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INTRODUCTION

The following notes are lecture notes of a summer course given at Stanford University,
Department of Statistics, in the summer of 1990. An attempt is made to develop theory for
nonparametric maximum likelihood estimators (NPMLE’s) for the distribution function in
certain inverse problems.

The first chapter deals with the interval censoring problem. In this case one only has
information about an interval to which the variable of interest belongs, a situation quite
common in medical research. The classical approach (see, e.g., Turnbull (1974)) is to use
the EM-algorithm. This is shown to correspond to the so-called “self-consistency equa-
tions” for the NPMLE. These equations yield necessary but not sufficient conditions for

‘the characterization of the NPMLE and have (so far) not been very useful in developing
distribution theory. For this reason we turn to another approach, based on isotonic regres-
sion theory, which gives necessary and sufficient conditions. Moreover, it yields efficient
algorithms and also leads to distribution theory, to be developed in Chapter 5.

The second chapter follows a similar path as the first chapter, but this time for decon-
volution problems. Chapter 3 discusses algorithms and in chapter 4 consistency is proved
for the NPMLE in all situations discussed in the preceding chapters. Chapter 5 deals with

. distribution theory and discusses open problems and conjectures.

I want to thank Persi Diaconis, Iain Johnstone and David Siegmund for providing the
opportunity of doing the present work in the pleasant surroundings of Stanford University
and for their helpful comments during the summer course.
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1. THE INTERVAL CENSORING PROBLEM

1.1. Characterization of the non-parametric maximum likelihood estimators.

We will study the following two cases of interval censoring.

Case 1. Let (X1,T1),-..,(Xn,Tn) be a sample of random variables in IRZ, where X; and
T; are independent (nonnegative) random variables with continuous distribution functions
Fy and G, respectively. The only observations which are available are T; (“observation
time”) and §; = {X; < T;}. Here and (often) in the sequel we will denote the indicator of
an event A (such as {X; < T;}) just by A, instead of 14. The log likelihood for Fp is given
by the function

(1.1) F > {bilog F(Ti) + (1 - 6)log(1 — F(T))) },

=1
where F' is a right-continuous distribution function.

Case 2. Let (X1,T1,U1),...,(Xn, Tn,Ur) be a sample of random variables in JRS , where
X is a (nonnegative) random variable with continuous distribution function Fp, and where
T; and U; are (nonnegative) random variables, independent of X;, with a joint continuous
distribution function H and such that T; < U; with probability one. The only observations
which are available are (T;,U;) (the “observation times”) and §; = {X; < T3}, vi = {X: €
(T3, Ui]}. In this case the log likelihood for Fjp is given by the function

(1.2) F Z {6; log F(T) 4+ i log(F(U,-) - F(T,)) +(1=6i —vi) log(l - F(U.))} .

=1

' The second case of interval censoring is related to “double censoring”, which is studied
e.g., in Chang (1990), but the important difference is that with interval censoring the value
of X; is unknown, even if we know that T; < X; < U;, whereas in the case of double
censoring the value of X; is known if T; < X; < U;. The remaining parts of the models
for double censoring and for interval censoring, case 2, are the same.

We first study the likelihood equations for interval censoring, case 1. The log likeli-
hood, divided by n, can be written in the following way:

(1.3) P(F) d=ef_/m {1{z<) log F(t) + 1{z>1) log{1 — F(t)}} dPu(z, 1),

where P, is the empirical probability measure of the pairs (X;,T;),1 < ¢ < n. The
nonparametric mazimum likelihood estimator (NPMLE) F), of F is a (right-continuous)
distribution function F', maximizing (1.3).



Remark 1.1. Note that only the values of F}, at the observation points T; matter for the
maximization problem. To avoid trivialities, we will take as “the” NPMLE a distribution
function which is piecewise constant, and only has jumps at the observation points T;. It
may happen that the likelihood function is maximized by a function F' such that F(T;) < 1,
for each T;. In this case we do not specify the location of the remaining mass to the right of
the biggest observation point 7;. We shall show that, under these conventions, the NPMLE
is uniquely determined, both in case 1 and case 2 of the interval censoring problem.

First we give the usual characterization of the NPMLE in terms of the so-called self-

consistency equations. This characterization is used by Turnbull (1974) who attributes the
concept to Efron (1967). Let, for each t € IR, the function 4, : IR — IR be defined by

(1.4) Ae(u) = { F(uAt)/F(t) — F(u), if F(t)>0,u€ R,

where u At = min{u,t}. Differentiating the function % in the direction A, yields:

P(F + hAy) — Y(F)

(1.5) i h -
2 / {1 F(uA)/F() = F(w) _, _ F(uAt)/F() —-F(u)} 2o
R2 {z<u} F(U) {z>u} 1 - F(U) n(T,U).

If F is the NPMLE, then (1.5) should equal zero, for each t. So we get for the NPMLE
F, the equation:

N EF.(unt E@)—F,(unt
Fn(t) = Lz {l{zsu}_':(—_) + 1{z>u} n( ) S ( )} dPn(x, u).

Fa(u) 1— Fa(u)
A nicer way of writing this equation is:
(1.6) Fo(t) = Eg {Fu(t)|Th,...,Tn,61,...,6a},

where F, is the (unobservable) empirical distribution function of the random variables
X1,...,Xn. So Fy(t) is the conditional expectation of the empirical distribution function
F, at t, given the available information Ti,...,Tn,61,...,6s, under the (self-induced)
probability measure Pr . We will see in Chapter 3 that the fixed point equation (1.6)
immediately yields the iteration steps of the EM algorithm. We note in passing here that
the “self-consistency equation” (1.6) does not uniquely determine the NPMLE F,, even
under the conventions of Remark 1.1.

We now want to give a different characterization of the NPMLE, using concepts from
the theory of isotonic regression. For this, some notation is needed. Let T(;y be the it* order
statistic of T3,...,Ty, and let 6(,-) be the corresponding indicator, i.e., if T; = T{;y, then
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iy = 1yx;<1;}- The NPMLE corresponds to a vector § = (y1,...,Yn) € IR", maximizing
the function

n

(1.7) $(&)=>_ {6 logzi+ (1—6u)log(1 —2:)}, & € R™,

=1
under the side condition
(1.8) 0Lz 8Lz, L 1.

Note that if ;) = 0,7 = 1,...,k, the §, maximizing (1.7) should satisfy y; = --- = yx =0,
since this makes the corresponding second term in the sum (1.7) as big as possible and puts
no additional constraints on the values of y;, for ¢ > k. Likewise, if ;) = 1, 7 < ¢ < n, the
¥, maximizing (1.7) should satisfy y; = -+ = yp = L.

So in the maximization problem we may assume without loss of generality that ;) =1
and é(n) = 0. We then can also assume without loss of generality that y; > 0 and y, < 1,
if § maximizes (1.7), since otherwise we would have ¢(§) = —oo.

The following proposition gives necessary and sufficient conditions for § to be a vector,
maximizing (1.7), under the constraint (1.8) and the just mentioned restrictions.

PROPOSITION 1.1. Let é1) = 1 and é(n) = 0, and let § = (yl, ees ,y,,) satisfy (1.8), with
z; replaced by y;. Then § maximizes (1.7) if and only if

6y 1—é(;
(1.9) Z{ () _ (’)} <0,i=1,...,n,

Silyi 1-y;

and

=~ [bwy 1-6G) }
1.10 . - § =
( ) z { Yi 1—y; y

=1

Moreover, § is uniquely determined by (1.9) and (1.10).

PROOF: First suppose that § satisfies (1.9) and (1.10). Since we may assume y; > 0 and
Yn < 1, all terms in (1.9) are finite. The function ¢ is concave, so if = satisfies (1.8), we
get

(1.11) ¢(2) — ¢(¥) < (Ve(9),Z - ),
where V¢(7) is the vector of partial derivatives

Vé(§) = (5(1) _l1-d by 1-dw
v 1=y’ T yn 1-yn )7

3



Furthermore, (Vé(%),¥) = 0, if § satisfies (1.10).
Now note that each Z, satisfying (1.8), can be written in the following form

(1'12) = Za;i,’,
i=1

where a; = Tn_i41 — Tn—i, 1; is a vector which has 1’s as its last ¢ components and zeros

as its first n — ¢ components, and where z, . Hence, if T satisfies (1.8), we get

(V9(7), 2 ~ §) = (V9(9), 8) = 3 s(V(9), 1)
N b6G) 1—6¢)
—Za'z{ yi  1-y; }SO'

i=1  j>i

(1.13)

Thus § maximizes (1.7).

Conversely, suppose that § maximizes (1.7) under the constraint (1.8). f 0 < € <
1 — yn, the vector § + €l; satisfies (1.8), for each 7, 1 < i < n (here we use y, < 1). Since
¥ maximizes (1.7) we must have:

1) — o(7 6y 1—6(
i 8 + €l) ¢(y)=z{ G (J)}So’lsisn_

This yields (1.9).
Again using y; > 0 and y, < 1, we obtain (1.10) by observing that

L S+ h) = 9(5) _
h—0 h

0,

since otherwise we could find an h close to zero such that ¢((1 +h)3’]) > &(¥), while (1+h)y
still satisfies (1.8).

Since ¢ is concave and, moreover, the (diagonal) matrix of second derivatives is non-
singular at g, it follows that the vector §, satisfying (1.9) and (1.10), is the unique maxi-
mizing vector. ] .

Remark 1.2. Proposition 1.1 is actually a special case of Fenchel’s duality theorem, see
e.g., Rockafellar (1970), Theorem 31.4. Since things simplify somewhat in the present
setting, we chose to write down a proof of this special case.

Example 1.1. Let n = 5, §) = §;3) = é4) = 1, and é(2) = é(sy = 0. Then the vector ,
maximizing (1.7) is given by



Note that ym, 1 < m <5, is given by

— max min Ei<j<k 6(5)
Ym = i<mk>m k—i14+1
This is the so-called “max-min formula” for the solution of the maximization problem.
The solution can be found graphically by plotting the points (¢, j<i é¢;)) in the
plane, and drawing the (greatest) convezr minorant of these points on the interval [0, 5].
The convex minorant is defined as the function H* : [0,5] — IR such that

H*(t)=sup{H(t): H(z) < Zé(j), for each 1,0 < ¢ <5, and H : [0,n] — IR is convex},
j<i

for t € [0, 5], where Ej«é(j) gef 0, if 2 = 0. Then y; is the left derivative of H* at ¢, for
1=1,...,5. B

The next proposition shows that the representation of ¥, given in Example 1.5, holds
generally.

PROPOSITION 1.2. Let H* be the convex minorant of the points (i,zj« é¢jy) on [0,7],
ie., -

H*(t) =sup{H(t): H(i) < Z d(j), for each i, 0 < i < n, and H : [0,n] — IR is convex},
i<i

for t € [0,n]. Moreover, let y; be the left derivative of H* at i. Then § = (y1,...,Yn) is
the unique vector maximizing (1.7) under the constraint (1.8).

Remark 1.3. Note that in Proposition 1.2 (in contrast to Proposition 1.1) no restriction
is made on §(;) and 6(y). '

PROOF OF PROPOSITION 1.2: We start by first looking at some special (trivial) cases. If
6(1) = 0, for each i, then H*(t) = 0, and hence y; = 0, for each i. If §(:) = 1, for each 1,
then H*(t) =t, t € [0,n], and hence y; = 1, for each i. Finally, if §;) =0,1 <i <k and
by =1,k <i<n,forsomek<n,theny;=0,1<i<kandy;=1,k<i<n ltis
clear that in all these cases § maximizes (1.7).

So we suppose that there is at least one é(;y = 1, followed by a 6(j) = 0, for some j > 1.
Let ko be the smallest index ¢ such that ;) = 1, and let mq be the largest index i such
that é(;;) = 0. Then y; =0, if 2 < ko, yi € (0,1), if ko <7 < mop, and y; =1, if i > my. Let
k1 be the largest index k > ko such that

Eko<j<k 6(j) . Zko<j<m 4(j)
——="————— = min .
k— ko m>ko m — kO

5



Then
_ Zko<j<k1 b(5)

yi=yko—' k]"'ko 7kOSi<kla
and > 5
ko<j<k 90J) > i, k> ko.
k—ko
Hence we get, for each k, ko < k < k;:
Lrogick1=0¢) _ _ k—k 1 . _l-wk
ZkoSKk 8(j) 2ko$j<k b(5) " Yko Yk
implying
(1.14) 5(1) / 1-4G) — 1 — Yk 2ko<i<k(l = 8(i)) > 1
ko <J<k Yko [ 4, <1<k ~ Yko Yko Yko<i<k 6G)
Thus:
5 1-é) }
1.15 e >0,k <k<k.
(1.15) Z { Yko l—WkoJ = " !

ko <5<k

Kk=k, we obtain equality in (1.14) (and hence in (1.15)), since 3, <<k, 8() / (k1—ko)
is equal to yx,. B
We can now repeat this argument for indices ¢ > ki: by definition

= max min Ei<j<k 26)
Y& i<k  k>ky k—i141 °

Suppose k3 is the largest index k such that

Dok <i<k0G) . 2i<i<m 00)
————— = IlaX I ————
k—kl i<kym>k; m—1+1

Then we have, for k1 < k < kg

Zk1<j<k(1 §i)  k—k 1 1 —yx,
-1 —-1=—,
Ek15j<k 6(j) Ek,<1<k () Yk, Yk,
implying
6¢; 1—6¢;
(1.16) 3 { 0 _1 u)} >0,k < k < ks,
k1$]<k Yk, - yh ~

(compare with (1.15)). If k = k3, we obtain equality in (1.16).

6



Generally we get for a “block” of consecutive indices km,...,km+1 — 1 on which the
function 7 — y; is constant:

Sy 1—6;
(1.17) S { A ‘{’} >0, km < k < ka1,
km<i<k & Y Y

with equality if £ = kp,41. Summing these (in)equalities over the successive blocks yields

) {5(1) _1—5(1)}=0
yi 1-y; ’

ko<j<mo+1

and, using (1.17):

Sy 1—&;
(1.18) 3 {(”— (’)}50,i=k0,...,m0.

iigmo VY 17
Moreover, since ¢ — y; is constant on blocks of consecutive indices k.,,...,km+1 — 1 and
b5y 1-—46¢
(1.19) ' 3 { D ({)} =0,
km Sj<km+1 yJ - yJ

on each block, we obtain

mo
b _1-d4a }
1.20 = Wby =0.
(1.20) ; { Yi 11—y v
=Ko
But (1.18) and (1.20) correspond to (1.9) and (1.10), with the index 1 replaced by ko and

the index n replaced by my.
The uniqueness of § now easily follows from Proposition 1.1. |

Proposition 1.2 shows that ¢ — y; is the isotonic regres.si'on of the function : + é(;) in
the class of all isotonic functions ¢ — z;, with respect to the simple ordering z; < --- < z,.
This means that the function 7 — y; minimizes

3 {80 — =),
=1

in the class of such isotonic functions : — z;, see, e.g., Theorem 1.2.1 on p. 7 of Robertson
et al. (1988), where the connection between the derivative of the convex minorant and the
solution of the isotonic regression problem is given. So we get that the NPMLE of Fy,
maximizing (1.1), is given by

Fo(Tw) = vi,

7



where 7 is the isotonic regression of the function i — 6(;).

We now turn to interval censoring, case 2. Again we have two approaches, either
based on the self-consistency equations or on the theory of isotonic regression. We start
by deriving the self-consistency equations. The argument is similar to the argument, used
to derive (1.5). The log likelihood, divided by n, can now be written in the following way:

(1.21) w(F) & / 5 (2,1, 1) dPa(z, t, ),
m3
where

¢F($,t, u) déf 1{=St} log F(t) -+ 1{t<z§u} log{F(u) - F(t)} + 1{z>u} log{l — F(u)},

and P, is the empirical probability measure of the triples (X;, T},U;), 1 <4 < n.
Defining, for ty € IR, the function A4,, : IR — IR by

_ {0, if F(t0)=0,t € R,
, Ato(t).._ { F(t/\to)/F(to) - F(t), ifF(to)>0,t€R,
we get:
i P+ hAw) = (F)
R0 h
F(t A to)/F(to) — F(t)

- [{rea ™

41 (F(u A to) — F(t Ato))/F(to) — (F(u) — F(t))
frexss) F(u) ~ F(1)
1y AFEA t°i/f(zf~?l))_ (1= F(w) } dPy(z,, ).

If F is the NPMLE, then this limit should be zero, for each #o. This leads to the following
equation for the NPMLE:

Fn(to)
| _/ Fu(t Ato) N Fo(u Ato) — Fo(t Ato)
(1.22) B8 @) e} ™ F (0) = Fu(?)
Fu(to) — Fa(u Ato)
+1liz>u = dP, z,t,u),
>0 (z,t,u)

which can also be written
(1.23) Fa(®)=Ep {Fa®) | T1,- .. Tn,Usye oo, Uny M1y e oy Yy 6150560 )

8



where F, is the empirical distribution function of the random variables Xi,...,X» (com-
pare with (1.6)). So, in analogy with (1.6), we get that Fy,(to) is the conditional ex-
pectation of the empirical distribution function Fy at o, given the available information
Ti,...,To,U1,...,Up and 71,...,9n,61,...,6n under the (self-induced) probability mea-
sure Py, . Equation (1.23) yields the iteration steps of the EM algorithm, as will be shown
in Chapter 3. Again the “self-consistency equation” (1.23) does not uniquely determine
the NPMLE F,,, even under the conventions of Remark 1.1.

We now turn to the isotonic regression approach. Let F be the class of distribution
functions F satisfying

F(T) >0 Jif X; < T,
(1.24) FU;)-F(T:) >0 T < X3 £ U5,
1-F({U;)>0 , if X; > Uy,

and having mass concentrated on the set of observation points augmented with an extra
point bigger than all observation points (see Remark 1.1). Note that if F' maximizes the
log likelihood (1.21), then F has to satisfy (1.24), since otherwise

$(F) = —oco.

For distribution functions F' € F, we define the process t — Wg(t) by
We(t) = / F(t') 'dPu(z,t',u)
t'efo,t], z <t
- [ (F(u) = F(#)} " dPa(a,t,w)
t'€lo,t], t'<z<u
(1.25) +f (F(u) = ()} dPa(,#,v)
u€l0,q, ' <z<u

_ / {1 = F(w)}~'dPa(z, ', ),
v€l0,4,z>u
fort > 0,

where P, is the empirical probability measure of the points (X;,T;,U;), : = 1,...,n. The
process Wr can only have a jump at an observation point ¢ which is either a T; or a Uj,
and is such that the corresponding X; either belongs to the interval to the right or to the
interval to the left of this observation point. If, for example, X; < T;, then we will meet
no terms of the form

1 1
n(FO)-FT) . n(-FU)

in the process (1.25). This corresponds to the fact that there will be no terms of the form

log{ F(U;) — F(Ty)} or log{1 - F(U:)}



in the log likelihood function. Likewise, if {X; > U;}, we will meet no terms of the form

1 1
nF(T) O n(FUi) - F(T)

in the process (1.25).

So we can “throw away” these irrelevant observation points. For later convenience, we
will denote this “thinned” set of observation points by J,, as is expressed by the following
definition.

DEFINITION 1.1. Let JS be the set of observation times T; such that X; either belongs
to [0, T3] or to (T;, U], and let J$? be the set of observation times U; such that X; either
belongs to (T;,U;] or to (U;,00). Furthermore, let J, = ,(11) U J,(f), and let T(;y be the jth
order statistic of the set J,.

