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We give the proofs of the results stated in Sections 3 and 4 of the manuscript. Entropy results are
used in our proofs. Before we prove the results we first give some definitions and an equicontinuity
lemma needed in the proofs.

Consider a class of functions F on R and let La(Q) be the Ly—norm defined by a probability
measure () on R, i.e. for g € F,

Mmz/fm.

For any probability measure @ on R let Np((, F, L2(Q)) be the minimal number N for which there
exists pairs of functions {[g]-L,ng],j =1,..., N} such that Hg]U —gjL||L2 <(forallj=1,...,N and
such that for each g € F there is a j € {1,..., N} such that g]L <g< g]U. The (—entropy with
bracketing of F (for the Lo(Q)—distance) is defined as Hp((, F, L2(Q)) = log(Np((, F, L2(Q))).

LeMMA S0.1 (Equicontinuity Lemma, Theorem 5.12, p.77 in [4]). Let F be a fized class of
functions with envelope F in Ly(P) = {f : [ f?dP < oo}. Suppose that

1
/H?mfwwmm<w
0

where Hp is the entropy with bracketing of F for the Lo-norm. Then, for all n > 0 there exists a
0 > 0 such that

Iim_>supP <sup[5}]\/ﬁ/(f —9)d(P, — Py)| > 77) <,
where,

O] =A{(f9) - IIf —gll <0}

S1. Behavior of the maximum likelihood estimator. In this section we prove Lemma
3.1. We first prove in Lemma S1.1 some entropy bounds needed in the proofs.

LEMMA S1.1.  Let
F={{t,x)— F(t—-p'z): FeFy,pBc 6},

where JF is the set of subdistribution functions on [a,b], where [a,b] contains all values t — 'z for
B € 0, and (t,x) in the compact neighborhood over which we let them vary. Then,

(S1.1) supeHp (¢, F, La(Fy)) = O(1),
e>0
1
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Furthermore, let
G ={(t.z) = g(t—pB'z): g €Go,B € O},

where Gy is a set functions of uniformly bounded variation, then

(S1.2) s1>118€HB (e,G, La(Py)) = O(1).

PROOF. We only prove the result for the class F since the proof for the class G can be obtained
similarly.

Fix € > 0. We first note that © can be covered by N neighborhoods with diameter at most 2
where N is of order e 24, Let {f1, ..., By} denote elements of each of these neighborhoods. Consider
an e-bracket [FJL ,F jU], j=1,..., N’ covering the class Fy such that,

{/{FJU(U) - FjL(U)}2fo,B’X(U) du}1/2 <e.

for j = 1,...,N’. The existence of such an e-net is assured by the fact that fr_g x is bounded
above (uniformly in ). The number N’ is of order exp(C/e) for some constant C (See e.g. [4],
p.18). Let 3; be chosen such that ||8; — B|| < 2, where || - || denotes the Euclidean norm. Then:

t—ﬁéx—52R§t—6’x:t—B§-x—(ﬁ—ﬁj)’xét—ﬁéx+52R,
where R is the maximum of the values ||z||. This implies that for each F' € Fy and § € O,
Fl(t = Bjw—e*R) < F(t — f'w) < F(t — Bjz + °R),

for somei=1,...,N and j =1,..., N. The result of Lemma S1.1 follows if we can show that,
1/2
(S1.3) {/{FiU(t — Bia +e’R) — FF(t — Bz — e*R)}?dG(t, x)} <e.
By the triangle inequality we get that the left-hand side of the above equation is bounded by:
1/2
{/{F(t - Bix — e?R) — FEF(t - Bir — e2R)}? dG(t, x)}
1/2
H{ W= g4 2R - Fo- g+ SRP G0
1/2
! 2 / 2 2
+ {/{F(t —Bjr+e°R) — F(t — Bjz —e"R)} dG(t@:)}
1/2
<e+ {/{F(u + E2R) — F(u— 62R)}2fT_/3§x(u)} .

