the Bangkok cohort study, and given by

F̃nk,h(t) =

∫ {
IK

(
t− x
h

)
+ IK

(
t+ x− 2a

h

)
− IK

(
2b− t− x

h

)}
dF̂nk(x), (2.9)

where a = 15, b = 35, h is the bandwidth (taken to be (b− a)n−1/5) and

K(u) =

∫ u

−∞
K(y) dy, (2.10)
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choosing for K for the triweight kernel, given by

K(u) =
35

32

(
1− u2

)3
1[−1,1](u).

The SMLE is computed in the last routine bdf of icm.cpp.
As explained in Groeneboom and Jongbloed (2014), the SMLE has a faster asymptotic convergence rate

(n−2/5, the usual convergence rate of density estimation), if one is willing to assume smoothness, than the
MLE (which has convergence rate n−1/3 under the usual conditions). Also, the SMLE has asymptotically a
normal limit distribution (under the appropriate conditions, given in Groeneboom and Jongbloed (2014)),
in contrast with the MLE, for which the asymptotical distribution still has no analytic characterization.

2.5. Rcpp

The Rcpp part of the algorithm is implemented in the routine ComputeMLE(DataFrame input) in icm.cpp.
The input to the routine is a data frame which comes from a file with two columns: the first column contains
the observation times and the second the causes of failure 1, . . . ,K or 0 is there is no failure at that observation
time. The R script MLEThai.R essentially only exists of the lines:

library(Rcpp)
icm<-sourceCpp("icm.cpp")
A<-read.table("dataThai.txt")
output <- ComputeMLE(A)

and has as output a list of three things: the MLE, the SMLE (computed on a equidistant grid of 1000
points) and the value of the log likelihood. The first line activates the Rcpp library (one may have to load the
package Rcpp first), the second line compiles the C++ file icm.cpp, the third line transforms the data into a
form suitable for input to the function ComputeMLE, and the fourth line computes the MLE and SMLE from
this function (and also produces the value of the log likelihood). The present data file dataThai.txt can of
course be replaced by any data file of the same structure; the file should not have headers, and the number
of observations and number of risks, which should have the labels 1, . . . ,K, is counted by the C++ program
icm.cpp itself.

The program also performs a reduction to take ties into account. For example, the data file dataThai.txt
contains 1365 observations for three risks. After reduction for ties, the number of remaining (unique) obser-
vations is 1211, and at each unique observation the frequencies of the occurrences of δk = 1 are given, for
k = 1, . . . ,K, where K = 3 in this case.

One can also use an input file where the ties are already taken into account, and where the data consist
of the frequencies of the observations for the different risks are given. In that one case the input file contains
K + 2 columns: the first column contains the observation times, the next column the frequencies for the
observations where no failure is observed and next one gets the columns with the frequencies for the observed
failures of type k, k = 1, . . . ,K. The script demonstrating this approach is given in MLEThai2.R, and the
input file is dataThai2.txt. The C++ file for this approach is given by icm2.cpp.

For illustration purposes the drawing of Figure 1.7 on p. 11 of Groeneboom and Jongbloed (2014), where
the MLE and SMLE are shown, is added to the scripts. This figure is also shown above in Figure 1.

2.6. Comparison with MLEcens

In first instance, the R package MLEcens (Maathuis (2013)) was developed by Marloes Maathuis for analyzing
bivariate interval censored data. For this type of data, the non-unicity of the MLE is more of an issue than for
the present case of the MLE for competing risk data under current status censoring. The method proceeds
by first computing rectangles which are candidates for containing mass and next computing the masses of
the MLE on these rectangles. The really time consuming step of the algorithm is the computation of the
MLE, not the preliminary reduction step of the computation of the candidate rectangles.

This method can also be used for computing the MLE for the present model, in which case the rectangles
are replaced by intervals. The output of MLEcens gives indeed the masses of the MLE on these intervals,
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together with a list of the intervals. The computation of the MLE is based on an old C program, using
support reduction, as discussed in Groeneboom, Jongbloed and Wellner (2008).

This algorithm is totally different from the iterative convex minorant algorithm. The support reduction
algorithm successively builds up a distribution of mass from a few rectangles until further addition of new
rectangles with mass will not increase the likelihood any more. This is done by two types of iteration: inner
iterations which preform a least squares minimization, using weights given by the outer iterations which
perform a change of the masses using Armijo’s rule for determining a step size in a direction given by the
inner iterations. Details of this procedure are given in Groeneboom, Jongbloed and Wellner (2008) for the
so-called “Aspect experiment" in quantum statistics.