In the maximization problem we may assume, without loss of generality, that T(;)
corresponds to an observation point T; such that {X; < T;} = 1, and, similarly, we may
assume that the largest order statistic in Jp,, say T(m), corresponds to an observation point
U; such that {X; > U;} = 1. The reasons for this are similar to those discussed before
Proposition 1.1. If, for example, T(;) would correspond to an observation point T; such
that {T; < X; < U;} = 1, the distribution function F, maximizing (1.21), should satisfy
F(Tq)) = 0, since this makes the term n~! log{ F(U;) — F(T;)} as big as possible, without
putting additional constraints on F. Similarly, if, for example, the largest order statistic
T(m) € Jrn would correspond to an observation time U; such that {T: < X; £ U;} =1, then
the maximizing F should satisfy F(U;) = 1. In this case we can redefine the observation
time T; to be a right endpoint U! of an interval such that {X; > U/} = 1. Since the
left endpoint of such an interval would not belong to the set Jn, we get an equivalent
maximization problem, with the left endpoint T; replaced by a right endpoint U. Finally,
if the largest order statistic T(m) € Jn Would correspond to an observation time T; such
that {X; < T;} = 1, then the maximizing F satisfies F(T(m)) = 1, and we can just remove
this observation point from the set J,,, without altering the maximization problem.

We now get the following proposition, analogous to Proposition 1.1.

PROPOSITION 1.3. Let T}y correspond to an observation point T; such that {X; < T;} =1,
and let the largest order statistic T(y) € Jn correspond to an observation point U; such

that {X; > U;} = 1. Then F,, maximizes (1.21) over all F € F if and only if

(1.26) / dWy () <0,  Vt>0,
[tvoo)

and

(1.27) | / Fo(t)dWy, (t) =0,

10



where Wy is defined by (1.24). Moreover, Fy, is uniquely determined by (1.26) and (1.27).

PROOF: Suppose F, satisfies (1.26) and (1.27). Then, for all F € F,

WF) = (B < [(F()— Falt) dW, ().

This is shown in a similar way as (1.11) in the proof of Proposition 1.1. In fact, defining
the function ¢ on the set

S={z€(0,1)":z=(F(Tu)),...,F(T(m))), for some F € F}

by
¢(5) = ¢(F), if z= (F(T(l))"”,F(T(m)))a

it is seen that the maximization problem boils down to the problem of maximizing ¢(Z)
over the set S. Moreover, if £ = (F(T(1)),...,F(T(m))), we have

0 . )
‘a;‘ﬁb(m) =Wp(Ts) - Wr(Ti-1),i=1,...,m,
where T{q) 0. Hence, if § = (1:",,(T(1)), ey f’n(i}m))), we get, since ¢ is concave

WF) = $(F2) = 8(2) - 8(0) < (V6(3), 5~ )
- [ - Fu) W, ) = [ PO aw,, o),

using (1.27) in the last equality. Since Z can be represented as
m
T = Z a;l;,
i=1

where a; and 1; are defined as in (1.12), we get

=1 =1

/F(t) dWﬁ"(t) = Za,‘(qu(ﬂ), i,) = Z a,-/ de‘,. (t) L0.
_ [T(iy,00)
Conversely, suppose that § = (I:",.(T(l)), - ,I:",,(T(m))) and that F, maximizes (1.21)
over F. Then

€l0 €

/ dWs (t)<0 ,1<i<m.
[T(m-i+1)y°°)

11



and

fim 20 hi) —90) _ / Fu(t)dWp (t) = 0.

h—0

Finally, we get by a Taylor expansion with a Lagrangian remainder term
8(2) — $(5) — (V(§), & — §)
= -3 (@) - BT X £ T}
,_1+ {F(Us) = F(T:) = (Ba(Us) — Fa(T) Y'{T: < Xi < UL}
+ (PO - FuT)) (X > U},

(1.28)

where p; > 0, 1 <: < n. If, for example {X,' < T,-} =1, then p; = 1/2?, where z; is a point
in the open interval with endpoints z; and y;, if z; # yi, and where z; = y;, if z; = y;. The
values I:",,(T(,-)) are “linked” to each other in terms of the form n™! log{ﬁ’n(U,-) - Fn(T;)}
and n~tlog{Fn(U;) — Fn(Tj)}, with Ui < Tj and Fo(U;) = Fo(T;) (see Exercise 7 and
Examples 1.2 and 1.3 below). Moreover, by (1.28) and the assumptions {X,' < T(l)} =1
and {X; > T(m)} = 1 for some indices i and j, we have F(T(1)) = Fn(T(1)) and F(T(m)) =
Fy(T(m)). From this it is easily checked that the right-hand side of (1.28) can only be zero
if F(T(;)) = F‘n(T(,-)), for : = 1,...,m. This proves the uniqueness. |

Example 1.2. Consider the following maximization problem. Maximize
#(z1,...,25) = logz1 + log(zs — z2) + log(1 — z3) + log(1 — x5),

under the restriction
0<z;<---<zs < 1.
This corresponds to an interval censoring problem, case 2, where n = 4 and
X1<T, T < Xy LU, X3 > Uiz, Xy > Uy,
Tay =T, T(z) = T2, T(sy = Us, T(4) = U2, and T(5) = Us.
Let ‘ A X
g = (yl, PP ,y5) = (Fn(T(l)), see ,Fn(T(5)))

Then (1.27) yields:
Y3 Ys

29— - =0,
l—ys 1—ys
and (1.26) yields:

-1 <o 1 1 o 4t 1 <y
1—ys Yys—Y%2 1-—ys l—ys ya—y2 1-ys
SRS S ML I SIS S|

l—ys 1-—ys y1i l—ys 1-—ys

12



These equations and inequalities are satisfied for

oojor

YyI=Yy2=yYs=13,yu=ys =

The following example shows that the solution vector may have irrational components.

Example 1.3. Consider maximizing
#(z1,...,212) =logz1 + log(zs — z2) + log(1 — z3) + log x5 + log(1 — z¢)
+ logzg + log(1l — z9) + log z10 + log(z11 — z7) + log(1 — z12),

under the restriction
0<z; £+ <72 < 1.

This would correspond to an interval censoring problem with n = 10 and
§i=1,ifi=147and0,
v =1, if : =2 and 6,
~i = 6; = 0, otherwise.
The set of (relevant) observation times is ordered as follows.
Ni<To<Us<U<Ty<Us<Te <T7 <Us <Tp < Us < Uso-
In this case the 'NPMLE'FA‘,, (with n = 10) and the maximizing vector § are given by
-3V3, 1<i<3,
) 4<:<9,
1+13V3 10<i<i2

FaTiy) =yi=

- DO RO

We will now give a characterization of the NPMLE as the left derivative of the convex
minorant of a cumulative sum diagram with “self-induced weights”. We start by introduc-
ing the processes on which this cumulative sum diagram is based.

Let the processes Gr and Vr be defined by

Gr(t) = / F(t)~2dPa(z,',u)
t'€fo,1], z<¢t!

+/ {F(u) - F(#')}~2dPu(z, t', u)
vefo,t],t'<z<u .

(1.29) + / {F(u) — F(#)}2dP,(z,t', u),
ue[o,t], t'<’$“

+/ {1~ F(u)}~2dPa(z, t',u),
uelovt]’z>u
for t > 0,

13



and

(1.30) Vr(t) = Wp(t) + /[0 ] F(t")dGp(t'), t > 0.

The following proposition characterizes the NPMLE F, as the slope of the convex
minorant of a self-induced cumulative sum diagram.

PROPOSITION 1.4. Let T(y) correspond to an observation point T; such that {X; < T;} =1,
and let the largest order statistic T(y,) € Jn correspond to an observation point U; such

that {X; > U} = 1. Then F, is the NPMLE of F, if and only if E}, is the left derivative

of the convex minorant of the “cumulative sum diagram”, consisting of the points

Pj= (GFn(T(j))’VFn(T(j))) ,

where Py = (0,0) and Ty € J», j = 1,2,...

PROOF: For simplicity of notation, we will write V,,, W,, and G, instead of Ve » Wi and
Gy, , respectively.

By definition, the left derivative h, of the convex minorant of the cumulative sum
diagram is given by
Vn(Ti) - Vn(Ti—l)
Gn(Ti) - Gn(Ti-l)

at the successive locations 7; of the vertices of the convex minorant of the cumulative sum
diagram. Moreover, defining T(¢y = 0 and

ha(Ti) =

AVn,i = Va(T() — Va(Tii-1y), and AGa,i = Gn(T(5)) — Ga(T(i-1)),
we have that k,, minimizes
: 2
> {h(T(-')) - “AA‘?—"} AGhn,s
Ty€dn Tt

over all nondecreasing functions h, such that A(0) = 0. This means by Theorem 1.5, p. 28
in Barlow et al. (1972) or Theorem 1.3.2 in Robertson et al. (1988) that

AV,
(1.31) > { o - h,,(:r(.-))} h(T) AGn: <0,
and

Av'n,i
(1.32) Z {AG,,,,- - hn(T(i))} ho(T(i))AGy,; =0,

14



for all nondecreasing h, such that h(0) = 0. But it is easily verified that (1.31) implies
(1.26) and that (1.32) implies (1 27), with F, replaced by k,,. Proposition 1.3 now implies
that A, is the N PMLE

Conversely, if F}, satisfies (1.26) and (1.27), then F, also satisfies (1.31) and (1.32),
with h, replaced by F),. This in turn implies that ), is the left derivative of the convex
minorant of the cumulative sum diagram. ]

We will see in Chapter 3 that Proposition 1.4 actually leads to an iterative convex
minorant algorithm for computing the NPMLE, which seems to converge much faster than
the EM algorithm.

Remark 1.4. We note that the “weight function” Gr could also be chosen in another
way, still yielding the same characterization of the NPMLE as the left derivative of the
convex minorant of a self-induced cumulative sum diagram. The particular choice of GF,
made here, is based on a second order expansion of the log likelihood function. We will
return to this point in Chapter 3.

1.2. Exercises.

1. Show that the value of the left derivative of the function H* in Proposition 1.2 is given
by

o . Dici<k 6t
h*(m) = max min ——=2=—,
i<mk>m k—1+4+1

2. Show that the following definitions of h* are equivalent to the definition, given in
Exercise 1: > P
h*(m) — min max i<j<k ()
k>mi<m k—i41

x - 2ici<k 84)
SR i

» Ei<j<k6(j) |
M= R i

3. Show that the functlon ¢, defined in Example 1.3, is maximized by taking

1 1 .
3 —5V3, 15133,
zi={ 3, 4<i<0,

1+3V3, 10<i<i2

4. Can condition (1.26) in Proposition 1.3 be replaced by the following condition?

(1.26*) Fa(u)dWy (u) <0, Vit>0.

h [t,OO)
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5. Can condition (1.27) in Proposition 1.3 be replaced by the following condition?

(1.27%) / dW;. (¢) = 0.

(The following exercise gives an alternative proof of Proposition 1.2.)

- 6. Let the function H : [0,n] — IR be defined by

(E.1) H(i)=) é;),1<i<n, HO)=0,
=1

where d(;) is defined as in Proposition 1.2, and where H is defined by linear interpolation
at values z € [0,n]\{0,...,n}. We want to maximize the expression

/ log y(z) dH (z) +/ log{1 —y(z)} d(z — H(z)),
[0,n] [0,n]

over all nondecreasing functions y : [0,n] — [0, 1], such that
(E.2) y(z)=y(),z€(i—-1,7],1<i<n,y(0)=0.
Let H* be the convex minorant of H on [0,n), i.e.,
H*(z) = max{f(z): f:[0,n] = IR is convex and f < H}, = € [0,n].
(a) Show that

E.3 logy(z)dH(z) < logy(z)dH*(z),

(E3) / £u(z) ‘)—/,,,] gy(z) dH*(z)

and

(E4) /[] log{1 — y(2)} d(z — H(z)) < /” log{1 - y(z)} d(z — H*()),

for all nondecreasing functions y : [0,n] — [0, 1}, satisfying (E.2) (defining 0-(—o0) =0,
a-(—o0) = —o0,if a>0).

(b) Let h* be the left derivative of H*. Show that
/ log h*(z) dH (<) + / log{1 — h*(z)} d(x — H(z))
[O,n] n

0,

’

= logh*(z)dH*(z lo .1—h"‘1: dlz — H*(z)).
/Mg () “*/[,,] g{1— h*(2)} d(z — H*(z))

(c) Show that

/[0 llog{h(w)/h*(x)} dH*(z) + /[ ]108{(1 - k(2))/(1 - }*(2)) }d(z - H*(=)) <0,

1

for each non-decreasing function & : [0,n] — [0,1].
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(d) Deduce Proposition 1.2 from (a), (b) and (c).
7. Show that the function ¢, defined by

$(2) = »(F), if £ = (F(T)),- -, F(T(m)))
in the proof of Proposition 1.3, is generally not sirictly concave. Show that one can
always make a preliminary reduction, “linking” components of the vector z, such that
we get a strictly concave function on a (convex subset of a) space of lower dimension.
For example, in Example 1.2, we can immediately make the following reduction:
Iy =T =23, T4 =2Ts5.
So in this case the function ¢ reduces to a function ¢ of two variables:

é(z1,z2) = logzy + log(z2 — z1) + log(1 — 1) + log(1 — z32).

The function ¢ is strictly concave on the set {(z1,z2):0 < z1 < 72 < 1}.

17



2. THE DECONVOLUTION PROBLEM

2.1. Decreasing densities and non-negative random variables.

We first consider the deconvolution problem in a model with non-negative random
variables and disturbances with a decreasing density. Formally, let Z,,...,Z, be a sample
from a distribution function H with density

(2.1) | h(z) = /g(z —z)dFo(z), z € R,

where ¢ is a decreasing density on [0, 00), and Fy an unknown distribution function, con-
centrated on [0, 00). For example, g could be the exponential density

g9(z) = e"llo,oo)(a:), z € R,

or the Uniform (0,1) density
g(:r) = 1[0,1](:1:), z € R.

An NPMLE of Fj is a distribution function, maximizing

(2.2) (F) = / log{ / g9(z — z) dF(a:)} dH(2),

as a function of F', where H, is the empirical distribution function of the sample Z,, ..., Z,.
In order to define the self-consistency equations, we proceed as before. Defining the
direction A; as in (1.4), we find

. O(F + hAy) — o(F) J 9(z — z) dA«(x)
(2.3) Ii,‘ﬁ} : = T 9(s —2)dF (=) dHn(z).

Putting (2.3) equal to zero yields the following equation for the NPMLE F:

Fut) = / LI

J9(z—1z) dﬁ',.(z)

=nT' Y Pp {Xi<t|Z,..., 20}

=1

(2.4)

Letting Z; = X; + Y;, where Xi,...,X, and Y3,...,Y, are independent samples from
distributions with distribution function Fy and density g, respectively, we can write (2.4)
as

(2.5) Fu(t)= Ep {Fa(t) | Z1,...,2n},
where F), is the empirical distribution function of Xi,...,X,. So we again get a self-

consistency equation, similar to (1.6) (again not uniquely determining I:",,)
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Turning to the isotonic regression approach, we first note that we may assume that
a distribution function F, maximizing (2.2), is a discrete distribution function, with mass
concentrated at the points Z,,...,Z,. Let Z(y),...,Z(n) be the order statistics of the
sample Z1,...,Z,. Then we may also assume that the maximizing F satisfies F((Z(1)) > 0
and F(Z(n)) = 1 (see Exercise 1 of this chapter). In analogy with (1.25), we introduce a
process t — Wrp(t), defined by

(2.6) We(t)= > AWr(Z),
Za<t

where

_ [ 9(z = Z) = 9(2 = Ziivny)

9(z — Z(r)) N
T9Gz =2y dF() )

dHp(z),1<i<n,
(2.7)
AWFr(Z(n)) =

Let F be the class of discrete distribution functions, with masses concentrated at the
points Z1,...,Z,, and satisfying F(Z(;)) > 0. We get the following proposition, analogous
to Proposition 1.3.

PROPOSITION 2.1. The distribution function F,, € F maximizes (2.2) over F if and only
if

(2.8) [ w20 wexo
0,

and

(29) JiE0 -1y aws =0,

where W is defined by (2.6). Moreover, F,, € F is uniquely determined by (2.8) and
(2.9).

PROOF: We proceed in a similar way as in the proof of Proposition 1.3. Define the function

¢ on the set

S= {5:6 [0,1)"*:z2 = (l—F(Z(n)),...,l—F(Z(l))), for someFEf}

oE)=9%(F), f Zi=1- F(Z(n-is1)), 1 <1 < n.
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Then 5
5;¢(5) = _AWF(Z(n—i-i-l))a t=1,...,n,

where AWp(Z;)) is defined by (2.7). Note that ¢ is well defined, since, by definition,
F(Zyy)>0,iff Fe F.
Hence, if § = (1 - Fn(Z(n)), e, 11— I:",,(Z(l))), we get, since ¢ is concave

Y(F) — $(Fn) = §(2) — ¢(§) < (V(§),Z —§)
= [{a-£) - G- F@)} W, (0= - [(1- F) dwg, 0 <0,

using (2.9) in the last equality, and (2.8) in the last inequality. The remaining part of the
proof is analogous to the proof of Proposition 1.3, except for the proof of the uniqueness.
For the proof of the uniqueness, let A be the matrix of second derivatives of the
function ¢ at #, where = (1 — F(Z(n)),...,1 — F(Z())), for some F € F.
Then we get, if & € IR™:

(2.10) @At = -1 B aijtn-inn )’
=1

i<i
where .
8 = [ 926 - =) dF (@),
aji = aij = 9(Zj) — Z¢)) — 9(2() — Zi+ny), 1 < J <,

and
a;i =9(0),1 <i < n.

It is seen from (2.10) that @'A@ can only be zero if # = 0. Hence A is non-singular,
implying that ¢ is strictly concave. §

Remark 2.1. The reason for considering the vector # = (1 — F(Z(n)),...,1— F(Z@))) in
the proof of Proposition 2.1, instead of the vector (F(Z()), ..., F(Z(n))), is the fact that
we then only have to consider a maximization problem over the whole cone {Z : 0 < z; <
.-+ < z,} instead of a maximization problem over the more complicated bounded convex
region {Z : 0 < z; < .-+ < 2, < 1} (defining the function to be —oo if z(n) > 1).

We also note that the NPMLE F,, always satisfies F’n(T(,,)) = 1, but that we do not have
to build this into the conditions of Proposition 2.1.

Although in some cases the NPMLE can be found by a 1-step procedure, just by
computing the slope of the convex minorant of a certain function (see Exercises 2 and 3 for
deconvolution with, respectively, the uniform and the exponential densities as convolution
kernels), this does not seem to be possible in general. However, we can (as in the case
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of interval censoring) give a characterization of the NPMLE as the left derivative of the
convex minorant of a cumulative sum diagram with self-induced weights. This leads to an
iterative convex minorant algorithm, which (in our experience) converges rather fast and
will be discussed in Chapter 3.

Let the process Gr be defined by

(2.11) Gr(t)= Y AGr(Zw),
Zn<t

where

{9(z = Z(3)) = 9(z = Zian))}’
{fg(z —) dF(:I:)}2
9(2 - Z(n))2 - dHn(Z),
{f9(z — z)dF(z)}
and let the process Vr be defined by

AGF(Zy) =/ dH,(2),1<i<n,

(2.12)

AGF(Z(n)) =

(2.13) Ve(t) = Wr(t) + /[0 ) F(")dGr(t'), t > 0.

The following proposition, analogous to Proposition 1.4, characterizes the NPMLE F,
as the slope of the convex minorant of a “self-induced” cumulative sum diagram.

PROPOSITION 2.2. The distribution function F, € F maximizes (2.2) over F if and only
if Fy, satisfies A
Fa(Tiy) = ca(Ty) AL, 1S i<,

where c,, is the left derivative of the convex minorant of the “cumulative sum diagram”,
consisting of the points

P = (GF,.(Z(J'))aVF,,(Z(j))),O <j<n,

and where Py = (0,0).

The proof is similar to the proof of Proposition 1.4 and is therefore omitted. The
process Gr contains “second derivatives on the diagonal” of the log likelihood function,
but has again a certain arbitrariness in the sense that other weight functions would give the
same type of characterization in Proposition 2.2. However, computer experiments show a
superiority of this weight function with respect to certain other possibilities.