Let ug = a — e?R < uy, -+ < Um = b+ 2R, be points such that uy —up_; =2, k=1,...,m—1,
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U, — Um—1 < €2. Then:
/{F(u +&°R) — F(u—€*R)}* fr_p, x (u) du

< /{F(u L E2R) — Flu— *R)} frp, x (u)du < M /{F(u +e2R) — F(u—e2R)} du

b+e2R b—e?R
=M F(u)du—M F(u)du
a+e2R a—e?R
a+a2R b+52R
<M / u)du + M / du < €2,
e2R 2R

where M is an upper bound for fr_ BIX and where we extend the function F' by a constant value

outside [a,b]. This completes the proof of (S1.3) since we have shown that there exist positive
constants A, As, Az and C such that

Hg (e, F, Lo(PRy)) < log N 4+ log N’ < dlog(A;/e?) + Aslog(exp(C/e)) < As/e
= O(log(1/e)) + O(1/e) = O(1/¢e), e 0.
O

PROOF OF LEMMA 3.1. Let h denote the Hellinger distance on the class of densities P defined
by

P={psp(ta,d)=0Ft—pBz)+(1-86{1—-F(t—pz)}:FeF,Be0O},

w.r.t. the product of counting measure on {0,1} and the measure dG of (T, X), where Fy is the
class of right-continuous subdistribution functions.
We have (see, e.g., the “basic inequality” Lemma 4.5, p. 51 of [4]):

2
2
h (p@ﬁ‘n’ﬂvpg,pl_}) S/

where we use the convexity of the set of densities of this type for (temporarily) fixed 5. Hence we
get, for € € (0,1]:

]P{Zlelph(pﬁFnﬁ,pMﬁ) > e}
2D, £
Ban,ﬁ 9
=P sup / —0 15 d(Pp—Py)—h (pp Dy )}ZO
{ {pﬁ,ﬁn,g"i'pﬁfﬂ } B,F 578,75

Beo, h(pﬁ,ﬁnyﬁ,pﬁyFB )>e

pﬁaﬁn,ﬁ

—d(P, - P),
p/Ban,B +p5vFﬁ

>
9 Zlelph (pﬁ Fn767p[-j7FB> =~ €

2p
<P sup {/{_SFI} d(PnPo)hz(pﬂyF,pﬁyFﬂ)}EO
5€®,F€fo,h(pB’F,pB!Fﬁ)ze Psr T Pprg
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BEO, FEFy,
22 c<h(py Py 1y ) <

> 2
§Z]P’ sup \f/ ey d (P, — Py) > v/n2%€ 3,
s=0 p5F+p3Fﬂ

23+1

We can now use Theorem 5.13 in [4], taking ¢ = Mn~'/3 a = 1,8 = 0 and T = /n2% =
M225n~1/6 together with Lemma S1.1 for the entropy of the set of densities to conclude:

e 2
D P sup Vi [§ o 1 (B, - R) 2 Va2ee
s—0 BEB, FeFp, pﬁ F +pﬁ Fg
220c<h(py vy vy )<2tie
o0
< c1 exp(—co M2%)
s=0

for constants c1,cy > 0. Since the sum can be made arbitrarily small for M sufficiently large, we
find:

s (PP ) = O (177,

We have:

2
h (pﬂfn,ﬂ’pﬁ»%)

1/2 1/2 2
_ %/{pﬂ{ﬁnﬁ(t,m, 1 - plf2 (2, 1)} dG(t,x)+;/{pﬁfﬁw(t,m,m P2 (t2,0)} dG(t,)

_ 5/ [Foplt = B)"? — Fy(t — )2} dG(t,2)
v/ {(1 ~ gt - ) — (1= Fate - ﬁ’w))1/2}2 AG (1, v),

and
/ {Fnﬁ(t —#a)~ Byt~ pn) ) dG(e,)
= [{Bustt = 502 = Byt - 502} (Bt - 502 + Byt - 52} dG(e,2)
<4 / — Bla)Y? — Fy(t - B’x)1/2}2 dG(t,x) < 8h (ppnﬁ,pFB)Q
So we find

sup /{ . p(t — B'x) — F(t — ,B/x)}z dG(t,z) = O, (n72/3> .

BEO
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S2. Asymptotic behavior of the simple estimate based on the MLE Fn,g, avoiding
any smoothing. This section contains the proof of Theorem 4.1 stated in Section 4.1 of the
manuscript. The proof is decomposed into three parts: (a) proof of existence of a root of 11 ,, (b)

proof of consistency of 3, and (c) proof of asymptotic normality of \/ﬁ(/g’n — Bo). We first prove the
properties given in Lemma 4.1 of the population version of the statistic @Z)ﬁ)l defined by,

bre(B) = / {6 — Fy(t — B'z)} dPo(t, z, )

Fa(t—B'z)€le,1—¢]

(S2.1) = / z{Fy(t — Box) — Fa(t — B'z)} dG(t, z).
Fg(t—p'z)€le,1~¢]