We compare the output of the two algorithms for the Bangkok data below. The iterative convex minorant
algorithm gives on my computer, after 20 iterations, the following output for the MLE:

[,1] [,2] [,3] [,4] [,5]
[1,] 16.43532 0.000000000 0.06250000 0.00000000 0.06250000
[2,] 18.94593 0.000000000 0.08695652 0.00000000 0.08695652
[3,] 19.34292 0.000000000 0.15531609 0.00000000 0.15531609
[4,] 19.80287 0.000000000 0.15531609 0.03060505 0.18592114
[5,] 20.00000 0.008140789 0.15531609 0.03060505 0.19406192
[6,] 21.98494 0.009897753 0.15531609 0.03060505 0.19581889
[7,] 22.06708 0.009897753 0.15801138 0.03060505 0.19851418
[8,] 23.17591 0.055833685 0.15801138 0.03060505 0.24445011
[9,] 23.81656 0.055833685 0.18579624 0.03060505 0.27223497
[10,] 25.09240 0.061458723 0.18579624 0.03060505 0.27786000
[11,] 25.96851 0.068139019 0.18579624 0.03060505 0.28454030
[12,] 26.27789 0.078359872 0.18579624 0.03060505 0.29476115
[13,] 26.66667 0.083361566 0.18579624 0.03060505 0.29976285
[14,] 27.40315 0.117539808 0.18579624 0.03060505 0.33394109
[15,] 27.61944 0.127664960 0.18579624 0.03060505 0.34406624
[16,] 30.53525 0.186595483 0.18579624 0.03060505 0.40299676
[17,] 31.98631 0.186595483 0.18579624 0.03745355 0.40984527
[18,] 34.09993 0.186595483 0.22342172 0.03745355 0.44747075
[19,] 34.59274 0.194506509 0.22342172 0.03745355 0.45538178

The first column gives observations (ages), the second to fourth column the values of the three subdis-
tribution functions of which (at least) one has a jump at the corresponding observation time, and the 5th
column gives the values of the sum function F+ at these points. There are of course many more observations,
but the MLE does not have jumps at these points.

After 20 iterations, the values of the estimates satisfy the two (Fenchel duality) conditions (7.56) and
(7.57) of Groeneboom and Jongbloed (2014) at the level 10−10 (absolute value of inner product of nabla
vector and solution smaller than 10−10 and minimum of partial sums of the nabla vector bigger than 10−10,
respectively). The same convergence criterion is used in MLEcens.

If I apply MLEcens to the same data, I get the following output on my computer. For the masses on the
rectangles I get the vector of values (denoted by $p in the output):

0.062500000 0.024456522 0.068359569 0.030605045 0.008140789 0.001756965
0.002695293 0.045935932 0.027784852 0.005625038 0.006680296 0.010220853
0.005001694 0.034178242 0.010125152 0.058930524 0.006848503 0.037625482
0.007911025 0.544618225

If we take the cumulative sums of these numbers, using the R function cumsum, we get:

0.06250000 0.08695652 0.15531609 0.18592114 0.19406192 0.19581889
0.19851418 0.24445011 0.27223497 0.27786000 0.28454030 0.29476115
0.29976285 0.33394109 0.34406624 0.40299676 0.40984527 0.44747075
0.45538178 1.00000000
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in which we recognize the last column of the output of the iterative convex minorant algorithm, corresponding
to the sum function F+, except for the last number (which just gives the jump to the total mass).

As next output, I get the table $rects in the output:

[,1] [,2] [,3] [,4]
[1,] 15.16769 16.43532 1.75 2.25
[2,] 18.94045 18.94593 1.75 2.25
[3,] 19.34018 19.34292 1.75 2.25
[4,] 19.79192 19.80287 2.75 3.25
[5,] 19.99179 20.00000 0.75 1.25
[6,] 21.97399 21.98494 0.75 1.25
[7,] 22.05065 22.06708 1.75 2.25
[8,] 23.15400 23.17591 0.75 1.25
[9,] 23.80287 23.81656 1.75 2.25
[10,] 25.04860 25.09240 0.75 1.25
[11,] 25.94114 25.96851 0.75 1.25
[12,] 26.26968 26.27789 0.75 1.25
[13,] 26.64750 26.66667 0.75 1.25
[14,] 27.40041 27.40315 0.75 1.25
[15,] 27.61670 27.61944 0.75 1.25
[16,] 30.52977 30.53525 0.75 1.25
[17,] 31.97262 31.98631 2.75 3.25
[18,] 34.09719 34.09993 1.75 2.25
[19,] 34.54894 34.59274 0.75 1.25
[20,] 34.99521 100.0000 0.75 3.25