Remark 2.2. The results of this section can be generalized to the situation where g is
non-decreasing on an interval which may be different from [0, c0) and where Fy need not
be zero on (—o00,0), but we will not go into this here.
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2.2. Convolution with symmetric densities.

The deconvolution problem with symmetric kernels offers some new features, which
even make the computation of the NPMLE more difficult. The most important difference
is that, unlike in the situation discussed in section 2.1, we generally cannot assume that
the NPMLE corresponds to a probability distribution, with mass concentrated on the
observation points. :

We will assume that the convolution kernel g satisfies the following conditions:

(2.14) g is symmetric about the origin, i.e., g(z) = g(—z),z € R
and
(2.15) g is continuous and decreases on IR,.

Examples of such densities are: the standard normal, the Cauchy, the Laplace (or double
exponential) and the triangular densities. Again we assume that the sample of “observ-
ables” is Z,,...,2Z, where Z; has density

(2.16) h(z) = / o(z — 2)dFy(z), z € R,

There is a voluminous literature on this problem and on methods for estimating the
density fo, corresponding to the distribution function Fp, see, e.g., Carroll and Hall (1988),
Fan (1988), Stefanski and Carroll (1987) and Zhang (1990). In these papers the estimation
method is invariably based on Fourier inversion. Almost nothing seems to be known about
the behavior of the NPMLE (we will, however, establish consistency of the NPMLE in
Chapter 4).

The self-consistency equation (2.5) applies without change, and can actually be used
in the EM algorithm. However, the convergence of the EM algorithm is in this case so
painfully slow that it almost seems useless for practical purposes. Below some information
about the general structure of the NPMLE is listed. The line of argument is similar to
arguments used by Jewell (1982) in characterizing the NPMLE of the mixing distribution
in scale mixtures of exponential distributions.

It will first be shown that an NPMLE (i.e., a distribution function F,,, maximizing
Y(F), defined by (2.2), with g satisfying (2.14) and (2.15)) always exists.

LEMMA 2.1. There always exists an NPMLE. Moreover, the vector
( / 9(Zq) — z) dFu(z),. ., / 9(Zn) - x)df"’n(z))

has the same value for each NPMLE F,.
PROOF: Let the function # — k(Z), ¥ € [0,1]" be defined by
n1Y " logzi ,7i€(0,1],1<i<n

—00 , if z; =0, for some :.

k(F) = {
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Moreover, let F be the set of subdistribution functions on IR, and let the function x : F —

[0,1]" be defined by

X(F) = ( / 9(Zay — z)dF (), .-, / 9(Zmy — a:)dF(:c)), FeF.

The set M = {x(F) : F € F} is convex and compact (in the vague topology) and hence
there exists a subdistribution function F' € F such that

E(x(F)) = sup k(Z).

Since the set {x(F): F € F, x(F) € (0,1]"} is nonempty, we may assume x(F) € (0,1]",
since otherwise k(x(F)) = —oo. Moreover, since k is strictly concave on (0,1]", there is a
unique § € (0,1]" such that
k(§) = sup k(x(F)) = sup k().
FerF ieM

Finally, if F' maximizes k(x(F)), then F has to be a distribution function, since otherwise
there would exist an € > 0 such that

k(x (F' + ello,w))) > k(x(l-"')) [ |

The following proposition yields some information about the set on which the NPMLE is
concentrated.

PROPOSITION 2.3. Let Py the probability measure on IR, corresponding to an NPMLE
F,, and let the set M be defined by

M = {y eER: /{g(z -y) / /g(z - z) dﬁ',,(m)} dH,(z) = 1}.

Then Pg (M) = 1. Moreover,

| 9z-9) g (. ify¢ M.
/fg(z—z)dF,,(:r) n(z) <1, fy ¢

PRroOOF: Fix z € IR. Then
1}}?3 r! {"/’(ﬁ‘n + h(l[z,oo) - Fn)) - d’(ﬁ'n)}

_ [z=2)~[ez-w)dFa() ..
(210 g R P

_ 9(z — ) JH-(2) —
ot —pdbuy) Tn(F) 71 =0
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since F, is an NPMLE. By integrating with respect to the measure Py (and by Fubini’s
theorem) we get

(2.18) | / ER{ / . fg(zg(_zy") E;n(y) dHn(z)} dFa(z) = 1.

So we must have Pr (M) = 1, since otherwise, by (2.17), the left side of (2.18) would be
strictly smaller than 1. |

Proposition 2.3 shows that in many cases the support of Py is a finite set. For
example, if g is a normal density we get the following result.

COROLLARY 2.1. Let g be a normal density, symmetric about zero. Then Py is concen-

trated on a finite set of at most n points.

PROOF: Without loss of generality we may assume that g is the standard normal density.
Proposition 2.3 implies

/{exp{—-;—(z -y)?} / /exp{—%(z - z)*} dﬁ‘,,(:z:)} dH,(z) =1,

if y € M. This means that y satisfies an equation of the form
(2.19) > aiexp{—3(Zm —y)*} —1=0,
i=1

with a; > 0,1 £ 7 < n. By Karlin and Studden (1966), pp. 9-11, Examples 1 and 5, this
equation can have at most n roots. |

Remark 2.3. It is clear that Corollary 2.1 also holds for normal densities which are not
symmetric about zero.

As a consequence of the following corollary, we get a stronger result in the case of the
double exponential density.

COROLLARY 2.2. Let g be strictly convex on [0,00). Then PF is concentrated on the set
of observation points.

PROOF: Let a; =1 / fg(Z(,-) —z) dﬁ',,(:c), 1 <7 < n. Then the function

z—n! Za,'g(:c — Z(,')), z € R,

=1
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is strictly convex on each interval (Z(,-_l),Z(,-)), 1 <7< n+1, where Z(g) = —oc and
Z(n+1) = 0. Thus, if the set M is defined as in Proposition 2.3, we get:

€M — z=2; forsomei,1<1i<n,

since

¢ {Z1,....,Zn} =>n"") aig(z - Zm) < L. i
=1
The following Corollary of Proposition 2.3 can also be obtained by direct methods.
COROLLARY 2.3. Let g satisfy
g(z) < g(0), for all z # 0.

Then Pg. [Z(l), Z(,,)] =1, i.e.,, Pg_is concentrated on the range of the data points.

Example 2.1. (The following curious facts have been communicated to me by Rudolf
Griibel.) Let g be the standard normal density. We want to find the support of F, if the
sample size is n = 2. After a suitable shift we may assume Z(;) = —a, Z(3) = a. We have:

$(F) = }{log / é(a — 2) dF(z) + log / $(a +2)dF(z)}.

If F is defined by F(z) = 1 — F(—z—), where

F(-z-)=__ Lm F(y),

yl—z,y<~z

we get

$(F) = %(F).
Moreover, since 1 is concave, we have
b (3F+F)) 2 Hu(®) +9(F)).
Hence, if ¢(F') is maximal, then ¢(F*) is also maximal, where F° is the symmetrized
distribution function F* = 2{F + F'}.

So, in order to find an NPMLE, we may restrict ourselves to symmetric distributions
F. For these we have

/ ¢(—a—z)dF(z) = / ¢(—a + z)dF(z),
(—~00,0) (0,00)
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and likewise

/ é(a— z)dF(z) = / é(a + ) dF(z),
(—00,0) . (0,00)

implying (by the symmetry of ¢):

#(F) = tog{#(@Pr((O)+ [ {9(a—2)+6(a+2)}} dF(o)}.

1

Since, by Proposition 2.3, the support of a maximum likelihood estimator consists of
at most 2 points, we either get the degenerate distribution at zero, or a (symmetric)
distribution concentrated on the two points ¥ and —y, where y > 0 satisfies

#a—y) +¢(a+y) = sup{d(a~2) + §(a + 2)}.

We have:
a—y ¢(a + )

a+y dla—z)

%{¢(a—y)+¢(a+y)} =0

For u = y/a this yields

1—-u

Tre = exp{—2a’u}.

(2.20)

As a function of u, the left hand side of (2.20) is strictly decreasing to —1, as u — oo,
and the right hand side of (2.20) tends to 0 in this case. Both are differentiable with
strictly increasing derivatives, and take the value 1 at u = 0. Hence another point of
intersection exists if and only if the derivative of the left hand side is strictly smaller than
the corresponding quantity for the right hand side, i.e., if and only if @ > 1.

Putting all this together, we get that generally the NPMLE will be the degenerate
distribution at the mean Z = 3{2z; + 22} of the two observations if a = Lz — z0)} <1
and will “split” into two masses of size 1/2 each, located at the points z % ac(a), where
c¢(a) = u is the (unique) positive solution of (2.20). Some values of c(a) are:

¢(1.01) = 0.24121, ¢(1.1) = 0.66993, ¢(2) = 0.99933.

A similar situation arises in the Cauchy and analogous cases. Generally, the “bifurca-
tion distance” of the two data points will be 2u, where u separates the convex and concave
part of the symmetric density g.

2.3. Exercises.

1. Show that, under the conditions of section 2.1, there exists an NPMLE F, with
mass concentrated on the set of observation points, and satisfying I:",,(Z(l)) > 0 and
Fn(Z(,,)) = 1. Consider in particular the case g = 1jgy) (i.e., g is the Uniform (0,1)

" density). Is the NPMLE always uniquely determined, if we drop the condition that its
mass is concentrated on the set of observation points?
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2. Let g be the Uniform (0,1) density, and suppose that we know that the unknown
distribution function Fp is also concentrated on [0,1]. Defining é; = 1;z,<1), the
function 3, defined by (2.2), can be written .

H(F) = n~? z{a.- log F(Z:) + (1 — 6;) log(1 — F(Zi — 1))}.

(a) Let Y;,1 <7 < n, be defined by
Y,-={Zi , if 6; =1,
Z;—1 ,ifé=0.
Show that Yi,...,Y; is distributed as a sample from a Uniform (0, 1) distribution.
(b) Let Y(3),...,Y(n) be the set of order statistics of the set Y3,...,Y;, and define
6 = { 1 , if the X}, corresponding to Y(;), is <1,

0 , otherwise.
Show that the value at Y{;) of the NPMLE E,, maximizing ¥ (F') over F, is given by

the left continuous derivative at the point ¢ of the convex minorant of the function
K, : [0,n] — IR, defined by

Ka(i) = (), Kn(0) =0,
isi
at the points 7, and by linear interpolation at other points of [0, n].

3. (This example is due to R. Griibel. For a different approach, see Vardi (1989).) Let g
be the exponential density

g(z) = e"l[o,oo)(m), z€ IR,

and let the function ¥ be defined by (2.2). .Show that the value at Z(;) of the NPMLE

F,., maximizing 4 (F") over F can be found as follows.
Let the points P;, 0 < i < n, be defined by

(0,0) ,f1=0,
P; = (zi,y:) = (e-zm - e_Z(M)’i/n) yiflsi<n,
(e"z('), 1), , if i =n.

Let fn be the left derivative on (0,z,] of the convex minorant of the cumulative sum
diagram, consisting of the points P;, and let f,(0) = 0. Then the value at Z;y of the

NPMLE F,, is given by

Fu(Zw) = Y e720{ fuls;) = fale;-1)}.

i<
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Hints: Since f, is the left derivative of the convex minorant of the cumulative sum
diagram, consisting of the points P;, the function : — f,(z;) is the isotonic regression

of u; def 1/{n(z,~ - :c,'_l)}, 1 <1 < n, with weights Az; = z; — z;_;, i.e., this function
minimizes

Z{f(i) - ui}zAxi,

over all functions ¢ — f(¢), which are nondecreasing in i. This implies, by e.g., Robert-
son et al. (1988), Theorem 1.3.2:

Z fa(zi){ui — fa(zi)}Azi =0,

i=1

D {uj~ falz;)}Az; <0,1<i < n.

J2i
Show that the conditions of Proposition 2.3 follow from these relations.

. Deduce from Karlin and Studden (1966), pp. 9-11, Examples 1 and 5, that equation
(2.19) can have at most n roots.

. Let g be the triangular density
g9(z) = (1 - |a:|)1[_1,1](x), z € R.

Can we assume (as in the double exponential case) that the mass of the NPMLE is
concentrated on the set of data points?
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3. ALGORITHMS

3.1. The EM algorithm.

We illustrate the properties of the EM algorithm by studying its behavior in the interval
censoring problem, Case 1. As argued on p. 1 of Chapter 1, we may, in our search for the
NPMLE, restrict attention to a class F of purely discrete distribution functions F' with
mass concentrated on the set of points T(,),. .., T(n), T(n+1), Where T(,41) is an arbitrary
point ¢ > T,,) (we need a point to put the remaining mass on). Let

pi=Pr{X=T4},1<i<n+1l

The EM algorithm runs as follows. We take a starting distribution Pp(), with positive
masses at all points T{;), 1 < ¢ < n+ 1. For example, we could take the discrete uniform
distribution

(3.1) PP =P {X =Ty} =1/(n+1),1<i<n+1.

We then do the “E”-step (“E” for “Expectation”), i.e., we compute the conditional expec-
tation of the log likelihood

(3‘2) E(O){zlogf(xz) I 617"'76n’T17'°'7Tn}’

=1

where f(z) = Pr{X = z} and E©® is the expectation under the probability measure
Ppe). Next we maximize (3.2) over all discrete distribution with probability density f
with respect to counting measure on the set {T{1), - - ., T(n+1) }. This yields new probability
masses pgl), t=1,...,n+ 1.

Now we repeat the E and M step, starting with the probability distribution with
masses psl) instead of the pso), defined by (3.1), etc.

In order to establish the connection with the self-consistency equations (1.6), we take
a closer look at what happens in the E and M steps. We can rewrite (3.2) in the following
way:

E(O){Zlogf(xt) | 611'°'76naT17--"Tn}

=1
= ZE(O){lng(X:) I 51’---’6717T17°"7T"}
(33) ':1 n+1

= {z(logpk)P(o){Xi = T(x) | 6i, Ti}}
i=1 k=1
n+1 n

= Z(logpk)ZP(o){X,‘ = T(ry ' 5:‘,Ti},
k=1 =1
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where we write P(®) instead of Pr(o) (generally we will write P(™) instead of Pp(m)). For
the M-step, we have to maximize (3.3) over all discrete distributions with masses p; at T(;.
It is easily seen (for example by using Lagrangian multipliers) that (3.3) is maximized by
taking

pe=n""Y POXi=Tu|6,T},1<k<n+1.

i=1

Hence the combined E and M steps yield

pil) — n—l ZP(O){Xt = T(k) | 6,‘,11,'}, 1 S k S n + 1.
=1
Generally, we get

(3.4) - plmtD) = ‘IZP("‘){A = Tk ]6,,T} 1<k<n+1,

=1

which leads to

Fmi($) =n=' S PUX; <t | 6,T5) = E™{Fa(®) | 61,...,6m Threvn Ta}y

=1

where Fy, is the empirical distribution function of the (unobservable) sample Xi,...,Xn.
This corresponds to the self-consistency equation (1.6).
One can write (3.4) in the following explicit form:

(m+1) _ 1% & 1, ™
P ; {F“")(T,-) HT2Tw) ¥ T pen (g U <T<:=>}}Pk 1<k<n+l,
since

(m) 6; 1-6;
ptm ){X T | 5nT} P {F("‘)(Tg) l{T-'ZT(k)} + F(m)(T) U <T(k)}}

It follows that the probability masses pi, corresponding to the NPMLE, should satisfy

1-6; |

n-1 i .

= . — 1 1<k<n+1l.
Pk = ; {F (T) HTi 2T} 1— En(TY) {T'<T(k)}}pk =

Hence, if px > 0, we get:

1—6;
3.5 =n"! , + ——1r ;
32) Z:{F(T) 2T} TR () mdm}}
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and if px = 0, we get

_ 1-—6;
(3.6) 1 ; {F ) LTi>Tuy) + _—an 1{T.~<T(,‘)}} .
Note that we do not necessarily get (3.5) and (3.6) if we would not start with positive
masses at all points Try! If the starting distribution puts zero masses at some points T{x),
the EM algorithm would converge to a solution of the self-consistency equations, but this
solution would not necessarily maximize the likelihood. This is caused by the fact that
the EM algorithm will, at each iteration step, put mass zero at a point where the starting
distribution puts mass zero. So, if the NPMLE puts positive mass at such a point, the EM
algorithm will not converge to the NPMLE, if the starting distribution puts zero mass at
that point.

There is the general empirical finding that the number of iteration steps, needed by
the EM algorithm to get, say, the NPMLE in two accurate decimals, will increase with the
sample size. Below we offer some speculations on why this will be true. In order to make
things as simple as possible, we consider interval censoring, Case 1, and suppose that Fp
and G are both the uniform distribution function on [0, 1].

The arguments in Wu (1983), which show that the EM algorithm (starting with pos-
itive weights at all points T(3),...,T(n+1) Will actually converge to the NPMLE, give no
information about the speed of convergence and it is not clear that one has a contraction
with a constant strictly smaller than 1. Moreover, it is not clear what norm should be
used, if one wants to show that the iteration steps (3.4) really correspond to a contraction.
We will now give some arguments which indicate that one indeed has a (local) contraction
with respect to a certain L-norm (to be specified below), but with a constant which can
be arbitrarily close to 1. By “local” we mean that the values of F(™) sheuld not be too
far from the values of the solution F,. We conjecture that one does not have a (local)
contraction with respect to the supremum norm (on the space of distribution functions).

Let E be a linear space of bounded functions on [0, 1], containing differences of (two)
distribution functions, and let the mapping ¢ : E — E be defined by

(3.7) [B(RI(E) = h(t) - / >t%h(u)du _ / 1-

<t1-
The mapping ¢ can be considered as an approximate derivative of the mapping, defined
by the iteration steps (3.4), since, for n and m large, we get

F(m+1)(t) F(m)(t)
1-46;

m (m—1 . S m me—
.ZNF("‘)(T) (FU™(t) = Fm=1(4)) 4 = g(:t F<m)(T)(F( () — Fm=1(1))

h(u) du

Z F(m)(T )2 =g P @) (F™(Ty) - F('"-l)(Ti))

_l L0 (1 P () (F™™(T}) — F=D(T3))

n f<t (1= F(Ty))
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~ P = P - [ 2 (P @) - P () du
. u>t u

~ / =L (PO () — F™=D(u)) du,

<tl—-u

where the approximations are (partly) justified by the (strong or weak) law of large num-
bers.

Continuing on this path (and leaving lots of problems aside), we obtain the following
approximation to the squared L,-distance between F(™+1) and F(m).

(m+1) _ p(m)2
IF |

tAu 1—-tVu
(m) (m—1)2
”F —-F ” //(,I]z{tVu l—t/\u}
H(FO() = FOR0) (FO (w) - D (w)) di du,

where the Lo-distance is just the ordinary L»-distance between (complex- or real-valued)
functions on [0, 1] with respect to Lebesgue measure. So, in’the limit (as the sample size
tends to infinity), we have to deal with the mapping f — U f, defined by

tAu 1—-tVu
[Uf](t)=%/[(,’1]{tVu+ l_tAu}f(u)du,

which is a compact self-adjoint operator on the pre-Hilbert space of continuous complex-
valued functions f, defined on [0,1]. Note that the eigenvalues A of U satisfy 0 < A <1
(as is seen using the Cauchy-Schwarz inequality and the fact that U is self-adjoint). We
guess that the operator U has eigenvalues arbitrarily close to zero.

On the other hand, for each n, the operator corresponds to a symmetric matrix with

elements
i T; AT, 1-T;VvT;
2n \T;VT;  1-T;AT;

For example, if n =2 and T} = 1/3, T> = 2/3 we get the matrix

Cl:(% )

with eigenvalues 2 and 1, and if n = 3 and T} = i/4 we get the matrix

NP
N )

(1

i T 1

3 36 9

=] 1 T
Cy = 36 3 36
1 T 1

9 36 3

The eigenvalues of the matrix I — C are: 0.8916, 0.7778 and 0.3306.
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This has a rather interesting general structure: the elements of the matrix C; become
smaller if one moves away from the diagonal, corresponding to a decreasing “coverage” of
the points T; and T by intervals [0, Tx] and (T}, 1] in the estimation problem. One gets the
impression that the biggest eigenvalue of the matrix I —Cy will tend to 1, as n — oo, which
would mean that the “contraction constant” also tends to 1, as n — oo. This would explain
why the convergence of the EM algorithm becomes slower, if the sample size increases.