PROOF OF LEMMA 4.1 . We first note that,
w6 = [ 2{E{AI(T, X) = (t,2)} — Fo(t — Bho) } dG(t,2) = 0
Fo(t—p)z)€le,1—¢]

since E{A(T, X) = (t,z)} = Fy(t — Sjz). We next continue by showing result (i). Since
E (AT -p8'X =t—pz) =Fa(t — f'z),

we get,

e3 [Cov (A, X|T — 'X)]

/ Cov (A, X|T — X =u) fr_pgx(uv)du
Fg(t—p'xz)€e,1—¢]

:/ COV{X Folu+ (B —Bo)' X ‘T BX =up frpx(u)du
Fp(u)

u)€le,1—¢]

_ / w{ Folt — B'z + (8 — fio)'x) — Fylt — §'2) } dG(t, v)
Fg(t—p'z)€e,1—¢]

-/ e LRt = ) = Fy(t = #'2)} dG(t.2) = 1 (8)
Fg(t—p'x)€e,1—¢]

For the second result (ii), we write

(B — o) Cov (A, X|T — /X = u)
= Cov (Fo(T = B'X + (B — B0)'X), (8 — o) X|T — f'X = u)

which is positive for all 3, following from the fact that F is an increasing function. Indeed, using
Fubini’s theorem, one can prove that for any random variables X and Y such that XY, X and Y
are integrable, we have

Cov{X,Y}=EXY — EXEY = /{IE”(X > 5, Y > 1) —P(X > s)P(Y > t)}dsdt.

Denote Z; = (8 — Bo)'X and Zy = Fy(u+ (8 — Bo)'X) = Fo(u + Z1). For simplicity of notation

we no longer write the condition T'— 3’ X = u but note that the results below hold conditional on
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T — 8’ X = u. Using the monotonicity of the function Fy, we have

P(Zl > Z1, ZQ > ZQ) = P(Zl > max{zl, 22}) > P(Zl > max{zl, 22})1?(21 > min{zl, 22})
= P(Zl 2 Zl)P(ZQ Z 22),

where
Zg = Fy H(22) — u.
We conclude that,
Cov (Fo(T — B'X + (8 — fo)' X). (B — Bo) X|T — B'X = u)
- / (P(Z1> 2,20 > ) — B(Z1 > 21)P(Za > 2)} dey dey > 0,
and hence (ii) follows from the assumption that the covariance Cov(X, Fo(u+(8—00) X)|T—-'X =
w) is not identically zero for w in the region A, g, for each § € ©, implying:
Ees [Cov (A, X|T — X))

_ / Cov (Fo(T — B'X + (B — Bo)' X), (B — o) X|T — /X = 1) fr_srx(w)du > 0.
Fg(u)€le,1—€]

[Uniqueness of (o]
We next show that [y is the only value §, € © such that E g [(5 — 8«)'Cov (A, X|T — /X)) >
0 for all 8 € ©. We start by assuming that, on the contrary, there exists 51 # [y in © such that

(B — Bo)t1.(B) >0 and (8 — B1)'11.(8) >0  forall €O,

and we consider the point B € O given by
B =B+ b1}
The existence of the point /3 is ensured by the convexity of the set ©. For this point, we have,

(B — Bo)1,e(B) = —(B — B1)'41.(B),

which is not possible since both terms should be positive and 1/11,6(5) is not equal to zero (since,
by the assumption that the covariance Cov(X, Fy(u + (8 — So)'X)|T — /X = u) is not identically
zero for u in the region A, g, 11,(/3) is only zero at 8 = fy.)

We now calculate the derivative of ¢  at 8 = 5p. We have,
1’{6 - Fﬁ(t - B/J")}dPO(ta L, 5)

0
170/ € B = /
1(P) 9B J s O st—-pra<iy (1)

-5 o{Fo(t — Byr) — Fylt — f'a)} dG(t,2)
9B Jr; (9<t-pa<r; (1-0)

Frl(1—e¢)
=55 | [ B (3= a)) — B} (el fre () de du

5 ()
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F>(1—e)
N / B aag {z{Fo(u+ (8- Bo)z) = Fp(w)} fxr—px(zlu) fropx(u)} dvdu

=F3'(e)
H{gprta-a} [« {RE -0+ - am - a-o)
Ixir—px @ Fy (1 =€) frpx(Fy (1 —¢)) do
0 _
o} [« {REte + 6w -
: fX\T—ﬁ/X(x!Fﬁ_l(e))fT,BIX(Fﬁ_l(e)) dz.