Here one recognizes in the second column the numbers in the first column of the table, produced by the
iterative convex minorant. The numbers 1.75, 2.25, etc. in the last columns may seem somewhat peculiar, but
have the following meaning. The interval [0.75, 1.25] corresponds to risk 1, the interval [1.75, 2.25] to risk 2,
the interval [2.75, 3.25] to risk 3, and the interval [0.75, 3.25] to an observation where there is no failure. This
way of coding shows the descendance of the algorithm from the algorithm for bivariate interval censoring.

So, if one places the mass of the intervals at the right endpoint, one gets the same results as with the
iterative convex minorant algorithm. It is also seen that the numbers in the first two columns are pretty
close, except for the irrelevant last row (as an aside, one could also argue that this last interval should start
at 34.59274 rather than at 34.99521), so there is only a slight space of freedom for defining different MLEs.

To further compare the two algorithms for a more challenging data set, we compared the performance
for the example of 25000 observations on data, generated by the exponential-type subdistribution functions
Fk(t) = (k/3){1− e−kt}, t ≥ 0, k = 1, 2, and analyzed on pages 190 and 191 of Groeneboom and Jongbloed
(2014). Using the script MLE25000.R, the computation for and plotting of Figure 2 below, where the SMLE
also was computed, took about 10 seconds on my computer. On the other hand, just to compute the MLE
took 100 seconds using the package MLEcens. If the number of observations is growing, the algorithm in
MLEcens is considerably slowed down by the matrix inversions (or growing number of linear equations to be
solved), whereas the iterative convex minorant algorithm does not have to solve equations of this type (only
using the diagonal of the Hessian matrix).

3. Bootstrap confidence intervals for the hazards in the competing risk model

Confidence intervals for the hazards in Bangkok data, discussed above, were given in Li and Fine (2013). The
intervals, given there, are based on asymptotic theory and do not use the bootstrap. It is not at all trivial that
the bootstrap can be used for the confidence intervals, if one wants to base this on the computation of the
MLE, since the bootstrap for the MLE itself will no doubt fail, as one can infer from Kosorok (2008) and Sen,
Banerjee and Woodroofe (2010). The reason that one still can get the confidence interval by bootstrapping
seems to be a consequence of the fact that the estimate of the hazard, based on the MLE, has an asymptotic
behavior described by (what is called in Groeneboom and Jongbloed (2014)) local smooth functional theory,
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Fig 2: The two distribution functions Fk(t) = (k/3){1 − e−kt} for the competing risk model with current
status data and their MLE’s for a sample of size n = 25000. The upper curves give the sum function F+ and
its estimator F̂n+.

which “washes away" the peculiar local limit behavior of the MLE. Nevertheless, the theory for this is far from
complete and is described by integral equations one has to be able to solve first, as also argued in Groeneboom
(2013). And once one has solved the integral equations, one has to deduce the relevant equivalence to a “toy
estimator" from this, which usually is also a somewhat daunting task.

We will not further dwell on these matters here, but instead describe the R script. We take the data set
dataThai.txt again and activate the C++ program via the R script MLEThai.R. This will produce three hazard
estimates for the three groups and also 95% confidence intervals for the hazards, computed at 99 points of
the interval [15, 35]. Two of the pictures of the confidence intervals can be seen in Figure 12.2 on p. 369 of
Groeneboom and Jongbloed (2014). We give the the three pictures below. In Groeneboom and Jongbloed
(2014) both studentized an non-studentized confidence intervals are discussed; we give the results for the
non-studentized ones, since there was not much difference anyway. The C++ code icm.cpp can be consulted to
see what is done: 1000 bootstrap samples are drawn (with replacement) form the original data, consisting of
the pairs (Ti,∆i), and for each sample the MLE is computed iteratively, using the iterative convex minorant
algorithm. Once the MLE is computed, one can compute the SMLE and the density estimate, and on the
basis of these the hazard estimate is computed for the bootstrap sample. It is interesting to note that they
look somewhat different from the corresponding intervals for the same data in Li and Fine (2013), which
might illustrate the distance between asymptotic theory and bootstrap approximation.