Remark 3.1. The following type of example suggests that we cannot expect to have a
contraction with respect to the supremum norm. Let fe : [0,1] — IR be defined by

-1, te[0,3),
fe(z)': 1v te [%,%-}-6),
0, te[%+e,1].

Then:

7 1
. 1y _ | 2 — 1
lellﬁ)l[¢fe](2)—1 /0 2(1—“)—1+210g2,

where ¢ is defined by (3.7). So, for sufficiently small € > 0, we get [¢f](3) > 1. This
example can easily be changed into a similar example for matrices (showing that the infinite
dimensionality of the function space is not essential here).

3.2. The iterative convex minorant algorithm.

We discuss the properties of the iterative convex minorant algorithm for interval censoring,
Case 2. The idea is to reduce the maximization problem to a series of weighted isotonic
regression problems, where the weights are induced by the values of the solution at the
preceding step.

Suppose F(™) is the estimator of Fy, found at the m** iteration step. Then F(™+1) is
the distribution function, maximizing the expression

(3:8) / (F(t) = FU™(t)) dWpem(t) = 3 / (F(t) = F™(1))* dGpim(2),

as a function of F' € F, where Wg(m) and G p(m) are defined by (1.25) and (1.29), respec-
tively, and F is the set of purely discrete distribution function with mass concentrated
on the set of points T{;) and possibly with mass at an extra point bigger than all obser-
vation points (see the beginning of the chapter and Remark 1.1 in Chapter 1). One can
consider (3.8) as a second order approximation to ¥(F) — ¥(F(™), where the off-diagonal
second order terms are omitted. It can be shown (Exercise 5) that the distribution function
F(m+1)  maximizing (3.8), is the left derivative of the convex minorant of the cumulative
sum diagram, consisting of the points

P; = (Grem (T(5)), Vremy (T(5)) 5
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where Py = (0,0) and T(;) € Jn, J = 1,2,..., provided we make a preliminary reduction
of the observation points T{;) such that the conditions of Proposition 1.4 are satisfied.

In the itération steps of the algorithm we use “buffers” to prevent that F(™) would not
be a distribution function or that the likelihood at F™) would become zero. For example,
one can always take a small positive number ¢ > 0 such that F('")(U,-) - F("‘)(T,-) > ¢,
for each pair (T;,U;) such that {T; < X; < U;} = 1, since for ¢ > 0 sufficiently small a
term log(F(™(U;) — F(™)(T;)) < logc would make the log likelihood smaller than that
of the discrete uniform distribution on the set of points (with the extra point bigger than
all observation points). Likewise one can deal with values F(™)(T;) or 1 — F(™)(T;) that
would be too small.

In the full second order approximation to 9(F) — %(F(™)), we would have to add to
(3.8) the term .

(3.9)

/ (F(t) = F™ () (F) = P @) oy
t<z<u

(FOm (u) — Fm(2))”

By a simple change of the algorithm, one can actually maximize the full second order
approximation to 1% (F) — »(F{™)). In this modification, the “time scale” G pm) at step m
is the same as in (1.29), but the process Wr is replaced by

Wi (1)
= / F™ (") dP,(z,t',u)
t' efo,t], z <t
+ / F(u) = F(#') = 2{ F™)(u) — F™)(11))
tgf0,t], ' <z<u {F(m)(u) _ F(’")(t')}2 .

— / F(u) — F(t') — 2{ F(™)(u) — F(™)(4")} iPaa.t 1)
t'€f0,t], ' <z<u {F(m)(u) _ F(m)(t,)}2 n{L, 0,

dP,(z,t',u)

- / {1~ F("‘)(u)}"ldP,.(:c,t',u),
u€[0,Y],z>u .

fort > 0,

and the process Vr is replaced by
Vi) = wi i) + / F(t')dG pemy(t'), t > 0.
[0,

So, within the m?** iteration we have another sequence of iterations, where F(mi=1) changes
into F(™+%) at the i** step, and where F(™? is the left derivative of the convex minorant
of the “cumulative sum diagram”, consisting of the points

P; = (Gp(m)(T(j))vVzgm-'-l)(T(j))) ;
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with Py = (0,0) and T{;) € Jn, j = 1,2, ... (see Definition 1.1 and Proposition 1.4).

By this modification, the “outer iterations” of the algorithm get Newton-type proper-
ties: it is more important to start close to the solution of the maximization problem, but
once one is close, the convergence is very fast. However, the only similarity with a real
Newton algorithm is that we maximize a second order approximation; the crucial differ-
ence 13 that we hit the boundary of the parameter space at each step. Only in the lower
dimensional boundary set partial derivatives of the likelihood function become zero, but
finding this lower dimensional boundary set is the main part of the problem!

If we define the L,—distance || - || on F by

IF: — By = / (Fi(t) = Fa(8))* dG pomy (1),

(suppressing the dependence on m in order to simplify notation), we have for the “inner”
iteration steps of the modified algorithm:

”F(m,i+1) _ F(m,i)” < ”F(m,i) _ F(m,i—l)”.
This can be shown as follows. Let the function

dv(m)
dG p(m)

t— (t)

be defined by

(m) Vi (- vEim™ (=) .
dVFm f = pr('m) (t)—GI;.(m)(t—) , if Gpm)(t) > Gpemy(t—),
dGF(M) 0

, otherwise.

Then F(™#+1) minimizes

V(m)
<=2
dG p(m)

as a function of F', where F is a purely discrete distribution function with support contained

in the set of points T(;).
Let the mapping T : 7 — F be defined by

|7~

avim avim ”

“T(F )- dG pom) “ = fer " dG pomy

By Theorem 8.2.5 in Robertson et al (1988), this mapping is a distance reducmg operator
(a projection on the closed convex set F. Hence

(m)
(3.11) “F(m 1) _ pim|| < ” Vitm _ Vo !
dGF(m) dGF(m)
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But the square of the term at the right-hand side of (3.11) can be written

(m,) (3} — F(mi=1) ()12
/ {Fm0(w) @} (o, 0
vefo,, v<z<u  {F™(u) — FOm)(#')}

(3.12) / ' {F(m,i)(tl) - F(m,i—l)(t:)}z
+ 2
vefo, ], r<z<u {F™(u) — Fm)(1")}

dPy(z,t',u)
S”ﬂwﬂ_ﬂmﬁﬁr

Moreover, under the conditions of Proposition 1.4, there can only be equality in (3.12),
if F(m:i) = p(mi-1)  Hence by a subsequence argument and the fact that the mapping
T : F — F has a unique fixed point F(™) F(™% converges to F(™>) at each point
Ty, as 1 = oo.

Our general experience with the two versions of the iterative convex minorant al-
gorithm is that the simple version converges rather quickly from any starting point and
that the modified version is considerable slower for large data set, mainly because the
“inner iterations” converge so slowly at the beginning steps of the algorithm. So we have
the peculiar situation that there are rather convincing arguments for the (at least local)
convergence of the modified algorithm (the outer steps maximize the full second order ap-
proximation to the log likelihood and the inner steps can be shown to converge), but that
the simple iterative convex minorant algorithm, maximizing only a diagonal approximation
to the log likelihood at each step, shows much better convergence properties, although no
convergence proof is available at the moment!

As indicated in Chapter 1, we can always make a preliminary reduction, linking values
of the solution. A simple rule for doing this runs as follows. Consider the process Wr,

‘defined by (1.25). Under the conditions of Proposition 1.3, the first jump of the process
will be upward, and the last jump will be downward. We now form blocks of upward
jumps followed by downward jumps. Specifically, if an upward jump is denoted by + and
a downward jump by —, we consider consecutive blocks of the form

Fere—in,

where each block is made as big as possible. In Example 1.2 we would get the two consec-

utive blocks:
+ ——

+ -

and in Example 1.3 we would get the 4 consecutive blocks:



It is clear that the solution has to be constant for values of Ti;), corresponding to such
a block. So in Example 1.3 we immediately get the following relations, to be satisfied by
the solution:

Fo(Tay) = Fa(Tiy) = Fu(Ti))
Fu(Tiy) = = Fo(T(ny)
Fu(T(s)) = Fu(Tis))

Fo(Taoy) = Fn(Tayy) = Fa(Taz)

Generally we can always take as our initial estimate a distribution function F(®) which
is constant for values of T{;), corresponding blocks which have the structure described
above. However, the NPMLE will typically be constant on much bigger blocks. The initial
reduction gives the maximum number of blocks on which the NPMLE will be constant.

3.3. Exercises.

1. Is the following statement true or false:
the EM algorithm converges, in the interval censoring problem, Case 1, to the NPMLE
- if and only if the starting distribution has positive mass at the points where the
NPMLE puts mass. -

2. Let, in the interval censoring problem, Case 1, the sample size be n = 3, and let
61 = 62 =1, 83 = 0. Take as starting distribution for the EM algorithm:

¥ = PO{X =T} = 1/4,

where T(;) < T(3) < T(3) are the observation times, and T4 is an arbitrary point,
bigger than T(3). Show that the values at the n*® iteration step (n > 1) are given by

3
PV =1-27",
" =0,
P =1

3. Let, in the interval censoring problem, Case 1, 6; = 1 and 6, = 0, and let y; = ls’n(T(,-)),
1 £ i < n. Show that (1.9) and (1.10) follow from (3.5) and (3.6).

4. What is the analogue of (3.5) and (3.6) for interval censoring, Case 27

5. Let the conditions of Proposition 1.4 be satisfied. Show that the distribution func-
tion F(™*+1)  maximizing (3.8), is the left derivative of the convex minorant of the
cumulative sum diagram, consisting of the points

P; = (Gren(T()), Ve (T(5))) »
where Py = (0,0) and Ty € Jn, J = 1,2,....
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6.(a) Describe an iterative convex minorant algorithm for the deconvolution problem,

discussed in Section 2.1.
(b) What would correspond to, respectively, the E and the M step of the EM algorithm
for this problem?
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4. CONSISTENCY

Consistency of the NPMLE in the cases of interval censoring and deconvolution can be
proved by a general method which has been used by Jewell (1982) in proving consistency
of the NPMLE for the mixing distribution in scale mixtures of exponential distributions.
We first illustrate the method for interval censoring, case 1.

4.1. Interval censoring, case 1.
Let (X1,T1),...,(Xn,Tn) be a sample of random variables in IR? , where X; and T; are
independent (nonnegative) random variables with continuous distribution functions Fp
and G, respectively, satisfying Pr, < Pg ( the probability measure Pr,, induced by Fy, is
absolutely continuous with respect to the probability measure Pg, induced by G).
If F, is the NPMLE, we have, for each € € (0,1):
v((1- F, + eFp) - v(F,) <0,

where 1(F},) is defined by (1.3). Hence we obtain

S | RS- B .

lim e {¢((1 OF, +eFy) _¢(F,,)} <o.

Evaluating this limit, we obtain

(4.1) / {%%%Hzg} + i_——?gil{»t}} dPn(?,t) <L

We now take as our sample space {2 the space of all (infinite) sequences
(Xla Tl), (X27 T2), ey

and denote a point of this sample space by w. To indicate the dependence on w, we will
write Fy,(t;w) instead of F},, and likewise P,(z,t;w) instead of P,(z,t). The set  will be
endowed with the usual Borel o-algebra, generated by the product topology on [];° IR?,
and the product measure P*°. We shall denote the latter probability measure by IP.

Fix € € (0,1) and let a and b be chosen such that

(4.2) Fo(a)=¢, Fo(b)=1—e.

Using the strong law of large numbers (and a separability argument), it is seen that
Pp(-,-; w) converges weakly to P, for all w in a set B such that JP(B) = 1. Fix anw € B.
By the Helly compactness theorem it is seen that the sequence of functions ﬁ’n( ;w) has a
subsequence Fy, (-; w), converging vaguely to a nondecreasing right continuous function F,
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taking values in [0,1]. Note that we cannot assume (at this point) that F is a distribution
function.

We may assume that 1/F}, (t w)and 1/(1— Fo(t w)) are bounded for ¢ € [a,b] and all
n sufficiently large. This follows from (4.2) and the fact that Pu(-,-; w) converges weakly
to P. Moreover, by the vague convergence of F,,(-;w) to F we may also assume that
1/F(t) and 1/(1 — F(t)) are bounded for t € [a,}]. Hence we assume

- (4.3) 1/F(a)+1/(1— F(b)) <M
and
(4.4) 1/Fp(a; w)+1/(1 = Fa(b; w)) < M,

for a constant M > 0 and all n sufficiently large.
We now get the following Lemma.

LEMMA 4.1. Let the points a and b be chosen in such a way that (4.2) is satisfied. Then
we have: :

) Fy(t 1 —F t
khm {o—()'l{z<t} + - 0( ) 1{z>t}} dPnk(myt; w)
% JRx[a,b) w)

(4.5) Fo,(t; w) 1—Fy,(t;
_ Fo(t) 1 - Fy(t)
= Joren LR Mo+ T2 o0 | 4P
Moreover,
Fo(?) 1-F

PROOF: Fix 0 < § < 1 and take a grid of points ¢ = up < 3 < --+ < Uy, = b on [a,b] such
that m = 1+ [1/6?] and

G(u;) — G(ui—y) = {G(b) — G(a)}/m,i=1,...,m
First we suppose, for simplicity, that the points u; are points of continuity for the function

F, which is the (vague) limit of the sequence of functions Fy, (-; w).
Let K be the (possibly empty) set of indices ¢, 1 = 1,...,m such that

max {1/F(ui-1) — 1/F(u;),1/(1 = F(u;)) - 1/(1 — F(ui_l'))} > 6.
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By (4.3), the number of indices of this type is not bigger than 1 + [M/§]. Let L be the
remaining set of indices ¢,7 = 1,...,m. Denoting the interval [ug,u;] by Ji and the
intervals (u;—1,u;] by Ji, ¢ > 1, we get

Fo(t 1— Fo(t
/ {T—o—(l—l{,st} + -~ 0(.) 1{z>t}} dPp, (z,t; w)
Rx[a,b] )

Fo, (t; w) 1-F, (t;w

Fo(t) 1— Fy(t) ‘
- Hezny + = 1, dP,, (z,t;w).
Z'/IRXJ. {Fnk(t ST TR gy 0 [ ()

Since F, (ui; w) converges to F(u;) for each i, 0 < i < m, we get, for sufficiently large k:
1/Fpy (ic1;w) = 1/Fn,(ui;w) <26, € L

4.7 ) .
D 1/(1 = B, (uis w)) = 1/(1 = Fyy(ui1; w)) < 26,1 € L.
Hence
Fo(t 1— Fo(t
/ "~_0(_2_1{z5t} + = 0( ) 1{z>t} dPnk(zat 3 "")
Rx[ab] | Fn,(t; w) 1-Fy(t; w)
Fo(t 1 - Fo(t
= Z/ ':L()"‘_l{zst} + ~ 0( ) 1{z>t} dPnk(l‘,t; W) )
(4.8) ek JBRxJ; Fo,(t; w) 1-F, (t;w)
. . Fo(t) 1— Fo(t)
+ / — 1 + ~ 1, dPyp,(z,t;w
,EZL RxJ; {F,.h(t;w) _{ <1 1-Fp,(t;w) {=>4) +( )
Fo(t) 1- F(t)
= —1y<ty + = 1y, dP(z,t) + ri(w),
/Rx[ab]{Fn,,(t;w) =<t} 7 1-Fp,(t;w) {=>1) (2,8) + ()

where Irk(w)l < c¢- 6, for a constant ¢ > 0. This can be seen by replacing Fi,, (¢; w) on
each interval J; by its value Fy, (u; ; w) at the right endpoint of the interval, and by noting
that for large
Il/Fnk(t; w) — I/FM(U,‘ ’ w)l < 26,

if i € L (with a similar inequality for 1/{1— Fo,(t; w)}). On the intervals J;, with i € K,
we use (4.4). Note that

S P(RxJi)—0,if6]0,

1174
since P (R X J.') is of order O(é6?), while the number of intervals J; such that i € K is of
order O(1/6).

On the other hand we have by dominated convergence:

: Fo(t) 1— Fo(t)
li —_— 1y +—— (s dP(z,t
Pl Rx{a,b] {Fn,,(t w) t=<) yw) {=>1) (= ,)

Fo(t) 1 — Fy(t)
/mx[a B { F(t) Lot ThG) 1{=>t}} dP(z,1).
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Combining (4.8) and (4.9) we obtain

Fo(t) 1 —Fo(t)
~ 1 b A + ~ 1 zr dPn m,t; w
/Rx[a b { Fo,(t; w) {z<t} 1— Fy (t; w) {z>t} »( )

Fo(t) 1—Fy(t) ,
- /;zx[a b { F?(t) Hest) + —F() 1{z>t}} dP(z,t) + ri(w),

(4.10)

where |rp(w)| < ¢'6.

If one or more of the points u; is not a point of continuity of F, we shift the point u; a
bit to the left or right, in order to get continuity points (using the fact that the continuity
points of F' are dense). So in all cases we get a relation of type (4.10). Since é can be
chosen arbitrarily small, (4.5) now follows. Relation (4.6) immediately follows from (4.5)

and (4.1). ]

By monotone convergence we now obtain from (4.6):

JIREE + 0 50 | dPE

(4.11) ®)
) ) F(t) 1 — Fo(t) }
= hm 1 z - 1 z dP 7t S 1
a10,b—c0 JRx[a,8] { F(o) =S T ToRE Y @9

This, however, can only happen if F' = Fy. For we can write
Fo(t) - Fo(t)
/ { Z0) liz<ty + —:'1—,.61{:»} dP(z,1)
2
Fo@t) | (1-Fo()
= dG(t),
/R{F(t) T TON B

and the latter expression is strictly bigger than 1, unless F' = Fj.
‘This is proved in the following way. If 0 < Fy(t) < 1 and y € (0,1), then

(4.12)

Fot)® (1— Fo(t))’ { 1, ify=F()
y 1-y >1, ify# F(t).

By the monotonicity of F, the monotonicity and continuity of Fy, and the absolute conti-
nuity of Pr, with respect to Pg, we have

F # F, = F(t) # Fo(t) on an interval of increase of G.

F#)?  (1-FR®)’
/IR{ () + 1= F(2) }dG(t)>1,
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if F' # Fy. This contradicts (4.11).

Thus we have proved that for each w outside a set of probability zero, each subsequence
of the sequence of functions F,(-;w) has a vaguely convergent sequence, and that all
these convergent subsequences have the same limit Fo. This proves that the sequence Fy
converges weakly to Fp, with probability one. Since Fp is continuous, this is the same as
saying that E, converges with probability one to Fy in the supremum distance on the set
of distribution functions, i.e.

P{ lim sup‘ﬁ'n(t) 2 HOIE 0} =1.
n—oo tcR

We next illustrate the method for the deconvolution problem.

4.2. Convolution with a symmetric density.

Let Z1,...,2Z, be a sample from a distribution with density

2 / o(z —y)dFo(y), z € R,

where g is a symmetric density, satisfying (2.14) and (2.15), and where Fp is an unknown
continuous distribution function.
Proceeding as before, we find

leii'](f)l ! {1,/)((1 — ) Fn + eFy) — 1!)(13’,,)} <0,

implying

fg(z - y) d{’-'o(y)
J9(z —y)dFa(y)

For each w in a set B of probability 1, the sequence Hy(-; w) converges weakly to the
distribution function Hg, with density

(4.13) dHn(z) <1

ho(z) = /g(z —y)dFo(y), z € R.