Note that if 5 = Fy, we get:

w/l,e(ﬁ()) =
Fyt(1—e)
Fy (o) op 8=

since the last two terms vanish because the integrands become zero in that case. Note that,

E%FB(U) = /yfo(u + (B = B0)'y) fxjr—px (ylu) dy

+ /Fo(u + (B — ﬁo)'y)aaﬁfxwﬁ/x(yw dy,

implying that, at 5 = S,
d

5555 ‘ﬁ:ﬁo = fo(w)B(X|T — BpX = u).
Since
Fofl(l—e) /
/—Fl( ) /w {z - E(X|T = B X = w)} fxyr—gyx (@|u) fo(u)fr_gx () du du
= E. [X{X — E(X|T - 8)X)} fo(T — 84 X)] .
(4.4) now follows. =

PROOF OF THEOREM 4.1, PART 1 (EXISTENCE OF A ROOT). Consider the score function
HORY £{6— B plt - F'2)} dPy (1, .),
F, g(t—B'z)€le,1—¢]

where Fnﬁ is the nonparametric maximum likelihood estimator (MLE) of the error distribution.
According to the discussion in Section 4.1 we have to show that there exists a point 3, such that

#9,(8) :f {5 — B g(t — B'z)} dBo(t, . )

F, g(t—p'z)€e,1—¢]



8 P. GROENEBOOM AND K. HENDRICKX

has a zero-crossing at 5 = 3,. We have:

(52.2)

“8) :/ 2{6 — Fy(t — B'z)} dP,(t, 2, 0)
F, g(t—p'z)€[e,1—¢]

+/ w{Fs(t — f'z) - nﬂ(t—ﬁx}dIP’ (t,z,0)
Fp p(t—B'z)€le,1—¢]

_ / {6 — Fy(t — B'z)} dP,(t, z,0)
Frg(t—fa)elel—d

+ / z{Fs(t — p'z) — Eyp(t — B'z)} d(Py, — Po)(t, z,0)
F, g(t—p'z)€le,1—¢]

+/ z{Fp(t — f'z) — ng(t—ﬁx}dPotxé)
F, g(t—B'z)€le,1—¢]

Let F be the set of piecewise constant distribution functions with finitely many jumps (like the
MLE F, Bn)’ and let, for § € O, K be the set of functions

(S2.3) K={(tuz,6) = x{6 - Fa(t — f'x)}1jc1_q (F(t—B'z)) : FE F, €O} .
We add the function
(t,2,0) = x{6 — Fa(t — f'z) 11 1_q (Fs(t — B'x))
to KC. We denote by Hp((, KC, La(FPp)) the bracketing (-entropy w.r.t. the Lo-distance d, defined by
(S2.4) d(ky, ko) / ks — ka||® dPy, ki, ks € K.
Note that
2{6 — Fg(t — f'z) 1 1_q (F(t — B'x)) = f1,5(t,x,8) f2,5(t,x,0),

where

frp(t, @, 0) = 2{d — Fs(t — f'=)},
and

fop(t,z,0) =11 (F(t - f'z)) .

Since t and x vary over a bounded region and, by (A4), Fp is of bounded variation, fi g is of
bounded variation. Moreover,

f2,5(t7x76) = 1[6,176] ( (t - B x)) - 1 [e,1] ( (t - /le)) - ]‘(176,1} (F(t - /BI‘T)) :

Since F' is monotone, we have:

(52.5) leq) (F(t = B'2)) = La—eq) (F(t = 8'2)) = 1o,_pa)(t = B'2) = Lp_poaa) (t = B')
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for points ae p < ber, where M is an upper bound for the values of t — f’z. Hence f; 5 is also a
function of uniformly bounded variation.