4. A GUI application and confidence intervals for the SMLE

As mentioned in the Introduction, we also started writing GUI (Graphical User Interface) applications,
parallel to the development of the Rcpp approach. These applications were developed for Mac OS X, using
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Fig 3: 95% confidence intervals for the hazards for the group infected with type B (Figure (a)), with type E
(Figure (b)) and remaining group (Figure (c)) in the Bangkok cohort data.

Xcode and a combination of Objective-C and C++, but it should also be possible to implement these for
Windows, using Microsoft Visual C++.

The application allows the user to specify the number of bootstrap samples to be taken for the computation
of the confidence intervals. It has a menu, where one can choose the input file by the standard “File-open
· · · " submenu. One can also choose via the submenu “Statistic" between confidence intervals for the SMLE
or confidence intervals for the hazard. One can both use the ungrouped and grouped file formats. In the
latter case the observations are unique and at each such unique point the information about the frequencies
of failures for the competing risks is given, and the frequency of observations of no failure at that point. The
screenshot Figure 4 shows a moment in the analysis of the Bangkok data, where the number of observations
was 1365, and where after the correction for ties 1211 unique observations remained. To have an idea of
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Fig 4: A screenshot of the GUI application

the progress of the bootstrap samples, there is a (blue) progress bar, showing the proportion of bootstrap
samples that have been treated. The number of treated bootstrap samples is also shown in the (so-called)
textfield left if it. See the discussion on Section 2.5 for the difference between the input file with two columns
and 1365 observation points for the ungrouped data and the input file with K + 2 (in this case: 5) columns
and 1211 (unique) observation points for the grouped data.

For performing the bootstrap, it seemed easiest to stick with the 1365 observation points, from which
we resample uniformly 1365 bootstrap sample points of type (Ti,∆

i) and compute the statistics for the
bootstrap sample. This means that in the case of the input of the 1211 (grouped) data points, the data
were first transformed to the other format, where we only have two columns with 1365 points (T ′i , γi), where
γi ∈ {0, 1, . . . ,K} denotes the risk for which there is a failure at time T ′i (or equals zero if it denotes an
observation for which there is no failure).

Since the computations are again done by the C++ part of the program, the computations take about
the same time as in the Rcpp implementation. For example, the bootstrap experiment with 1000 bootstrap
samples of 1365 observations for the confidence intervals for the hazards takes about 20 seconds (the amount
of time is computed in the program and given in the printed output). One can also compute the 95%
confidence intervals for the SMLE. This takes somewhat longer on my computer, about 50 seconds, since in
this case the book on p. 367 is (again) followed, in taking a kind of “studentized" confidence intervals, for
which an estimate of the variance has to be computed for each sample, see (12.7) on p. 367. This was done
in view of the “reproducibility" of Figure 12.1 on p. 368. It turns out, however, that, just as in the case of
the confidence intervals for the hazards, the non-studentized confidence intervals for the SMLE, not using
this scaling by the estimate of the standard deviation, are rather similar.

For the computation of the confidence intervals for the MLE for current status and interval censored data,
a different kind of bootstrap is proposed in Sen and Xu (2015). They suggest bootstrapping from the SMLE,
by resampling only the indicators, with probabilities given by the SMLE, and using the (fixed) observation
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points of the original sample. For example, in the current status model the bootstrap samples contain the
observations (Ti,∆

∗
i ), where the Ti are the observations of the original sample, and ∆∗i is, conditionally

on the original sample, a Bernoulli random variable, with success probability F̃n,h(Ti) and where F̃n,h is
an SMLE, with a bandwidth h, tending to zero slower than n−1/3 log n. They prove in their Theorem 3 in
Section 2.3 (in the supplementary material to their paper) that this leads to consistent bootstrapping of the
MLE. This could also be extended to confidence intervals for the SMLE in the competing risk model, by
smoothing the bootstrap values of the MLE.

In contrast, we would, for the current status model, resample the (Ti,∆i) (so both the values Ti and ∆i

become random in our bootstrap sample) and compute the MLE and subsequently the SMLE directly on
the basis of such a bootstrap sample. It is indeed surprising that this leads to inconsistent estimates of the
distribution of the MLE, but consistent estimates of the corresponding distribution of the SMLE. The latter
seems to be a consequence of the fact that the SMLE, although based on the MLE, seems to “by-pass" the
aberrant limit behavior of the bootstrap version of the MLE.