Since Hp is continuous, we have

sup|Hn(z; w) — Ho(z)| — 0, as n — oo.
z€R

Fix w € B and consider a nonempty closed set of the form
A, = {z € R:/g(z—y)dFo(y) > e} ,
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where ¢ > 0. The sequence of functions F,(-;w) has a subsequence (Ig’n,‘(-;w)):‘;l,
converging vaguely to a subdistribution function F', and there exists a § > 0 such that

(4.14) nf [ g(z-y) dFn, (y; w) > 6,

for each sufficiently large k, since otherwise (4.13) would be violated. We get the following
lemma, analogous to Lemma 4.1.

LEMMA 4.2. We have:

: J9(z—y)dFo(y) r
hm Lef dan( ] )

(4.15) k=00 9(z — y)dFp, (v; w)
_ fg(z—y)dFo(y) dHo(Z).
a. J9(z—y)dF(y)
Moreover,
J9(z = y) dFo(y) ,
(4.16) L Foe = ar e <1

PROOF: Since F, ne (3 w) converges vaguely to F', we have

fim. / oz — y) dFa, (y; ) = / o(z — ) dF(y),

Define the functions hy, and h by

ho() = [ 9z = 0)dFulys ), b2 = [ oz =) dF@w), 2 € R

Since g is bounded and uniformly continuous on IR, the sequence of continuous functions
hyn, converges uniformly to the (continuous) limit function h. Moreover, by (4.14)

inf h(z)> 6> 0.
zEA.

(note that A. is a compact set).
It now follows that the functions

2 [ oz = 1) dFo) /o (2), 2 € A
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are bounded continuous functions, converging uniformly to the bounded continuous func-
tion

2 / 9(z — y) dFo(y)/h(2), 2 € Ae.
Since H,,(-;w) converges weakly to Ho, (4.15) easily follows, and (4.16) is implied by
(4.15). |
We now proceed as before. The monotone convergence theorem and (4.16) imply

| Loz =) dFo(y) o0
(4.17) TaG =) aF W) dHo(z) < 1.

This can only happen if F = Fy. For we get from (4.17):
/ ho(2)? /h(z)dz <1,

where hy is the density of Ho. But [ ho(z)?/h(z)dz is minimized by taking h = ho. This
is seen by first observing that we may assume that

| /h(z)dz =1,

since otherwise we could make the integral [ ho(2)?/h(2)dz smaller by multiplying & by a
constant bigger than 1, and secondly by observing that the integrand of the integral

ho(z)2
[5G e} e
is pointwise minimized by taking h(z) = ho(z) for each z.
Now F # Fy would imply

h(z) = / o(z — y) dF(y) # ho(2),

for z in an interval of positive length, and hence

Joz=y)dFo(y) .o v [ ho(2)
(4.18) [9(z—y)dF(y) 4Hof )—/ hz) 7

contradicting (4.17).
- We can conclude from this that every subsequence of the sequence of functions Fy,(-; w)

has a convergent subsequence, and that all these subsequences have the same (weak) limit
Fy. This implies the consistency of the NPMLE.

We finally demonstrate the method for the more complicated case of interval censoring.
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4.3. Interval censoring, case 2.

Let (X1,T1,U1),...,(Xn,Tn,Un) be a sample of random variables in IR3 , where Xj is a
(nonnegative) random variable with continuous df Fy, and where T; and U; are (nonneg-
ative) random variables, independent of X;, with a joint continuous distribution function
H and such that T; < U; with probability one. Moreover, we asume that H has a density
h with respect to Lebesgue measure, satisfying

(4.19) h(t,u) > 0, if 0 < Fo(t) < Fo(u) < 1.

As in section 4.1, we obtain

lim ™ {#((1 - O + eRy) - zp(ﬁ’,,)} <0

implying
Fo(t) Fo(u) - Fo(t) . 1-—- Fo(u) z u
a0 [ {F ® = T B Bl I ﬁn(u)l‘”“}} Wrlmt

We now proceed as in section 4.1. Using the strong law of large numbers, it is seen
that Pn(-,+,+; w) converges weakly to P, for all w in a set B such that IP(B) = 1. Fix
an w € B. By the Helly compactness theorem it is seen that the sequence of functions
Fy(-; w) has a subsequence F,, (- ; w), converging vaguely to a subdistribution function F.

Fix € € (0,1/2) and define the set A by

A = {(t,u) : Fo(t) > €, Fo(u) - Fo(t) 26l Fo(u) > 6}.
Moreover, let a and b be chosen such that
(4.21) Fo(a)=¢, Fo(b)=1—¢.
By (4.20) we may assume that there exists an M > 0 such that
(4.22) 1/ Fo(t; w) + 1/ (Fa(u; w) = Fa(t; w)) + 1/ (1 = Fu(u; w)) < M,
for (t,u) € A and for all sufficiently large n. Note that the left side of (4.22) cannot tend
to oo at points (f,u) € A¢ such that Fo(u) — Fo(t) = ¢, since in that case the left side of
(4.22) would become grbitrarily large on a subset of A/, with Lebesgue measure bounded
away from zero, as n — oo, which cannot happen because of (4.19), (4.21), the continuity

of Fy and the weak convergence of Py(-,-,-;w) to P.
We get the following lemma, analogous to Lemma 4.1.
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LEMMA 4.3. We have:

(4.23)
. Fo(t Fo(u) — Fo(t
lim {-7—0('—)-—1{15t} + = 0( ) »0( ) 1{t<z$u}
k—oo JRxA. L Fp,(t; w) Fp,(u; w)— Fo,(t; w)

l—Fo('u) }
= l{z>u} ¢ @Pn, (2, t,u5w
T B (us ) (0] 4Pm(e )

= Fo(t) Fo(u) — Fo(t) 1— Fo(u)
= /mm { 7o) o< Y R R < Y T0R) 1{”"}} dP(z,t,u).

Moreover,

(4.24)

Fo(t) Fo(u) — Fo(t) 1 — Fo(u)
Jon (B o0 + TR rers + T2 Mo | 2P0 51

PROOF: Let the pomts a and b be defined by (4.21). We fix 0 < 6§ < 1 and consider a grid
of points t;, to < +-- < tm, such that m =1+ [1/62] to = a, t, = b, and

/ h(t,u)dt du = m™1 h(t,u)dt, i =1,...,m
G[t._1, l] tE[a,b]

Likewise, we define a grid of points u;, up < -+ < Um, such that up = a, um = b, and

/ h(t,u) dt du = m™! Bt u)dt, i=1,...,m
v€lui_1,ui] u€fa,b]

We denote the intervals (ti—1,t;] by Ji and the intervals (u;—1,u;] by J;. Furthermore, let
K be the (possibly empty) set of indices , ¢ = 1,...,m such that

max {1/F(ti—1) — 1/F(t:),1/(1 - F(t:)) = 1/(1 = F(ti-1))} 2 6,

and let L be the remaining set of indices 7 of the points t;. Likewise, let K’ be the (possibly
empty) set of indices 7, 7 = 1,...,m such that

max {1/F(ui—1) — 1/F(ui),1/(1 = F(w)) —=1/(1 - F(ui1))} 26,

and let L' be the remaining set of indices ¢ of the points u;.
First suppose that the ¢; and u; are continuity points of F'. The term

Fo(t 1 - F
/ —A—Bﬁ—l{;st} + S O(u) 1{z>u} dPn,‘(:c,t,u; w)
RxA, Fnk(t_; w) l_Fﬂk(u;w)
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can be treated as before, showing that

Fo(t 1-F
/ { o(®) 1(oct + b(x) 1{,>.,}} P (2,8, u; w)
RxA. ) ‘

Fnk(t;w) 1-—Fuk(u;w

Fo(t) 1 — Fy(u)
= ; lx + 2 11'14 sz,t,u +r w),
/IRXAe{Fnk(t;w) T (usw) Y (2,8, u) 4 7e(w)

where |rk (w)| < c-é,for a constant ¢ > 0. Similarly, for the “middle term”

/ 3 Folw) - quo(t) Lt<zgu) ( @Pni(2t,u; @)
RxA, | Fnp(u;w) — Fp,(t; w) '

=/ Fo(u) — Fo(t)
Exa. | Fn,(u;w) = Fn (t; w)

1{1<:Su}} dP(.’B, 3 U’) + r;c(w)’

where Ir}c(w)l < c-§, for a constant ¢ > 0. This is seen by replacing Fy,, (¢; w) on each
interval J; by its value F}, (ti—1; w) at the left endpoint of the interval, and by replacing
Fp,(u; w) on each interval J! by its value Fy, (u;; w) at the right endpoint of the interval,
and noting that for large k, and (¢,u) € Ae: ‘
1/ {Fap(u; w) = Fay(tic1; w)} — 1/{EFn, (u; w) = Fu,(t; w)}| < 26M2,
if : € L and that
Il/{ﬁ',,,,(u; w) — Fp, (25 w)} — 1/{1:",.,‘(11.- s w) — Fo, (¢ w)} < 26M?,

ifie L' :
Ktedi,i€e Koru€J),i €K', we use (4.22). Note that

z/ dP(z,t,u) — 0, if 6 | 0,
3GK RXJ.'XR

and likewise
Z/ dP(z,t,u) = 0, if 6 | 0,
icK' R2xJ!
since P(IR x J; x R) and P(IR? x J!) are of order O(6?), while the number of intervals
J; such that : € K is of order O(1/§), and likewise the number of intervals J] such that
i € K' is of order O(1/6). _
By dominated convergence we get

(4.25)

lim / {Lo(t)_l{m} P IO O N
k—oo JRxA. Fnk(t;w) - Fnk(u;w)__Fnk(t;w) -

1- Fo(‘u)
1- Fnk(u; w)
- Fo(t) Fo(u) — Fo(t) 1— Fy(u) e
~ Juen, {50 s+ TR R e + TR 1{z>u}} dP(z,t,u)
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If one or more of the points of the (two) grids is not a point of continuity of F, we
argue as in the proof of Lemma 4.1. This yields (4.23), and (4.24) easily follows. |

By monotone convergence we now obtain from (4.24):

(4.26)
F Fo(u) — Fo 1- Fﬂ u
S {70 e + SR T s + T R oo | 4Pt
_ 1 ) Fo(u) — Fo(t) 1 — Fp(u)
=8 Jrea. { F) 9 F@ T F@) M TR 1{=>"}} dP(z,t,u)
<1.

This, however, can again only happen if F = Fy. For we can write

Fo(t) Fo(u) — Fo(t) 1 — Fo(u)
\/1{8 { F(‘t) 1{11_<_i} + F(u) — F(t) 1{t<z$u} + T-—_.F1()(T)1{I>u}} dP(x’t’u)

=/ {Fo(t)2 + (Fo(u) —Fo(t))2 . (1 —Fo(u))2
R2

F() F(u) — F(t) 1— F(u) } dH(t,u),

and the latter expression is strictly bigger than 1, unless F = F.
The proof is analogous to the proof for interval censoring, case 1. If 0 < Fy(t) <
Fp(u)<land0<z <y <1, then

(Fo(u) — Fo(t))” N (1- Fo(w)® { 1, ifz=F@{),y=F)
y—z l-y S 1, otherwise.

@2 & °it)2 +

By the monotonicity of F, the monotonicity and continuity of Fy, and (4.19) we now have

Rt} | (Fo(w) = F®)’ | (1= Fo(w)”
/;22 { Ig'(t) + F(u)— F(t) 1— F(u) } dH(t,u) > 1,

if F' # Fy. This contradicts (4.26).

As in the case of interval censoring, case 1, we get

P{ lim suplﬁ',,(t) - Fo(t)l = 0} =1
teR

n—+00

4.4. Exercises.

1. Let Fy be a continuous distribution function of a non-negative random variable, and
let g be a decreasing probability density on [0, 00), which is continuous on [0, o).
Show by the method of this chapter that the NPMLE is strongly consistent for the
deconvolution model, consisered in section 2.1.

49



The following exercises give an idea of the “entropy approach” in proving consistency. We
consider the interval censoring model, case 1, under the continuity assumptions, specified
in section 4.1.

2. Let F be the set of distribution functions on IR, and let A be the class of functions
{¢F : F € F}, where .

ér(z,t) = {z <t}W/F@)+ {z>t}/1-F(t) ,z,teR.

Let N3(8, Py, A) be the minimum number of balls with radius é§ > 0, needed to cover
the set A, using the L,-distance

lér — ¢olls = { / [6r(2,t) = bale )] dPu(z, )} G €,
where P, is the empirical measure of (X1,T1),...,(Xn,Tn). Show that
P{nlizxgon‘l log No(6, Pa, A) = o} =1.
3. Let Ao be the class of functions :[)F.: F € F}, where
Yvr(z,t) = i{(z,t)=¢po(z,t)>o}¢F(-'vat)/ ¢r,(z,t) ,z,t€ R,

and let N;(6, P,, A) be the minimum number of balls with radius § > 0, needed to
cover the set A, using the L,-distance '

léF — dalls & / |6r(2,t) — d6(z,1)| dPa(z, 1), F,G € F.

Show
P{nlin;on'l log Ni(6, Pa, A) = o} =1

(Hint: use Cauchy-Schwarz..)

4. Deduce from Exercise 3:
sup /¢p(x,t) d(Pn - P)(:L',t) — 0,
FeF

with probability one.

5. Let F, be the NPMLE of Fy. Show
0< /1og(¢';l,n)dp,, < 2/¢FndP,. -2
(4.28)
2
_ 2/¢pnd(Pn — P)(z,t) —2/{% — %5, )" dP.
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Deduce from Exercise 4 and (4.28) that, with probability one:
(4.29) /{"/’F‘n _ ¢F°}2 dP — 0, as n — oo.

6. Derive from (4.29) the strong consistency of F},. Can you give an interpretation of the
left-hand side of (4.29) in terms of a (squared) Hellinger distance?

Remark. The outline of the “entropy proof” of the consistency of the NPMLE in the
case of interval censoring, case 1, is based on a personal communication by Sara van de
Geer. For extensions and other approaches, see van de Geer (1990); in the latter report
also rates of convergence are derived by using entropy methods.
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5. DISTRIBUTION THEORY

Parts of the present chapter have a somewhat heuristic character in the sense that we N
use a working hypothesis which can be formulated as follows.

Working hypothesis. Starting with the real underlying distribution function Fp, the
iterative convex minorant algorithm will give at the first iteration step an estimator which
is asymptotically equivalent with the maximum likelihood estimator.

By “asymptotically equivalent” we mean the following. Suppose F,(,l) is the estimator
of Fy, obtained at the first step of the iterative convex minorant algorithm, with starting
distribution F(®) = Fy, and suppose

an(F,(,l)(t) — Fy(t)) 2 2, asn — oo,

where Z is some nondegenerate random variable, ¢t is a fixed point in the interior of the
support of Fy, a, is a norming constant, and where — denotes convergence in distribution.

Then also
an(Ea(t) = Fo(t)) B 2, as n — o0,

where F}, is the maximum likelihood estimator of Fp. '

The working hypothesis is supported by computer experiments, and certainly holds
(under some condition on Fy and G in the neighborhood of t) for interval censoring, Case
1, but so far there is no proof for the general situation. Roughly speaking, the fact one
would have to show is that “off-diagonal elements of the matrix of second derivatives of
the log likelihood function can be neglected” (some arguments for why this might be true
will be given below).

We will first demonstrate the method for interval censoring, Case 1. In this situation
the off-diagonal elements of the matrix of second derivatives of the log likelihood function
are zero. So we don’t have to deal with the problem mentioned in the preceding paragraph,
and still can demonstrate the general method.

5.1. Interval censoring, Case 1.

We will use the same set-up as in Section 4.1. The following result will be proved.

THEOREM 5.1. Let to be such that 0 < Fy(to),G(to) < 1, and let Fy and G be differen-
tiable at to, with strictly positive derivatives fo(to) and g(o), respectively. Furthermore,
let F,, be the NPMLE of Fy. Then we have, as n — oo,

n'/3{ Fa(te) — Fo(to)} /{3 Fo(to)(1 - Fo(to))fo(to)/g(to)}l/3 D2z,

52



where 2 denotes convergence in distribution, and where Z is the last time where standard
two-sided Brownian motion minus the parabola y(t) = t? reaches its maximum.

We first study the limiting behavior of F,Sl). To this end, we consider the process
W,(,O), defined by

61 WO = |

{Fo(t’)‘l 1acr) — (1= Fo(t)) ™ 1{x>t,}} dPa(z,1'), t > 0,
t'efo,1]

and the process GS.O),'defined by

62 690 = |

{Fo(t,)_2 1{:51'} + (1 - 1:'-"()(tl))_2 1{:>tl}} dPn(x, t'), t Z 0,
t'€[o,1]

le., W,(lo) and Gs,o) are defined in a similar way as the processes Wr and G, for interval
censoring, Case 2 (see (1.25) and (1.29)), with F = Fp.
Furthermore, we define the process /A% by

(5.3) VO ) = WO (1) + /[ (Fo(t") = Fo(to)) dGD(t"), t 2 0.

,t

The process V< has the following property.

LEMMA 5.1. Let the process UL be defined by
U(t) = n*P{VO(to + n73t) = VO(10)}, t € R,
where Ur(.o)(t) =0, ift < —ton'/®. Then U converges in distribution, in the topology of

uniform convergence on compacta on the space of locally bounded real-valued functions
on IR, to the process U, defined by

(54) U@t)= \/g(to)/ (Fo(to)(l — Fy(t))) W(t) + 3 Fo

Jo(to)g(to)
to)(1 — Fo(to))

where W is (standard) two-sided Brownian motion on IR, originating from zero.

t?2.te R,

PROOF: For t > 0 we can write:
(5.5) UO(t) = Paga(-,-;t),

where

z<u T>u
gn(z,u;t) = n2/31(t°’i°+n-1/3t](u) { {Fo(u)} B 1{'— FO(i)

+{.’Z S U}(Fo(‘u) - Fo(to)) + {::: > ’U.}(F()(U) —_ Fo(to))
Fo(u)? (1= Fo(u))? '
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We have:

) 1 fo(to)g(to)
(5.6) Ponls 1)~ 1 ) (1 - Fol@o)

)tz,asn——»oo,

uniformly for ¢ in a bounded interval [0, M]. Using the representation (5.5), it is eas-

ily checked that the process UL satisfies the following type of stochastic equicontinuity
condition: for each € > 0, § > 0, and M > 0, there exists a 6 > 0 such that

(5.7) lim sup IP { sup |U,(,°)(t) - U,(,O)(t')l > n}. <e.
n—o0 o<t t'<M, |[t—t'|<é

(a “tightness condition”). Moreover, the variance of U,(,o)(t) converges, for t > 0, to

g(to) y
Fo(to)(1 — Fo(te))

uniformly for ¢ in bounded intervals. It now follows from (5.6) and (5.7) that the process

U,(.O), restricted to [0, 00), converges in distribution to the process U, restricted to [0,00)
(in the topology of uniform convergence on compacta). Since a similar line of argument

holds for U£0) , restricted to (—o0, 0], the result follows. [ |

Remark 5.1. Lemma 5.1 can also be proved by a martingale argument. Note, for example,
that {n2/3 (W (to +n=1738) = WiV (20)) : ¢ > 0} is a martingale. For negative values of
t, we can use a martingale with time running backward.
We now define, for each a > 0, the random variable T,(,o)(a) by
(5.8)  T9(a) =sup{t € [0, T(w)] : V{O(t) — (a — Fo(to)) G (t) is minimal}.
Then the process
{(GD@O) (@), VTN (@) + Fo(ta)G(TIO(@)) : a € (0, 1)}
runs through the vertices of the cumulative sum diagram Sy, consisting of the points
P; = (GD(T(5), Vi (Tty) + Fo(t0)GP(T(3)), 1 <5 <,

and Py = (0,0).
In a similar way, we define the process {T'(a) : a € R} by

. g(to)t
Fo(to)(1 — Fo(to))

(5.9) T(a) = sup {t eR:U(t)—a is min.imal} ,
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where the process U is defined by (5.5). The processes T,(,O) and T are similar to processes
studied in Groeneboom (1988) and (1989). They run through the locations of the vertices

of the convex minorant of respectively, the process v (in the “time scale” Gs,o)) and the

process U. We now show that a rescaled version of the process T converges in distribution
(in the space D(IR) with the Skorohod topology) to the process T'. For completeness, we
define a Skorohod metric on D(IR). This is done in a similar way as it is done in Pollard
(1984), p. 123, for the space D[0, o).

Definition 5.1. For each finite M > 0 and each pair of functions z and y in D(IR), the
distance dps(z,y) 1s defined as the set of all those values of é for which there exist grids

S0 < 81 < - < Sk, and tg <ty < --- < tx,
such that so Vig < —M, sp At > M, |si —t;| <6, fori =0,...,k, and
|z(s) — y(t)| <6, if i < 5 < sit1, and t; <t < iy,

for i =0,...,k — 1. The weighted sum
d(z,y) = Z o~k min{1, di(z, )}
k=1

defines the Skorohod metric on D(R).

LEMMA 5.2. Let the conditions of Lemma 5.1 be satisfied, and let ap = Fy(to). Moreover,
let T,(.o)(a) be defined by (5.8) for a € (0,1), and let T,(,O)(a) =0,a <0, and T,(,O)(a) =
T(n),a > 1. Then the process

(5.10) {nl/s{T,(,o)(ao +n" )~} :a€ R}

converges distribution, in the space D(IR) with the Skorohod topology, to the process
{T(a) : a € R}, defined by (5.9).

PROOF: By a simple scaling argument, it is seen that

nl/3 {T,(,O)(ao +n~3q) - to }

= sup {t : U,(,O) t)—a- nl/a{Gf,o)(to + n'l/st) - GS,O)(to)} is minima,l} .
Since, with probability one,

g(to)t
(to)(1 — Fo(to))’

Lm Tll/3 {GS'?) (tO +n—1/3t) _ Gg))(t())} = 7
0

n—0oo
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uniformly for ¢ in bounded intervals, the process
(5.11) {U,(P)(t) —a-n*{GO(to + n71Pt) = GV (10)} : (t,0) € RZ}

converges in distribution (in the topology of uniform convergence on compacta), to the
process

_g(to)t 2}
5.12 U(t)—a- :(t,a) e R" 5.
512 GRS o o B
It is proved below (Lemma 5.3) that for each ¢ > 0 and M; > 0 an M; > 0 can be
found such that

(5.13) P sup n1/3|T,(,°)(a0 +n"Y3a) - to| > M, } <,
a€[—Mi,M] ‘

for all sufficiently large n. The process {T'(a) : a € IR} is a function of the process (5.12),
and it is shown in Groeneboom (1989) that {T(a) : @ € IR} is an increasing Markovian
jump process, with almost surely a finite number of jumps in each finite interval and that
{T(a)~ fo(to) a: a € IR} is a stationary process. Therefore, by (5.13) and an almost sure
construction, similar to Theorem 2.7 in Kim and Pollard (1990) (which is a form of the
continuous mapping theorem that can be used for “argmax functionals”), it follows that’
the process (5.10), considered as a function of the process (5.11), converges in distribution
(in the Skorohod topology) to the corresponding function of the process (5.12). However,
the latter function is just the process {T'(a) : a € IR}. ] '

The following lemma establishes (5.13).

LEMMA 5.3. For each € > 0 and M; > 0 an M, > 0 can be found such that

P {ae[inz\?fMl] nl/s{T’(lo)(ao + n_l/sa) — 1o } > 'Mg} < e,

and

F {aE[—n}éI?;MI] n1/3{T£0)(ao + n"l/sa) —_ to} < "MZ} <,

for all sufficiently large n.

PROOF: We only prove the first inequality, since the second inequality can be proved in a
completely analogous way. First note that

P {ae[fln?ffm] '3 {T\ (a0 +n/%a) - to} > M2}

=IP {n]/3{T’£0)(a0 + Tl—l/aM]) - to} > MQ}
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since the process T is nondecreasing. Furthermore,
P {n'*{T (a0 + n ™" M1) — 10} > My }
<P {U,(lo)(t) —n'/3 M, {GS,O)(to +n~3¢) — Ggo)(to)} < 0, for some t > M2} .
We have
n=23UO () — n3My - (G (to + 07 31) — GO(20)}

= VOt + n7134) - VOO (t0) = n 7 3M { GO (20 + n13) — GO (40)}
= W (to + n713t) - WO(to)

+ / (Fo(t') = Fo(to) — n= /334, }dGO (¢').
[to,io+n—llst]
The process {W,(,o)(to +u)— W,(,o)(to) : u > 0}, is a martingale with respect to the
self-induced filtration {F, : u > 0}, where
fu = U{W,SO)(to + u') - W,(,o)(to) :0 S u' S u}

Let Z,(,O)(u) = {W,(,o)(to +u)— W,(;O)(to)}z, then {Z,(,o)(u) : u > 0} is a submartingale and,
by Doob’s inequality:

| 0) A 9(to)
P {ossll_guo z (u)} S 4PZ0 (o) = 4n” {Fo(to)(l — Fy(t0)) to O(u?,)} ’

if up satisfies Fo(to + up) < 1. So in particular we get, for ¢ > 0 and A > 0:

P {3u € [ - Va7, jn71P) : 0P WO (o + ) - WO (t0)| > i — 1)° + 4}
4 S PZOGn ) [{e(j - 1) + A)°
= 4?3 {n e jn Y [{e(G - 1)* + A} = -5 /{e(G — 1)? + A},

-1/3  for

for some constant ¢ > 0, if 0 < jn~/® < uy, where ¢ does not depend on jn
jn 8 <y '
< uo.
By the same arguments as used in Lemma 4.1 in Kim and Pollard (1990), we get from

this that for each € > 0 there exist random variables A, of order O,(1) such that
(5.14) [WO (o +u) — W (to)| < eu® +n2/24,, if 0 < u < u,.

By the fact that Fp is differentiable in g, with a strictly positive derivative fo(to),
there exist, for each M > 0 and > 0 an M; > 0 and € > 0 such that
(5.15)

{Fo(t") = Fo(to) = n *M; }dG®(¢') > max{Mn~%/* eu®}, Vu € [Man~"/3 ),
{to,to+u]
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with probability bigger than 1 — 7. Combining (5.14) and (5.15) we get
P {U,(,O)(t) —n!3 M, {GS."’(to + n"l/at) - GS,O)(to)} < 0, for some t, My <t < uon1/3}

and the last expression can be made smaller than 27, by taking M sufficiently large.
Finally, we have to deal with the behavior of the process for values of ¢ > uonl/?,

where ug is chosen in such a way that Fy(fo + ug) is close to 1. But for these values of ¢
the process

UO(t) — nAM {GO(to + n~13) — GO ()}, £ > 0,

will be increasing for all sufficiently large n, since negative terms of the form
—1/{n(1 - Fo(T(»)) }
in the martingale part of the process will be compensated by terms of the form
- - 2
n~H{Fo(T») = Fo(to) —n™ M1}/ {Fo(Ti) (1 - Fo(Ty)) )

in the “drift” part of the process. |

The distribution of the 1-step estimator ,(,1) at tp can now be found by using the

following relation between ) and TE:

(5.16) P{F{V (o) — Fy(to) > 2} = P{TV(ao + z) < to}.
Relation (5.16) is easily verified by drawing a picture of the situation. The preceding
results yield the limiting distribution of F,(,l)(to).
THEOREM 5.2. For each z € IR we have
Jim P {n!/*{FM(to) - Fo(to)} > :z:} = P{T(0) > c- z},

where T'(0) is defined by (5.9), and where

(5.17) c = fo(to)_l.

PROOF: Using (5.16), we only have to consider
P {T,(lo) (ao + zn'1/3) < to} .
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But we have, by Lemma 5.2, for fixed = € IR,

P {T,(,o) (ao + zn_l/a) < to}
=P {n1/3{T,(,°) (a0 + :L'n"l/3) —t} < 0} — P{T(z) < 0},

as n — oo. Using the stationarity of the process {T'(a) —c-a : a € IR}, proved in
Groeneboom (1989), we get

P{T(z) <0} = P{T(z) —c-z < —c-z} = IP{T(0) < —c- z}.
The statement now follows from the fact that T'(0) has a density which is symmetric about

Zero. [ |

We will now derive the asymptotic distribution of Fj(t¢), where F, is the NPMLE. We
first show that the distance between F,(t) and Fy(to) is Op(n~*/3), for t in an interval of
the form [to — Mn=/3,ty + Mn~1/3].

LEMMA 5.4. For each M > 0 we have:

sup Iﬁ’n(to + n_l/at) - Fo(to)l = O,,(n"l/a).
tE[—M,M] -

PROOF: We first show that the probability that (for large n) F,, does not have a jump in
an interval of the form [to — Mn~1/3,t, + Mn~1/3] can be made arbitrarily small by taking
M sufficiently large. Specifically, we will show that for each € > 0, there exists an M > 0
such that

(5.18) P {ﬁ‘,,(to — Mn~13) > Fo(to)} <e

for all large n. Since it can be shown in a similar way that for each € > 0, there exists an
M > 0 such that

(5.19) P {Fu(to + Mn™*) < Fio(t0)} < ¢,
for all large n, we get that
Fn(to _ Mn—lls) < Fo(to) < Fn(to + Mn-lls),
with probability > 1 — 2¢ for all large n and a suitably chosen M, implying that Fn hasa
jump in [to — Mn=1/3 ty + Mn~1/3].
For the proof of (5.18), we will assume, as in Proposition 1.1, that é;) = 1 and

8(n) = 0, since, by the assumptions on Fy and G, we -can always assume that (for large
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n) there exist observation times T; and T; such that Ty < Tj, 6 = lix.<Ti} = 1 and
8; = 1{x;>1;} = 0 (see the discussion in the first paragraph of the proof of Proposition
1.2).

Let 7, be the last jump time of F,, before ty — Mn—1/3, ie.,

Tn = max{t < tp — Mn=3 : Fo(t-) # Fn(t)}

By the assumption just made, T, is, for each large n, the maximum over a non-empty set,
since T(;) belongs to that set for all large n. By Proposition 1.1, we must have

é; 1-—46;
2 {Fn(T.-) 1 —Fn(fn)} =0

T STi <1y

for all T;) > Tn. Hence, if Fo(to — Mn™1/3) > Fy(to), we get

bi 1-6; & 1—¢
(5.20) > ){Fo(to)—l_Fo(to)}Z Z {Fn(Ti)—l—Fn(Ti)}?—O’

Tn ST;<T(J fn5ﬂ<71(j)

for all Ty > Tn. But we have

é; 1-—6;
Z:l {FO(tO) C1- FO(tO)}
Tn STi<to—3 Mn-1/3
_ . Fo(T.) _ 1- Fo(T,) 6;‘ - FO(Tt)
B 2 {FO(tO) 1 — Fo(to) + Fo(to)(1 — FO(tO))} '

(5.21)

r,.ST.'<to—%Mn-1/3
The right-hand side of (5.21) can be written

{Fo(to)(1 = Fo(to))} ™ > {6 = Fo(T:) — (Fo(to) — Fo(T1)) },

f,,Sﬂ(to—%Mﬂ'lls

and by a similar technique as used to derive (5.14) (using a martingale with time running
backward), we get

P{ sup Z {6. — Fo(T,) - (Fo(to) - Fo(T,))} > 0} < €,

t<to—~Mn-1/3 1
t<Ti<to—5Mn-1/3

for M and n large. This, however, contradicts (5.20), and (5.18) follows.

The remaining part of the proposition is proved in a similar way. Using the same
arguments as above, one can show that, for large M > 0, F}, will have with high probability
a jump in the interval

[to_— 2Mn—1/3, to — MTI._]/3].
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Let 7, be such a jump time, and suppose that
Fu(ta) € Fo(to — c-n71/3),
where ¢ > 2M. By Proposition 1.1 we have

6 1-—-6;
(5:22) 2 {ﬁ,,(T,-) T1c F,,(T,-)} =0

T(j)<Tismn

for all T(;jy < T». On the other hand, if Fr(ms) < Fo(to — ¢ - n~1/3), we get

é; 1-—6;
2 {ﬁ,,(:r.-) 1 -F,,(T.-)}

to—cn—1/3<T; <1y

b; 1—6;
> -
- Z {Fo(to—c-n—llf*) 1_F0(t0_c.n-1/3)}’

to—c-n'1/3<T;STn

and
| b; 1 — 6
n-]/3 { 1 _ f }
to—c'n-;<7’isfn Fo(to —C:- n—1/3) 1 -_— FO(tO —C- n"l/3)
- Fo(T3) 1— Fo(Ty) }
f— 1/3 0 _

io—c-n‘1/8<TiS‘rn

6; — Fo(T;
)y (T3)

-1/3
T Fo(to — c-n=1/3)(1 — Fy(tg — ¢ - n=1/3))’

to—cn—1/3<LT; <7y

The last term at the right-hand side of (5.23) has expectation zero and a variance which
is asymptotically bounded above by

(c — M)g(to)/{ Fo(to)(1 — Fo(t0))}.
The first term at the right-hand side of (5.23) is (almost surely) asymptotically bounded

below by
3 (c — 2M)? fo(to)g(to) / { Fo(to)(1 — Fo(to)}.

This implies that, with high probability, (5.23) will be strictly pbsitive, for large n and large
¢ (with c only depending on M). This contradicts (5.23). Hence, with high probability

(5.24) Fa(to — Mn™/%) 2 Fu(ra) 2 Folto — en™'/?).

Combining (5.18) and (5.24) we find that for each € > 0 there exist positive constants ¢
and M such that

P{Fo(to —Vcn_l/a) S Fn(to - Mn_lla) S Fo(to)} >1- €,
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for all sufficiently large n. Likewise we get that for each ¢ > 0 there exist positive constants
c and M such that

P{Fo(to + Cn_l/a) Z Fn(to -+ Mn—l/s) Z Fo(to)} >1—e

The lemma now follows from the monotonicity of F. |
We can now give a proof of Theorem 5.1.

PROOF OF THEOREM 5.1: Fix an interval [to — Mn~1/3,to + Mn~/3], where M is a
positive constant, and let 7,7 and 7} be, respectively, the last jump time < ¢t — M n=1/3
and the first jump time > to + Mn=1/3 of F,. By Lemma 5.4 and the strict monotonicity
of Fy at to, we have 77 — to = Op(n~!/?) and likewise 7} — to = Op(n~1/3). The convex
minorant of the process Vy, , defined by (1.30) coincides on the interval (7., 7;}] with the
convex minorant of the process Vj, , restricted to the interval (77 ,7¥]. Moreover, also by
Lemma 5.4, the process

(5.25) A,
t on2/3 {WI:",. (to -+ n’1/3t) - WF.. (to)}

+ n?/3 / (Fu(t') — Fo(to)) dGy (t') - n?/3 /
[0,t0+n—1/3¢] |

0,¢

| (Fn(t') — Fo(te)) dGy, (t')

converges in distribution (in the topology of uniform convergence on compacta) to the
process {U(t) : t € IR}, defined by (5.4). This means that the process

(5.26) t > 013 Fu(to + /%) — Fo(to))

will converge in distribution (in the Skorohod topology) to the left derivative of the
convex minorant of the process U, since, for each M > 0, jump times 7, and 7,
can be found, defined as above, such that the process (5.26) coincides on the interval
(—nt3(tg — 1;7),n /3(r} — 19)] with the left derivative of the convex minorant of the pro-
cess (5.25), restricted to this interval. This shows that the process (5.26) has the same
limiting distribution as the process

(5.27) t s n3{FD (2 4+ n7/3t) — Fy(to)}.
Hence we get from Theorem 5.2:
Iim PP {nI/-”{ﬁ',,(to) — Fo(to)} > z} = P{T(0) > c -z},

where T'(0) is defined by (5.9), and ¢ = fo(to)™! (see (5.17)). Thus

P {nl/f’{ﬁ,,(to) — Fo(to)}/ {1 Fo(to)(1 — Fo(to))fo(to)/g(te)} '/ > 'w}
(5.28) 1/3
- P {T(O) > z{%Fo(to)(l - Fo(to))/{g(to)fo(to)z}} } , L — 00.
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Now T'(0) is the last time where the process

fo(to)g(te) -
to)(l — Fo(to))

reaches its minimum. By Brownian scaling (i.e., the property that ¢t — W(t) has the same
distribution as ¢ — c¢~/2W(ct), for each constant ¢ > 0), this means that

s W (£ otta)/ (Bo(t0)(1 ~ Fota))) + 57

(5.29) 17(0) / {1 Futta)1 = Fufto))/{o(to) o)} |
is the last time where
11— W(t) + 2

reaches its minimum. Using the symmetry of the distribution of Brownian motion with
repect to the time axis, this means that (5.29) has the same distribution as the last time

where
t— W(t) —¢2

reaches its maximum. The result now follows from (5.28). ]

5.2. Interval censoring, Case 2.

We shall prove the following result for the 1-step estimator ,(,1).

THEOREM 5.3. Let Fy and H be differentiable at to and (9, t0), respectively, with strictly
positive derivatives fo(to) and h(to,t0). By continuous differentiability of H at (to,%0) is
meant that the density h(t,u) is continuous in (t,u) if t < u and (t,u) is sufficiently close
to (to,t0) and that h(t,t), defined by :

h(t,t) = lim h(t,u),
ult
is continuous in t, for t in a neighborhood of t,.

Let 0 < Fy(to), H(to,t0) < 1, and let F\") be the estimator of Fy, obtained at the first
step of the iterative convex minorant algorithm. Then

(rlogn)/* {F{(to) ~ Fo(to)}/ {1 folta)*/h(to, ta)}"* B 22,

where Z is the last time where standard two-sided Brownian motion minus the parabola
y(t) = t? reaches its maximum. '

According to our working hypothesis, formulated at beginning of this chapter, this
leads us to believe that the NPMLE has the same limiting behavior at to as F. Pro-
ceeding as before, we introduce the processes W and G defined by

W,(IO) = Wpg,, and GS,O) = GF,,
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where W, and GF, are defined by (1.25) and (1.29), respectively. The process Vi is
defined as in (5.3). We have the following result for Vi,

LEMMA 5.5. Let §, = (nlogn)~1/* and let the process US") be defined by
UQ(t) = 67%(log n) " {Vi{O (o + 6at) — VV(t0)}, t € R,
where U,(,O)(t) =0, ift < —tp6;'. Then v converges in distribution, in the topology of

uniform convergence on compacta on the space of locally bounded real-valued functions
on IR, to the process U, defined by

(5.30) U(t) = \/2h(to, to)/ folte) W(t) + $hlto, to)t?, t € IR,

where W is (standard) two-sided Brownian motion on IR, originating from zero.
PRrOOF: We first show that the process

(5.31) t > 872(log n) " {WED (to + ént) — W (t0)}, > 0

converges, in the topology of uniform convergence on compacta, to the process

(5.32) t = y/3hto, t0)/ fo(to) W(t), t 2 0.

It is clear that the process (5.31) is not a martingale, but by removing some terms, it can
be made a martingale. Fix M > 0 and define the sets of observation times A, and B, by

An ={T,' € (to,to +M6n] Ue=T; > M6n}

5.33
(5:33) U {U; € (to, to + M6,) : U; = T; > M6y},

and
(5.34) By, = {T; € (to,to + Mé,) : T: ¢ An} U {Ui € (fo,t0 + Mé,] : Ui € An}.