The bootstrap confidence intervals of our method for the Thailand data are shown in Figure 5.

5. Confidence intervals for the current status model (see Section 9.5 of Groeneboom and
Jongbloed (2014) and Groeneboom and Jongbloed (2015))

The current status model is the simplest interval censoring model, where the sample is of the form

(Ti,∆i), i = 1, . . . , n,

and ∆i = 1{Xi≤Ti}, where Xi and Ti are independent real-valued random variables. The model is also called
the “interval censoring, case 1” model. Since the current status model is the (simplest) prototype of a number
of inverse statistical models, we will give a number of examples of it on the software site and will in particular
study the confidence intervals and the bootstrap models for this model.

The MLE F̂n can be very simply computed by computing the left derivative of the greatest convex
minorant of the cusum diagram, formed by the point (0, 0) and the pointsi, i∑

j=1

∆j

 , i = 1, . . . , n,

and the SMLE is of the form

F̃n,h(t) =

∫ {
IK

(
t− x
h

)
+ IK

(
t+ x− 2a

h

)
− IK

(
2b− t− x

h

)}
dF̂n(x), (5.1)

where h is the chosen bandwidth and IK is the integrated kernel, defined by (2.10) (see also (2.9)), if the
observations are concentrated on the interval [a, b].

5.1. Xcode and Microsoft Visual C++ programs for simulations of confidence intervals,
based on the SMLE, using the naive bootstrap.

We start by considering a simulation study for the model where the Xi are generated by the truncated
exponential distribution with density

f(x) =
e−x

1− e−2
, x ∈ [0, 2],

and where the observation times Ti are generated by the uniform density on [0, 2]. Here we can compute
confidence intervals for the SMLE in a similar way as we did in the computing risk model, and a typical
picture of what we get in this case is given in Figure 6. The confidence intervals are constructed using the
scaling by an estimate of the variance at the point t (neglecting the factor g(t)2 in the denominator):

Sn(t)2 = n−2
n∑
i=1

{Kh(t− Ti)−Kh(t+ Ti − 2a)−Kh(2b− t− Ti)}2
(

∆i − F̂n(Ti)
)2
, (5.2)
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Fig 5: 95% confidence intervals for the subdistribution functions for the group infected with type B (Figure
(a)), with type E (Figure (b)) and remaining group (Figure (c)) in the Bangkok cohort data.

with the corresponding estimate for the bootstrap samples, see (9.76) in Groeneboom and Jongbloed (2014).
Here Kh(u) = h−1K(u/h) and K is the usual symmetric kernel for density estimation with support

[−1, 1], for example the Triweight kernel (which is the one we use). Note that, although the SMLE is de-
fined by the integrated kernel IK, the variance is defined by using its derivative K. The estimate follows
from an integration by parts argument from the definition of the SMLE (5.1). The same procedure was
followed in the competing risk model. Simulation experiments for this model are reported in part (C) of
Section 9.5 of Groeneboom and Jongbloed (2014) and can be reproduced by using the terminal application
curstat_bootstrap_simulation for Mac or curstat.exe for Windows, which are contained in the directo-
ries curstat_bootstrap_simulations_Mac and curstat_bootstrap_simulations_Windows, respectively,
or by compiling the Xcode or Microsoft Visual C++ 2013 project, also contained in these directories, and
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Fig 6: 95% confidence intervals for the distribution function F0(x) = {1−e−x}/{1−e−2}, x ∈ [0, 2], based on
1000 bootstrap samples drawn with replacement from a sample (T1,∆1), . . . , (Tn,∆n) in the current model
discussed in the text, where n = 1000. The (red) dashed curve is the real underlying truncated exponential
distribution function and the smooth blue curve is the SMLE, based on the original sample. The piecewise
constant curve is the MLE in the original sample.

running the application from the project. The simulations for 1000 samples, with 1000 bootstrap samples
from each sample, take about 2 hours on my Mac and about 5 hours on my Windows laptop, although the
C++ code is the same. For generating the simulation samples, the Mersenne twister is used. For this we use
the input file <random>, which is part of C++11, but which unfortunately still cannot be used in Rcpp.

For each generated original sample in the outer iterations (the 1000 bootstrap samples constituting the
inner iteration loop), the number of the iteration, the value of the real underlying distribution function at
t = 1, the SMLE at t = 1, the lower 2.5% and upper 97.5% values using the corresponding 1000 bootstrap
samples, and the growing number of non-covered values of F0(1) is printed in the terminal window (in this
order).

Analogously to the competing risk model, an alternative is to generate bootstrap samples from the SMLE
F̃nh, by leaving the observation times fixed and generating the indicators ∆∗i as Bernoulli random variables,
with succes probability F̃nh(Ti), as is done in Sen and Xu (2015).

5.2. R script for simulations of confidence intervals, based on the SMLE, using the naive
bootstrap and bias correction

We took the 99 equidistant points 0.02, 0.04, . . . , 1.98 in the interval (0, 2), and computed the 95% confidence
intervals at each of these points via[

F̃nh(t)− βh(t)− U∗1−α/2(t)Sn(t), F̃nh(t)− βh(t)− U∗α/2(t)Sn(t)
]
, (5.3)
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where Sn(t) is given by (5.2), see formula (9.78) in Groeneboom and Jongbloed (2014), and where the real
bias is in second order:

βh(t) =



−
h2e−t

∫
u2K(u) du

2
{

1− e−2
} , t ∈ [h, 2− h],

−
h2e−t

{∫
u2K(u) du− 2

∫ 1

v
(u− v)2K(u) du

}
2
{

1− e−2
} , v =

t

h
, t ∈ [0, h),

−
h2e−t

{∫
u2K(u) du− 2

∫ 1

v
(u− v)2K(u) du

}
2
{

1− e−2
} , v =

2− t
h

, t ∈ (2− h, 2],

see pp. 271 and 272 of Groeneboom and Jongbloed (2014). Evaluating the integrals, we get:

βh(t) =



− h2e−t

18
{

1− e−2
} , t ∈ [h, 2− h],

−
h2e−t

{
35v/64− v2 + 35v3/48− 7v5/32 + v7/16− 5v9/576

}
2
{

1− e−2
} , v =

t

h
, t ∈ [0, h),

−
h2e−t

{
35v/64− v2 + 35v3/48− 7v5/32 + v7/16− 5v9/576

}
2
{

1− e−2
} , v =

2− t
h

, t ∈ (2− h, 2],

Moreover, U∗α(t) is the αth percentile of the 1000 values:

Z∗n,h(t)

=
F̃ ∗nh(t)− F̃nh(t)√

n−2
∑n
i=1 {Kh(t− T ∗i )−Kh(t+ T ∗i )−Kh(4− t− T ∗i )}2

(
∆i − F̂ ∗n(T ∗i )

)2 , (5.4)

where F̂ ∗n is the ordinary MLE (not the SMLE!) of the bootstrap sample (T ∗1 ,∆
∗
1), . . . , (T ∗n ,∆

∗
n).

The bootstrap confidence interval is inspired by the (non-trivial) fact that the SMLE is asymptotically
equivalent to the toy estimator (“toy” because we cannot use it in practice, since we know neither F0 nor g):

F toynh (t) =

∫
{IKh(t− u) + IKh(t+ u)− IKh(4− t− u)} dF0(u)

+
1

n

n∑
i=1

{Kh(t− Ti)−Kh(t+ Ti)−Kh(4− t− Ti)} {∆i − F0(Ti)}
g(Ti)

,

see (11.53) in Groeneboom and Jongbloed (2014), which has sample variance

Sn(t)2 =
1

n2

n∑
i=1

{Kh(t− Ti)−Kh(t+ Ti)−Kh(4− t− Ti)}2 {∆i − F0(Ti)}2

g(Ti)2
,

and also by Theorem 11.10 in Groeneboom and Jongbloed (2014), which tells us that, if h ∼ cn−1/5, under
the conditions of that theorem, for each t ∈ (0, 2),

n2/5
{
F̃nh(t)− F0(t)

}
D−→ N

(
µ, σ2

)
, n→∞,

where
µ = 1

2c
2f ′0(t)

∫
u2K(u) du

and
σ2 =

F0(t){1− F0(t)}
cg(t)

∫
K(u)2 du,

Of course, in real life we do not have the expression for the real bias in second order, but it is of interest to
see how the confidence intervals turn out to be, if we use the bootstrap procedure with this bias correction.
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Fig 7: Truncated exponentials. Proportion of times that F0(ti), ti = 0.02, 0.04, . . . is not in the CI’s in
1000 samples (T1,∆1) . . . , (Tn,∆n), using the bias corrected confidence intervals and the SMLE bootstrap
confidence intervals. The red line represents the function y = 0.05.