Furthermore, define the proceéses Wn,1 and Wy, 2 on [0, M] by

W,-,,_l(t) = 6;2(10g n)'l / . dW,Eo)(t’),
t’G(to,¢o+6ni],t'€An

Waa(t) = &3(ogn)™ | W),
t'E(tO,tO"'&nt],t’eBn

for t € [0, M]. Then we get

max [Wn2(t)| < 87%(rlogn)™ Y |[AW,,(T(y)),
t€lo. M} T(iyEB,
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where the AW, 2(T(;)) are the jumps of the process W, ;. Computing expectations and
using Markov’s inequality, we obtain, for € > 0,

P{ max _|W, 2(t)] > e} < 26“15;2(logn)—1/

dH(t,u) = O((logn)™).
te[o,M] t,u€(to,to+Mép} ( ) . (( g ) )

On the other hand, the process t — W, 1(t) is a martingale, and a straightforward
computation shows that the variance of W, 1(t) is given by
1 1

t/ €(to,to+16,), u—t'>Ms, L Fo(t')  Fo(u) — Fo(¢'
1 1

+Tl6,2l/ { + }dH tlyuv
u€(to,lo+1t6n}, u—t'>Méy, FO(U) - Fo(t') 1- FO(“) ( )

which is asymptotically equivalent to

)} dH(t',u)

2h(to,t0)/ fo(to)t, t > 0.

This shows that the process (5.31) converges to the Wiener process (5.32). Since a similar
argument holds for negative values of ¢, we get that the process

t s 672 (logn) " H{WE (2o + bnt) — WO(20)},

converges, in the topology of uniform convergence on compacta, to the process

t s y/3h(to, o)/ folta) W(2), t € I
Since, for each M >0
P{Ti < X; LU, T;,U; € [to,to + M5n]} ~ %fo(to)h(to,to)Matsi,

we get '
P{T,' < Xi LU, T;,U; € [to,to + Mé,], for some z}
<nlP{Ty < X; < U1, Ty, Us € [to,to + Mé,)}

~ th(to,to)M3(logn)™ — 0, as n — oco.
Furthermore, with probability one,

5%y | Ry(t) = Fuft)
" ¢/ €lto,to+6nt],' <z<u,u—t'>Mé, (Fo(u) — Fo(t'))

= dPy(z,1',u) — 3h(to,t0)t?,

and likewise

o | B(v)= Rt
u€lto,to+6nt],t' <z <u,u—t'>Mén (Fo(u) — Fo(t))

5 dPn(z,t',u) — 1h(to,t0)t?,
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uniformly for ¢ in a bounded interval [0, M], as n — oco. Since similar relations hold for
t < 0, the result now follows. ]

Next we define, in analogy with (5.8), for each a > 0, the random variable T; r(;o)(a) by

T (a) = sup{t € Jn : V{O(t) = (a — Fo(to)) GtV (t) is minimal},

where the index set J, is defined as in Definition 1.1. Likewise, in analogy with (5.9), we
define the process {T(a) : a € R} by

 2h(to, o)t

(5.35) T(a) = sup {t ER:U(t)—a 3fo(to)

is minimal} .
Lemma 5.2 now leads us to expect that
{6;1{1*'(10)(@ +éna)—to}: a€ R}
will -converge in distribution to the process {T(a) : a € IR}. This is indeed the case. The

proof is similar to the proof of Lemma 5.2, where the (crucial) Lemma 5.3 is replaced by
the following lemma.

LEMMA 5.6. For ea;:h € >0 and M; > 0 an My > 0 can be found such that

-1 (0) -
P {ae[—x-nlt?f{,MI] 67 {Tw (a0 + 6na) — to} > Mz} <€

: —1 {r(0) N _
P {QE[—I:%I{?,MI] 6" {Tn (ao + 6"0) tO} < M2} < €,

for all sufficiently large n.

PROOF: We (again) only prove the first inequality. First note that

P {ae[ﬂ?ffud 5 {T(ag + 6na) —to} > M2}
=P {5;1 (T (ao + 6 M) — 1o} > Mg} .
Furthermore,
P {5;1 (T (a0 + 6a M) —to} > My |
<P {U,<,°>(t) — (8nlogn) ' My {GI)(t0 + bat) — G(t0)} < O, for some ¢ > Mz} .
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Similarly as in the proof of Lemma 5.3, we have

82(log n)ULY (t) — En(log n) My - {GP)(t0 + 8nt) — G (t0) }
= VO (to + bat) — VO (to) — 67 Mi{GD (to + ént) — G (t0)}
= WD(to + 6at) — W (to)

+ / {Fo(t') — Folto) — 62, }dCO ().
[to,to+6nt]
Let the process X,, be defined by
Xa(t) = 67%(logn) ™! {W,(,O)(to 1) — W,<,°>(to)} t>0.
We first derive an upper bound for the probabilities
P{|Xa(j6s)| > € +m}, i =1,2,...,

where € and m are arbitrarily chosen positive numbers.
Let the sets of observation times Ay ;j and By ; be defined by

An,j = {Tx € (tO,tO +]6n] : FO(Ul) - FO(TI) > 6n}
U {U; € (to,to +j5n] : Fo(U.) - Fo(T,‘) > 5,,},
B, = {Ti € (to,to + j6n) : T & An,j} U {Ui € (to,t0 +6n) : Ui ¢ An,j}.

Furthermore, let the random variables X, ; and X, ; be defined by

X, = / | dX a(t),
t€(0116ﬂ11 teAn,j

and ' '
xv, = / dXn(t).

t€(0,56n), t'€Bn,;

We have:

P{|X, ;1 > }(e5% +m)} < 4P (X, 5(i8))*/(ef* +m)

<c-n"16;4(logn)™? {j5n}/(€j2 + m)?
= ]/(6]2 + m)z,

and

P{X1 | > 3(e5* + m)} < 2P|(X 1/ (e + m)
< c-6;%(logn)"16% /(e + m)
= c/{(ej* + m)logn},
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for some constant ¢ > 0, not depending on j, if jé, satisfies 6, < 6, and § > 0 is chosen
in such a way that ¢t — fo(¢) and ¢t — h(t,t) satisfy the local positivity and continuity
conditions of Theorem 5.3 in the neighborhood [tg,%o + 6]. Moreover, we use the fact that,
if to < T; < Ui < to+ jbn, terms of the form £{T; < X; < U;}/{Fo(U;) — Fo(T;)} will give
no contribution to Xy, ; n.j OF Xy ;, since these terms will occur with opposite signs and will

cancel in the summatlon
We also have:

]P{tes[up [Wai()] > 1(es?2 +m)} < 4P (Wy1(60))° /(e] +m)?

< c/(ej® + m)?,

P{ sup Ian(t)|> 1(e? +m)}<c/{(e_7 +m)logn}
tef0,6,)

for some constant ¢ > 0, where W, ; and W, ; are defined as in the proof of Lemma 5.5,
with M = 1. Hence

P{ sup |Xn(t)] > 1(es? +m)}<c/(ej +m)? +c/{(ej® + m)logn}.

t€[0,6,]

It is clear that we get the same kind of upper bound for

S

if 6, < 6. Combining these results, we obtain that for ¢ > 0 and m > 0:
P{3t € ((j — 1)6n,jba] : |Xn(t)| > €(j — 1)* + m}
<c-j/{e(i —=1)* +m}’ +c/{(e(j — 1)* + m)logn},
if 76, < 6. As in the proof of Lemma 5.3 (see (5.14)), this yields
65| Xa(t)| < €t® + 62Rn, f 0 <t <6,

where R, = Op(1).
As in (5.15), there exist, for each M > 0 and n > 0 an M, > 0 and € > 0 such that

(logn)~! /[ (Fo(t') — Folto) — 62 M1 }dCO(#) > max{ M2, eu?},
to,to+u
Vu € [Maés, 8],

with probability bigger than 1 — 5. This is easily checked by taking a constant k£ > 0 such
that
Fo(k5n) - FO(tO) Z 6an,
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and by splitting the points of increase of GS’) on the interval [to,to + ké,] into two sets
A, and By, as in (5.33) and (5.34), with M replaced by constant k. On the interval
[to,to + kbn] we replace the integral by an integral over points T; and Uj;, belonging to
the set A,, and use that the probability of having an observation point in B,, giving a
non-zero contribution to the integral, will tend to zero, as n — oo. On the remaining
interval we also remove points T; and U; such that U; — T; < 6,, showing that, with a
probability tending to one, the integral

(logn)™? /{t . {Fo(t") = Fo(to) — 6 M: }dGO(¢")

is bounded below by a term which is asymptotically equivalent to

2 no__ _ h(t?t)
3'/[;o,io+u]{F0(t) Fy(to) 6an}——f0(t) dt.

Combining the preceding results, we obtain
P{UP(t) - 8 Mi(logn)  { G\ (t0 + 8nt) - GP(t0)} < 0,
for some t, Maé, <t < 6}
SP{An>M} +1,
and the last expression can be made smaller than 27, by taking M sufficiently large.
Finally, we have to deal with the interval [to + §, 00). But on this interval we will only
get jumps downward, if

(5.36) —AW(Tii)) 2 {Fo(Tip) = Folto) = 6n M1} AGT (T(s)),

where T{;) is an observation point in {¢o + é,00), and where AW,(.O)(T(,-)) and AGs,O)(T(,-))
are jumps of the processes W,(,o) and GS,O), respectively. But this can only happen if

n|AWO(Tiiy)| < {Folto + 6) — Fo(to) — 6aM1} 7,

implying that the sum of the terms AW,(,O)(T(.-)), satisfying (5.36), for T(;) € [to + 6, 00), is
bounded below by a fixed constant. But since, for some constant ¢, 0 < ¢ < 1,

/ {Fo(t) — Fo(to) — 6aM1}dGO(t) > c|[W (2o + 8) — W (1o))|
[to,to+6]
with a probability tending to one, and since
/ {Fo(t) = Folto) — 6. M: }dGO (1)
{to,to+6]
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will tend to co with probability one, we will get

WO (1o + t) — W(20) + / {Fo(t') — Fo(to) — 6nM; }dGQ(¢') > 0, Vt > to + 6,

[to,to+1]

with probability tending to one. |

Using Lemma 5.6, we can now give a proof of Theorem 5.3. The proof is quite similar
to the proof of Theorem 5.2.

PROOF OF THEOREM 5.3: First of all, similarly to (5.16), we have:
P{F{"(to) — Fo(te) > éna} = P{T " (ao + 6na) < to}.
Moreover, using Lemmas 5.5 and 5.6, we get that the process
{5;1 (T (o + 6na) — 1o} : a € R}

converges in the Skorohod topology on D(IR) to the process {T'(a) : a € IR}, defined by
(5.35). As before, the process

{T(a) - fo(to) 'a: a € R}

is stationary, since T'(a) is the last time where

t s 1/ 2h(to, to)/ folto) W(2) + $h(to, t0) (t — fo(to)a)’, t € IR,
is minimal. Hence,
P {67 {FP (o) = Fo(to)}/ {1 fo(to)? /hta, 1)} > = }
S P {T(O) > m{gfo(to)h(to,to)}'”"'} , = 0.
Néw, T(0) is the last time where .
t — W (3h(to,t0)fo(t0)) + 3h(to,0)fo(to)t
reaches its minimum. By Brownian scaling, this means that

1T(0){35 fo(to)h(to,%0)} o T(0){2 fo(to)A(to, 750)}1/3

is the last time where
t— W(t)+1t,t e R,

reaches its minimum. |

As afinal step in proving that the NPMLE F), has the same limiting behavior as F,(,l), :
one would have to prove two things:
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(1) Fo(t)— Fo(to) = Op(6s) , for t in an interval of the form [to — M6, to + Mé,] (compare
with Lemma 5.4).

(2) The process
t 6,2 {Wp" (to + bat) — an}
, +6;2/ Fn(t') = Fo(t0)) dG 4, (¢'
(5.37) [O,tmnq( (') — Fo(to)) dGp, (t)

—6* [ (Bult) — Fo(w) G, ()
{0,t0]

has the same asymptotic behavior as the process U1(10), defined in Lemma (5.5) (note
that UL is (5.37), with F}, replaced by F,S”). Assuming that the §;!-consistency of
property 1 holds, we can, for t > 0, write (5.37) in the form

U,(IO)(t) _ 6;:2 / Fn(u) - FO(u’) > dPn((E,t’,U)
to<t'<to+8nt, t'<z<u (Fo(u) — Fo(t'))
(41 !
-52 [ Do) = Blt) p, (2, t,u) + Ralt),
to<u<to+ént, t'<z<u (Fp(u) — Fo(t'))

where the process t — Ry(t) will vanish in the limit, with a similar expansion for ¢ < 0.
The reason for believing that the other two processes added to U,(,o)(t) will also vanish in
the limit, is that the integrands will have both positive and negative terms at the points
t which have positive mass (since, roughly speaking, the expectation of f‘n(t) — Fo(t)
will be zero), and that Fn(T(sy) — Fo(T(iy) and Fu(Ty;)) - Fo(Tjy) will (most likely) be
almost independent for T{;) and T{;) far apart, (say |T(;) — T(;)| > n~1/3logn). The
latter property is in contrast with the behavior of a term like

52 / Fo(t') = Fo(t")
" i<t <totbat, t'<z<u (Fo(u) — Fo(t'))2

dPp(z,t',u),

where the restriction of ¢’ to the interval (¢o, o + 6,t] causes strong dependence of terms
. of the above type.

The conjectures mentioned here have actually been supported by computer exper-
iments, which also gave support of the conjecture that the asymptotic variance of the
NPMLE at to has the form

{3folto)? /hto, o)} 4(EZ)82,
given in Theorem 5.3.
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5.3. Deconvolution with a decreasing density.

We consider the situation, discussed in Section 2.1. In this set-up we shall prove the
(1)

following result for the (fictitious) 1-step estimator Fy ’.
THEOREM 5.4. Let g be a right-continuous decreasing density on [0,00), having only a
finite number of discontinuity points ap = 0 < a; < -+ < am. Moreover, suppose that g
has a derivative g'(z) at points = # a;, 1 = 0,...,m, satisfying
1 \2
(5.38) / 9=) 4 < o,
(0,00) 9()

where the integrand is defined to be zero at the points a; and at points z where g is zero,

and where ¢’ is bounded and continuous on the intervals (a;_1,a;),t=1,...,m+ 1, with

def
Am+41 = X,

Furthermore, assume that there exist positive constants k; and ks such that the deriva-
tive ¢' of g satisfies the relation

lg'(t + u)| < ka1lg'(2)],

for allt > 0 and 0 < u < ko, such that a; <t <t+ u < a4+, for somei, 0 <i<m.
Let the convolution density h be given by

h(z) = /g(z —z)dFy(z), z > 0,

where the distribution function Fy of the (non-negative) random variables X;,1 < i < n,
is continuously differentiable at zo > 0, with derivative fo(20) > 0 at zo. Then

nl/3 {F'(ll)(zo) - Fo(zo)} fo(zo)—1/3{2 Xm:(g(ai) _ g(ai—))z/h(zo + ai)}l/a D 22,

=0

where 2 denotes convergence in distribution, and where Z is the last time where standard
two-sided Brownian motion minus the parabola y(t) = t? reaches its maximum.

Example 5.1. If g is the uniform density on [0, 1], then the two discontinuity points are
ao = 0 and a; = 1. Since we define g to be right-continuous, we get g(0) — g(0—) = 1
and g(1) — g(1-) = —1. Let Fy(1) = 1, i.e., the probability distribution of the X;’s has
support contained in [0,1]. Theorem 5.4 now yields:

n1/3 {F,gl)(zo) _ Fo(zo)} /{%Fo(zo)(l - Fo(zo)fo(zo)}1/3 397

since
m

3 (9(as) = 9(ai-))* [h(z0 + ai) = 1/{ Fo(20)(1 ~ Fo(z0)}

=0
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in this case.
It can also be deduced from Exercise 2 of Chapter 2 that in fact

n'/3 {Fn(ZO) - Fo(Zo)} /{%Fo(zo)(l - 1"'0(2'0)f0(zo)}1/3 2 2z,

where F, is the NPMLE of Fy. The latter result is also given in van Es (1988), Theorem
4.5, where it is shown that the variance of the NPMLE corresponds to a lower bound for
the minimax risk of estimating Fp at zo, apart from a constant not depending on Fy and
the density g¢.

Example 5.2. If g is the exponential density on [0, c0), with scale parameter 1, Theorem

5.4 yields:
1/3 D,

1/3{F(1)(Zo) - Fo(zo)}/{ fo(ZO)h(ZO)}

According to our working hypothesis, we study the process 1A , defined by

VO (t) = Wro(t) + /[ (Rolt) = ()} dGr(t), ¢ 20,

For convenience of notation, we shall denote Wg, by Wi and Wg, by G?. The following
limit result holds for the process Vi,

LEMMA 5.7. Let, under the conditions of Theorem 5.4, the process U,(‘o) be defined by
UO(t) = n2/3{V,f°)(zo +n713) — V,So)(zo)}, te R,

where U 0)(t) =0, ift < —n!/3ty. Then v® converges in distribution, in the topology of
uniform convergence on compacta on the space of locally bounded real-valued functions
on IR, to the process U, defined by

U0 ={3"(9(as) - o(aim) Mz +a)} WD)

1=0
- 2
+ %{Z(g(a‘) = 9(ai=))"/h(z0 + ai)}fo(zo)tz, t € R,
=0
where W is (standard) two-sided Brownian motion on IR, originating from zero.

PROOF: We have, for t > 0:

n23 (WO (2o + tn71/3) — W (20)} = n?/ > AW (Z)

| 20<Z¢iy<zo+tn—1/3
(5.39) o=

— 2/3 g(z—17)—g(z=71}) .
/ [ 9(z — z) dFy(z) dHa(z),
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where 7, and 7,7 are defined by

T, =max{Z;: Z; < 20}, and h = max{Z;:Z; £ 2o +tn_1/3}.

This follows from the fact that

Z / 9(z — Z(iy) — 9(2 — Z(it1)) dH(2)

zo<Z(;)Sz°+gn—1/s fg(z - Ji)dFo(.'E)

 [demr)—ee=)
_/ J 9(z — ) dFo(z) dHn(2),

(telescoping sums). It now follows from (5.38) and the representation (5.39) that the
variance of

(5.40) n? WO (20 + tn %) = W(2)}

converges to

. Z(g(a,-) - g(ai;))2/h(20 + ai))

=0

since the remaining part of the variance of (5.40) is bounded above by

c.n-1/3 g'()? -
/ 9(z) -

Here we use that, for some § > 0,

4

(9(z — 20) — g(z — 20 — t - n~1/3))?
/ ") ¢

_ 2
<o [Uemmmstemzomt ),
g(z —z9 —t-n-1/3)

which follows from the fact that the density fo satisfies fo(z) > € > 0, for some € > 0, in
a neighborhood [2¢, 29 + 7] of 2o, implying

h(z) > 3g(z =20 —t-n" ) en,
for large n. We also use the boundedness and continuity of ¢' on intervals between points

of jump of g and apply the mean value theorem.
Next we note that, under the conditions of the Lemma,

/ gz = z0) — gz = 20— tn77) dHo(z),= 0

S 9(z — z) dFo(z)
74



and by empirical process theory it is easily seen that the process
-1/3
2/3 g(Z—Zo)—g(Z—Zo—tn )dH - H
A e PP Y G

converges in distribution, in the topology of uniform convergence on compacta on the space
of locally bounded real-valued functions on IR, to the process

to {3 (o(ai) - glaim)) /h(zo +a)} | WD), 120

=0

Since 7,7 — zp and T} — 25 — tn~!/3 are O,(n~!logn), uniformly in ¢, the process (5.39)
has the same limiting behavior.
Similarly, defining GV =¢c Fo, We get that the process

n2/3 / (Fo(#') = Fo(t)} dGO(#), t > 0,
(20,20+n'1/3t] -

converges on bounded intervals almost surely to the deterministic function

te %{Z(g(ai) — g(ai=))" /h(z0 + ai)}fe(zo)t2, t>0.

1=0
To see this, note that, by (2.12), we have to deal with terms of the form
{Fo(Z(i+1)) — Fo(20)}AGF(Z))
z2—2Zu) —9(z—2Z 2
— {FO(Z(;'+1))—F0(ZO)}/ {g( ()) ( (+1))}

{f9(z = 2) dFy(z)}’

2
and {g(z —Z(i))—9(z— Z(i41) )}2 behaves as {g'(z - Z(,-))(Z(,-_H)) - Z(,-)) } at the interior
of the set of points z — Z(;) where ¢’ is differentiable.