It turns out that if we use the exact second order expression for the bias, the confidence intervals give an
excellent coverage, in fact, a better coverage than any of the other methods we tried.

A picture of the graph of misclassifications if given in Figure 7. This picture can be reproduced by using
the Rcpp script CI_SMLEcurstat.R. The script can be found in the directory CI_SMLE_simulation and uses
the C++ file curstat_bootstrapSMLE.cpp. However, it takes about two hours on my laptop, so it is typically
something to be done at night or in the background of other activities. The latter method can be used when
the script is run in RStudio. Also shown are the outer iterations, in which the original sample is generated
and the confidence interval is computed by taking 1000 bootstrap samples (the inner iterations). The upper
and lower bounds of the confidence interval are shown and also a counter, counting the number of times
F0(1) is not in the corresponding interval. At the end of the 1000 outer iterations one gets a number that
usually is slightly above or below the intended number 50. One can also run the script directly in R, but
in my experience with the GUI application on Mac OS X, the iterations are shown in a somewhat erratic
(“chunky") way, and it is also more difficult to let it run in the background than it was using RStudio.

The real challenge here is to find a good estimate of the bias, a problem that still has not been solved. An
alternative is to use undersmoothing, for example using the bandwidth 2n−1/4, see the discussion on page
272 of Groeneboom and Jongbloed (2014).

5.3. R script for simulations of confidence intervals, based on the MLE, using bootstrapping
from the SMLE

It is argued in Sen and Xu (2015) that the bootstrap, where the MLE is recomputed in samples from the MLE
in the orignal sample, will fail to produce consistent confidence intervals. Similarly, it follows by arguments
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analogous to the arguments in Kosorok (2008) that the classical bootstrap, where samples with replacement
are drawn from the original sample (T1,∆1), . . . , (Tn,∆n) cannot be expected to be consistent.

However, Sen and Xu (2015) show that if F0 and the observation distribution function G are continuously
differentiable at an interior point t0, with derivatives f0(t0) > 0 and g(t0) > 0, respectively, and if Fn is an
estimator such that

lim
n→∞

sup
x
|Fn(x)− F0(x)| = 0, (5.5)

almost surely, and if, uniformly for t in bounded intervals,

lim
n→∞

∣∣∣Fn(t0 + n−1/3t)− Fn(t0)− n−1/3f0(t0)t
∣∣∣ = 0, (5.6)

almost surely, then, conditionally on the data, the distribution of n1/3{F̂ ∗n(t0) − F0(t0)}, where F̂ ∗n is the
MLE of F0, based on a sample (T1,∆

∗
1), . . . , (Tn,∆

∗
n), and ∆∗i is a Bernoulli variable with success probability

Fn(Ti), converges, almost surely, weakly to the same limit distribution as n1/3{F̂n(t0) − F0(t0)}, where F̂n
is the MLE in the original sample. In particular, we can take Fn equal to the SMLE, and get consistent
confidence intervals in this way. An attractive feature of this procedure is that we keep the observation times
Ti fixed and equal to the original observation times, and only resample the ∆∗i .

The SMLE F̃nh has the derivative

f̃nh(t) =

∫
{Kh(t− x) +Kh(t+ x− 2a) +Kh(2b− t− x)} dF̂n(x), (5.7)

see (5.1), which is similar to a kernel density estimate with the Schuster boundary correction at the left
and right endpoints a and b, respectively, where the MLE F̂n replaces the empirical distribution function
Fn. It is clear that the SMLE will therefore satisfy (5.5) and (5.6), under the appropriate conditions for the
bandwidth h and the underlying distribution functions, further discussed in Sen and Xu (2015).

Considering the model with the truncated exponential on [0, 2] again, as in the preceding subsection, we
take the SMLE F̃nh, with h = 2n−1/5. We generate 1000 samples (T1,∆1), . . . , (Tn,∆n) of size n = 1000
from the truncated exponential distribution F0 on [0, 2] and the Uniform(0, 2) distribution as observation
distribution. For each of these 1000 samples we compute the MLE F̂n and SMLE F̃nh, where the chosen band-
width is h = 2n−1/5, and generate 1000 bootstrap samples (T1,∆

∗
1), . . . , (Tn,∆

∗
n), where ∆∗i is a Bernoulli

variable with success probability F̃nh(Ti). For the 1000 bootstrap samples we determine the 2.5th and 97.5th
percentiles U∗α/2(t) and U∗1−α/2(t), α = 0.05, of the values

F̂ ∗n(t)− F̃nh(t), t = 0.02, 0.04, . . . , 1.98,

where F̂ ∗n(t) is the MLE of the bootstrap sample. The 95% confidence interval for F0(t) is then given by:[
F̂n(t)− U∗0.975(t), F̂n(t)− U∗0.025(t)

]
,

where F̂n is the MLE of the original sample. A picture of the confidence intervals is shown in Figure 8. Note
the pronounced non-monotonicity which is caused by the fact that the downward trend, introduced by the
percentiles U∗α(t) (as a function of t), is not sufficiently compensated by the upward trend of the SMLE on
flat pieces of the MLE F̂n.