Since negative values of ¢ can be dealt with in a completely similar way, the result
follows. |

dH,(z),

In accordance with the methods used in the preceding sections, we introduce, for each
a > 0, the random variable T,(.o)(a) by
T{%(a) = sup{t > 0: VV(t) - (a — Fo(to)) G (2) is minimal}.
Likewise, in analogy with (5.9) and (5.35), we define the process {T(a) : a € IR} by

T(a) = sup{t ER:U(t)—a- {E(g(a,-) - g(a,-—))z/h(z0 + a;)}fo(zo)t is minimal}.
1=0
As in Lemma 5.2, we get that the process
{n1/3{T,(,°)(ao + n'1/3a) —t}:ac€ R}

converges in distribution to the process {T(a) : a € IR}. This follows from the following
lemma.
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LEMMA 5.8. For each € > 0 and My > 0 an M, > 0 can be found such that

P{ max nl/a{T,So)(ao+n"l/3a)—to} >M2} <e
GE[—Ml,MI] .
P {aE[—{IAI}?,MI] nl/s{TY(IO)(ao + n—-l/3a) - tO} < —M2} < €,

for all sufficiently large n.

PROOF: The proof proceeds along similar lines as the proof of Lemma 5.3.
Let ZW(u) = {Wi (20 + u) — W (20)}*. Then,

P{ swp 20w} <o {uo-Z(g(a.-)—g(af—))z/h<zo+a.-)+o<u3>},

0<u<ug i=0

for a constant ¢ > 0, if uo satisfies H(¢o + ug) < 1. This can, e.g., be seen by applying
Lemma 4.1 in Kim and Pollard (1989) to the functions ¢4, defined by

¢8(u, B) = (9(u — 20) — g(u — 20 — B8))/h(u), B 2 0, v > z.

Under the conditions of Theorem 5.4 the class of functions {|¢s|: 0 < 8 < R} has an
envelope ,

Gr(u) = h(u)™? a;) — 9(ai=)| Yizota: zotas u)+ R su g,
R(w) = h(u) {;lg( )= 9@ Lartaimtactm@W+R o sup | @}

for u > 2, and we get
PG%{ S C]R+62 'Rz,

for positive constants ¢;, c;. The remaining part of the argument is similar to the proof of
Lemma 5.3. [ |

We can now give the proof of Theorem 5.4.

PROOF OF THEOREM 5.4: First of all, we have:
P{FM(to) — Fo(to) > n~3a} = P{T{(ap + n=%a) < 1o},
where ap = Fy(tp). Using Lemmas 5.7 and 5.8, we get that the process
{nl/a{Tr(lo)(ao +n"13q) — to}:ac R}
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converges in the Skorohod topology on D(IR) to the process {T(a) : a € IR}. As in the
preceding sections, the process

{T(a) - fo(te) 'a: a € R}
is stationary. Hence,

P {n’/"{FS)(to) — Foft)} {22 (0(00) = o(ei-))?/ (o(o)hzo +a))} > }

=0

P {T(O) > a:/{zfo(zo)2 i(g(ag) — g(ai=))? /h(z0 + a,-)}l/s} . n — 0.

=0

Since T'(0) is the last time where

o W (43 (o(a0) - o0’ e+ 00) + eyt 3 =88]

=0 =0

reaches its minimum, this means that

1T(){2f0(20) 3 (olas) - o(@i-)) /h(zo + )}

=0

is the last time where
t— W(t)+t*, te R,

reaches its minimum. |

Computer experiments, using simulated samples of convolution densities, again in-
dicate that in many cases the NPMLE has the same asymptotic behavior as the 1-step
estimator F\". But for a proof of this, one has to prove two final steps, which are of
the same type as the two remaining steps in the proof for the asymptotic behavior of the
NPMLE for interval censoring, Case 2.

We will deal with this problem elsewhere. It seems that the limiting behavior of the
NPMLE is the same as that of the 1-step estimator, given in Theorem 5.4, at least when
the support of Fj is contained in an interval not bigger than the minimum distance between
discontinuities of g. If the latter condition is not fulfilled, it is not clear that the limiting
behavior will be the same.
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5.4. Estimation of the mean.

As can be expected from the general theory on differentiable functionals (see e.g., van
der Vaart (1989)), efficient estimators of smooth functionals like the mean

pF, = /tdFo(t)

should have \/n—behavior. We will discuss a result of this type for interval censoring,
Case 1, using the same set-up as in section 4.1. Let (X1,T1),...,(Xna,Tn) be a sample of
random variables in IR% , where X; and T; are independent (nonnegative) random variables
with continuous distribution functions Fy and G, respectively.

Furthermore, we assume that the support of PF, is a bounded interval I = [0, M}, and
that Fy and G have densities fo and g, respectively, satisfying

g(t) > 6 >0, and fo(t) > 6 >0, iftel,

for some 6§ > 0. Finally we assume that g has a bounded derivative on I. An example of
this situation is the case where Fy and G are both the uniform distribution function on
[0,1]. Tt is certainly possible to prove the following theorem under weaker conditions, but
at the cost of an increasing number of technicalities.

THEOREM 5.5. Let Fy and G satisfy the conditions, listed above, and let F, be the
NPMLE of Fo. Then

Jn / (Fu(t) = Fo(®) dt B U,
I
where U has a normal distribution with mean zero and variance

2 /Fo(t)(l — Fo(t)) dt.

TF = g(t)

Before starting the proof of Theorem 5.5, we give an outline of the steps in the argu-
ment. First we note that

2> b= [(1= Fot) dt =
/ g(t) dP( ’t) ‘/;(1 Fo(t)) dt_uFo’

where P is the probability measure of a pair (X;,T;). Secondly,let 7y < 72 < -+ < Ty
be the points of jump of F;, on the interval [0, T(y)], and let 79 = 0, Tm+41 = T(n). Then,
defining the function §» on I by §(0) = ¢(0), and

gn(t) =9(1i), Tic1 <t <1, 1<i<m+1,

8



we get

/I(l — Eo (b)) dt — pr, = / 1- F"(tg)(;) {z>1} dP(z,1)

_ / 1= Fn(t) — {z >t} dP(z,1)

gn(t)
(5.41) +/{1-ﬁ',,(t)-{z >t}}{§%—§n+t)}dp(z,t),
_ [1=-Fut)={=>t}" .
“/ gn(t) 4Pt 1)

- /{Fn(t) - Fo(t)}{ﬁ - 3,’,}(?3} dG(t).

By the characterization of the NPMLE, given in Proposition 1.2, we have:

1—Fo(t) = {z >t} o)
[ ==

where P, is the empirical measure of (X 1\, Tl), eevs(Xn,Tn). Hence

1-F,(t)—{z>1)
\/17/ @ dP(z,t)

_ -\/;/ 1-F® —{z >t 4 p, _ P)(a,0).
gn(?)

We shall prove that the right-hand side of (5.42) converges to U, where U is defined as in

Theorem 5.5, and that the last term of (5.41) is op(n~1/2).

The distance between the successive jumps of E, plays an essential role in the proof.
Roughly speaking, they are of order Op(n~!/3), but we need a uniform upper bound for
this distance. To this end we introduce, for a € (0,1), the random variables Tx(a), defined
by

(5.42)

(5.43) Tu(a) = sup{t € [0, T(n)] : Va(t) — aGxn(t) is minimal},
where G, is the empirical distribution function of Ty,..., Ty, and V,, is defined by
(5.44) Va@)=n"1 Y Lixicmy = / 1{z<u) dPn(z,u).

T'.‘St ugt

Note the similarity with the definitions of the random variables T,(,o)(a), discussed in the
preceding sections.

The process {(Gn(Tn(a)),Vn(Tn(a))) ta € (0,1)} runs through the vertices of the

cumulative sum diagram, consisting of the point (0, 0) and the points

(Gn(T(i))s Va(T(3))), 1 < i < m.
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The following lemma gives an upper bound for the probability that the distance of suc-
cessive jumps of F, is bigger that n~1/3logn. The proof is quite similar to the proof of
Lemma 2.4 in Groeneboom (1987). It is based on a stopping time argument for a suitably
chosen exponential martingale.

LEMMA 5.9. Let, for each a € (0,1), F; !(a) be defined by Fy(F;'(a)) = a (note that
F;Y(a) is well-defined, since Fy has a strictly positive density on I). Then, for each
a € (0,1),

P{|Tn(a) - Fy'(a)| 2 n~/3logn} < ¢; exp{—cy(logn)?’},

for positive constants ¢, and ¢z, not depending on a and n.

PROOF: Let a € (0,1) and suppose tp = F;(a). Let the process U, be defined by
Un(t) = Va(t) — Va(to) — a{Gn(t) — Gn(t0)}, t € L.

Then we have

P{|Tn(a) - Fy'(a)| 2 n~1/3 logn}
< IP{Ux(t) £ 0, for some t € I\(to - n~1logn,to + n~1/3 logn)}.

We only give an upper bound for the probability

IP{Un(t) <0, for some t > to + n~1/3 logn},
since the probability

P{Un(t) <0, for some t < to — n~1/3 logn},

can be treated similarly.
Define the process W, by

Wa(t) = Un(t) - Fo(t")dGn(t'), t € I, t 2 to.

[t01t]
Moreover, we define AW, ; and AG,,; by
AW, i = Wa(Ty) — Wn(T(i-i)), and AGn i = Gn(T(i)) — Wa(T(iz1))s

where Ty def 0. Then we can write

P{Un(t) < 0, for some t > to + n~1/3 log n}

= P{Wn(t) + ]{Fo(t') — Fy(to)} dGn(t') < 0, for some t > to + n~13log n}

[to,t
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Conditionally on the observation times T;, the terms AW, ;, with T(;) € [to,t] are inde-
pendent random variables, with values in [-n~!,n~!], and we have, for t > to,
(5.45)

E{exp{nz/swn(t)} l T, T5,... }

_—_E{exp{n-1/3 ) AW,,,‘,-}|T1,T2,...}

T(iy€lto,!]

= [I {R@w)exp{n/0 - Fo(Tu)} + (1 = Fo(Tw)) exp{~n"*Fo(Tin)} }
T(iyElto,1]

=exp{-31+rm@®)n" Y F(Tw)(1 - Fo(T)) }
T(iy€Efto,t]

- exp{—-%(l +rn(t))n1/3/[t ) Fo(t')(1 = Fo(t") dG,,(t')}

where r,(t) tends uniformly to zero for each realization of the observation times T(;), since
n=13 Fy(T(;)) and n~1/3(1 — Fy(T(;y)) tend uniformly to zero, as n — oo.
Let the process {Zn(t):t € I, t > to} be defined by

Za(t) = exp{—n*/*Wa () }E{exp{n**Wa(t)} | T, T, ... }.

Then, conditionally on the observation times Ti,...,Ty, the process Z, is a martingale
with respect to the filtration {Fn ::t € I, t > to}, where

For=0 {l{x'.s'n} :T; € [to,t]} .
We now define the stopping time 7, by
Tn = inf{t € [to + n~3logn, M] : Ua(t) < 0}.

I Un(t) >0,forall t € [to + n~1/3log n, M|, we define 7, = co. We shall derive an upper
bound for the probability
P{Tn < o0 I T],...,Tn},

and denote the conditional probabilities JP{- l Ti,...,T,} and the conditional expectations
E{- l Ti,...,Tn} both by Py.
Since (in the conditional set-up), Z is a martingale, we have

PoZn(M ATy) = PaZy(to) = 1.

Furthermore, by (5.45) we have:
(5.46)
CPPaZy(MATR) 2 PrZn(To)l{r, <o)

=P, exp{—n2/3W,,(Tn) - %(1 + rn(Tn))n1/3 /

to,Tn

Fo(t)(1 - Fo(t)) dGn(t)}l{,n<°°}.
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‘But for t > tg +n~1/3 log n we have, if U,(t) <0,

(5.47)
= Wa) = (14 ra)n [ Ro@)(1 = Fu(8) dGa)
= 2B, (t) + n2/® / ]{Fo(t’) _ Fi(to)} dGa(t")

3 +m @) [ R~ R(0) Gy
n2/3 Fo ' —FO 0 dGn ' _% T n1/3 FO ' l—Fo ! dGn !
2l [ {R(E) = Flto)} dGalt) = § (14 ra®)* [ Fit)(1 = R®)) 4Gt
> 1 fo(to)n?/? /[ . ](t’-—to)dG,,(t’)
to,to+n—1/3logn

+ 3 fo(to)n'*{Gu(t) = Galto + "/ logn)} logn
-10n Tn n1/3 Fo(t)(1 — Fo(t)) dGa(t
L(1+ ra(t)) /[] (t)(1 - Fo(t)) dGa(t)

> 1fo(to)n?/3 /

(t —tg — 20" Ry (1) (1 — Fo(t))/ fo(to)) dGn(?),
[to,to+n~1/3log n]
for n > ng, where no only depends on fo(to) (and not on t or G,). Here we use that, by
the conditions on Fy, Fo(t) — Fo(to) > %fo(to)(t —1), f0<t—1 < n—1/3 logn and n is
sufficiently large. From (5.46) and (5.47) we obtain, for n > ng:
(5.48) '

P,{mp, < 0} <

P, exp{—%n2/3fo(to)

(t —tg —2n~ /3 F°(t)§((1) (:of"(t))) dGn(t)}.

[to,to+n—1/3log n]

By (5.48), the probability of a large deviation of the process U,, is reduced to the probability
of a large deviation of the empirical distribution function G,,. We now note that

n2/3 /[to,t°+n-1/3108 . (t —tp — 2n—1/3Fo(t)(1 - Fo(t))/fo(to)) dGn(t)
=n?/3 4. _9,—1/3 _
n /[t P (t to — 207 P FRy(t)(1 — Fo(t))/ fo(to)) dG(t)

+n2f3 /{ e ](t —to — 20 P Fo(t)(1 - Fo(2))/ fo(to) ) d(Gn — G)(t)
. to,to+n—1/3log n|

Fo(to)(1 — Fo(to))
Folto) logn}

+ nz/a/[ vt (t —to— 20 3Ry ()(1 - Fo(t))/fo(to)) d(G, — G)(1),
to,to+n=1/3logn

=(1+ 0(1))90(150){%(108 n)® —
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and, moreover, that

var {n2/3 / (t —to — 2n—1/3F0(t)(1 - Fo(t))/fo(to)) d(Gn - G)(t)}
[to,to+n—1/310og n]

[to,to+n—1/23log n]

~ nl/sg(to) (t — 19 — 2n_1/3Fo(t)(1 — Fo(t))/fo(to))2 dit
~ %n—2/3g(to)(log n)}, as n — oo. |

Hence, by Bernstein’s inequality (see, e.g., Pollard (1984), p. 193), we get:

P {n2/3 [ +n-1/3log n] (t —to — 277'—-1/31’-‘0(75)(1 - Fo(t)) /fo(to)) d(Gn B G) (t)
to,to+n—1/3logn

< —%g(to){%(log n)? — Fo(to)g(;f'o(to)) logn}}

< 2exp{—c- n2/3/logn},

for a constant ¢ > 0. Applying this on (5.48), we obtain

Fo(to)(1 — Fo(to
P(r, < oo} < exp{—%g(to){%aogn)z - DlC - Soltn) logn}}

+ 2exp{—c- n2/3/logn}.
This gives the desired bound, since
P{Un(t) <0, for some t >ty + n=1/3 logn} = IP{m, < o0},

and since fo(¢) and g(¢) are uniformly bounded away from zero for ¢ € I. |

Now let a;,a2,... be such that

“logn,i=1,2,...,

a;,=1-n

and let m, = [n!/3/logn], where [a] denotes the biggest integer < a. Then we get from
Lemma 5.9:

P{'T,,(a,-) - Fo_l(a,')| >n~1/3 logn} < ciexp{—cz(logn)’}, 1 < i < mq.

This implies, by the monotonicity of the function a — T,(a) and the conditions on Fy that
there exists a constant ¢3 > 0 such that

P{ sup |T,,(a) - Fo-l(a)| > c3n~ 3 log n} < mpc; exp{—cz(log n)?}
a€(0,1)

< ¢; exp{—3ca(log n)?},
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for sufficiently large n. This, in turn, implies that both the maximum distance between
two successive points of jump of F,, and the maximum distance between F,, and Fp are of
order n=1/3logn. Hence we get, for the last term in (5.41):

/{Fn(t) - Fy(t)} {ﬁ - 'gn_l(t—i} dG(t) = 0, (n~**(log n)?),

where we use that g has a bounded derivative on I. Furthermore, by (5.42):

ﬁ/ 1—ﬁ'n(f)—{x > t} dP(z.1)

gnft)
e
1
-va [a —Fo(t> (e > {575 - 7} 4P = P)(eD)

_ Fo(t) = Fo(t) V(s
\/—/ (t) d(P" P)( ?t)

Since the class of functions
{(F — Fy)/gn : F is a distribution function, and g, is a piecewise constant version of g,

-1/3

with distance <c-n log n between successive points of jump}

is “manageable” in the sense of Pollard (1989) (see Birman and Solomjak (1967) and van
de Geer (1990) for the relevant entropy calculations), it follows that

F,,(t) Fot) =0 n — oo
va [ O (P, = P)(art) = op(2) m = oo

Similarly,

J‘/{l-po(t)—{nt}}{ 5 (lt)} d(Pn — P)(z,) = 0p(1).

Theorem 5.5 now follows from (5.41).

5.5. Exercises.

1. Let Tn(a) be defined by (5.43), and let the conditions of Theorem 5.1 be satisfied.
Moreover, let ag = Fp(to), where to satisfies the conditions of Theorem 5.1. Show,
using the same techniques as in the proof of Lemma 5.9, that for each M; > 0 and
€ > 0 there exists an Mz > 0 such that, uniformly in z € [-M;, M;],

P{|Tn(ao +zn~1/?) -—to| > Mg} < €,

for all sufficiently large n.
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. Let Un(t) be defined as in the proof of Lemma 5.9. Show that the process

t—

{ n23Un(to + n~1/3t) Jdo+n~tel,
Jdo+n3t g I,

converges in distribution, in the topology of uniform convergence on compacta, to the
process U, defined by

Ut) = ﬁ(tO)Fo(tO)(l — Fo(to)) W(2) + 3 fo(to)g(to)t?, t € R,

where W is standard two-sided Brownian motion on IR, originating from zero.

. Let Tp(a) and U(t) be defined as in Exercises 1 and 2. Show that the process
{nl/a{Tn(ao +n~3a) - to}:a€ IR}

converges in distribution, in the space D(JR) with the Skorohod topology, to the
process {T(a) : a € IR}, where

T(a) = sup{t € R: U(t) — a - tg(to) is minimal}.

. Deduce Theorem 5.1 from Exercises 1 to 3.

. Let, in Theorem 5.4, g be the standard exponential density on [0, c0), and let Fy and
zo be such that the conditions of Theorem 5.4 are satisfied. Deduce from Exercise 3
in Chapter 2:

n1/3{ Fu(z0) — Fo(z0)}/ {3 fo(20)h(20)}/* 2 20,

where U is the last time where standard two-sided Brownian motion minus the para-
bola y(t) = t? reaches its maximum, and F), is the NPMLE of Fp.

. Deduce from Exercise 2 in Chapter 2 that, under the same conditions and with the
same notation as in Exercise 5, but with g replaced by the uniform density on [0, 1],

ni/*{ Fu(20) — Fo(#0)} /{1 Fo(20) (1 = Fo(20)) fo(2)}'"* 3 2U.

. Let Fp and G satisfy the same conditions as in Theorem 5.5, and let £}, be the NPMLE

of Fy. Show that
Jﬂ/ﬁma-/ﬁmm}ﬂm
I I

where U has a normal distribution with mean zero and variance

o, [BO0-F)
Fo ™ 4/ 9(t) .
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