Pictures of the proportion of non-coverages of the real value of the distribution in 1000 samples, comparable
to Figure 7, are shown in Figure 9. The coverage is off at the boundary but rather well on target on the
interval [0.2, 1.6]. The pictures can be reproduced by running the R script CI_Sen_Xu_curstat.R in the
directory CI_Sen_Xu_simulation, which, in turn, belongs to the directory Confidence Intervals (current
status simulations). It takes about three minutes on my laptop.
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Fig 8: Sen-Xu confidence intervals for the (truncated exponential) distribution function F0, based on a
sample of 1000 observations (Ti,∆i), where Ti is Uniform(0, 2). The intervals are based on 1000 (smooth)
bootstrap samples of indicators ∆∗i , using the SMLE (red curve) of the original sample. The dashed curve is
the truncated exponential distribution function.
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Fig 9: Sen-Xu confidence intervals. Proportion of times that F0(ti), ti = 0.02, 0.04, . . . is not in the CI’s in
1000 samples (T1,∆1) . . . , (Tn,∆n); (a): on the interval [0, 2], (b): on the interval [0.2, 1.6].
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5.4. R script for simulations of confidence intervals, based on the LR test for the MLE

The LR test based intervals of Banerjee and Wellner (2001, 2005) are based on inverting the acceptance
region of the LR test for the null hypothesis F0(t0) = θ and use the fact that, as n→∞,

2n

{∫ {
δ log F̂n(t) + (1− δ) log

(
1− F̂n(t)

)}
dGn(t)

−
∫ {

δ log F̂ (0)
n (t) + (1− δ) log

(
1− F̂ (0)

n (t)
)}

dGn(t)

}
D−→ D,

where F̂n and F̂ (0)
n are the nonrestricted MLE and the MLE restricted by the null hypothesis F0(t0) = θ,

respectively, and D has a distribution, characterized in Banerjee and Wellner (2001) (see Theorem 2.5 in
that paper). No analytic information is available for the distribution of D. However, the 95% percentile of
the distribution of D was determined by simulation to be approximately 2.26916

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig 10: Banerjee-Wellner confidence intervals for the (truncated exponential) distribution function F0, based
on a sample of 1000 observations (Ti,∆i), where Ti is Uniform(0, 2). The intervals are based on 1000 (smooth)
bootstrap samples of indicators ∆∗i . The dashed curve is the truncated exponential distribution function.

Pictures of the proportion of non-coverages of the real value of the distribution in 1000 samples, comparable
to Figure 7, are shown in Figure 11. The coverage is again somewhat off at the boundary, but less so than
the Sen-Xu intervals. However, note that the bias-corrected confidence intervals based on the SMLE are also
well-behaved at the boundary.

The pictures can be reproduced by running the R script CI_Banerjee_Wellner_curstat.R in the directory
CI_Banerjee_Wellner_simulation, which, in turn, belongs to the directory Confidence Intervals (current
status simulations). It takes about 35 minutes on my laptop.
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I want to thank Richard Gill for testing several Rcpp algorithms on Mac, Windows and Linux. Harold
Hvistendahl tested the original C++ program for bootstrapping on Windows (where it seemed to work fine)
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Fig 11: Proportion of times that F0(ti), ti = 0.02, 0.04, . . . is not in the CI’s in 1000 samples
(T1,∆1) . . . , (Tn,∆n) for the Banerjee-Wellner intervals.

and the original Rcpp version of this (which first crashed in all environments). He also added some text
to the output, which seemed a good idea. Dimitri Tischenko spotted a bug in the first Rcpp version, using
Valgrind. After repairing this bug, we did not experience crashes any more. Frank van der Meulen tested the
GUI application on his MacBook Pro with system 10.10. Bodhi Sen elucidated a point in his paper Sen and
Xu (2015) to me. I feel very grateful for their contributions.
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