We therefore get, using Lemma S1.1

supCHp (¢, K, La(Py)) = O(1),
¢>0

which implies:

¢
/ Hiy (0, K, Lo(Po) 2 du= 0 (¢'2), ¢ >0,
0

This implies

/ a{6 — Fp(t — f'z)} dPy(t,2,0)

Fp g(t—B'z)€le,1—¢]

_ / 2{6 — Fy(t — B'z) } dPy(t, z,0)

Fp p(t—B'z)€le,1—¢]

+ / {5 — Fy(t — Be)y d(Ba — o) (t,,)
Frp(1-Fa)eled —
_ / {5 Fyt — B')y dPy(t, 2, )
Fg(t—B'z)€le,1—¢

+/ z{6 — Fg(t — B'z)} d(Py, — Po)(t,z,6) + 0p(1)
Fg(t—p'z)ele,1—¢]
= P1e(B) + op(1),

uniformly in 8 in ©, by the convergence in probability (and almost surely) of Fnﬁ to Fj, where
we use Lemma S0.1 for the second term on the right-hand side of the first equality to make the
transition of the integration region F}, 5(t — f'z) € [e,1 — €] to Fs(t — f'z) € [¢,1 — €.

For the second term of (S2.2) we argue similarly, this time using the function class

(82.6) K'={(t,x,0) = x{Fs(t —f'z) = F(t — 'x)}1c1_q (F(t — f'z)) : F e F, B € ©}.

to which we add the function that is identically zero. This implies that these terms are op,(1). For

the third term of (S2.2) we get by an application of the Cauchy-Schwarz inequality that, uniformly
in 3,

/ e{Fy(t — Bz) - Euslt — Ba)YdPo(t, 2, )
F, g(t—p'z)€le,1—¢]
1/2
< (/ xQdPo(t,x,é)/ {Fs(t — p'z) — Epp(t — 6'33)}2dP0(t,:v, 5))
Fn,ﬁ(t_ﬁlx)e[svl_d Fn,ﬁ(t_ﬁ/x)e[al_e}
= Op(n_1/3).

The conclusion is that,

(52.7) W (8) = 1. (B) + 0p(1),
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uniformly in 5 € ©.
[Existence of Bn} Let 11, be the population version of the statistic wgezl defined by,

(S2.8) P1.e(B) = / {0 — Fp(t — B'z)} dPy(t,x,6).
Fg(t—p'z)€le,1—€]
We have
¢1,e(ﬁ0) =0.
Furthermore,
(82.9) PIAB) = ¥ (B0)(B — o) + Ru(B),

where R;,(8) = 0p(1) +0(8 — Bp), and where the 0,(1) term is uniform in 3 € ©. Note that ¢} (5o)
is by definition non-singular.
We now define, for h > 0, the functions

Rn,h(ﬁ) = h_d/Kh(ul — ,31) Ce. Kh(ud — Bd) Rn(ul, Ce ,ud) du1 Ce dud,

where d is the dimension of © and
Kp(z) =h'K(z/h), z€R,

letting K be one of the usual smooth kernels with support [—1, 1], like the Triweight kernel that
we used in the simulations.
Furthermore, we define:

D) 1 (8) = 61.(Bo) (B — Bo) + Run(B).

Clearly:

lmd{%,,(9) = {0()  and  m R () = Ru(8)

for each continuity point 3 of 1/1567)1
We now reparametrize, defining

v = ¥1.(Bo)B, Y0 = ¥1.(Bo) Bo-

This gives:

¥ (Bo)(B — Bo) + Run(B) = v — Y0 + Run (¥1..(Bo) ) -

By (S2.9), the mapping

Y0 — Rn (w/l,€<50)_17) s
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maps, for cach > 0, the ball By(10) = {7 : 7 — 20} < n} into Bya(v0) = {7 Iy — 70} < n/2)
for all large n, with probability tending to one, where || - || denotes the Euclidean norm, implying
that the continuous map

v =90 — Run (¥1..(B0) ™),

maps By (70) = {7 : [y — Y} < n} into itself for all large n and small h. So for large n and small h
there is, by Brouwer’s fixed point theorem a point ~,} such that

Yok =0 — Ran (V] (B0) ™ n) -

Defining 8, = 1/1{76(60)*17%, we get:

(52.10) D) (Bun) = 5 (B0) (Bun — Bo) + Run(Ban) = 0.

By compactness, (8,,1/1)5—; must have a subsequence (3, 1/x,) with a limit B, as i — oo. We show
that each component of zpﬁl has a crossing of zero at B

Suppose that the jth component ¢§62L j of 1/152 does not have a crossing of zero at 3,. Then there
must be an open ball Bs(8,) = {8 : ||8 — Bull < 6} of B, such that ¢£?w has a constant sign in
Bs(53y), say d)ge,)”(ﬁ) > 0 for 8 € Bs(By). Since ¢§62L] only has finitely many values, this means
that

1/}562”(,6’) >c>0, for all 8 € B(;(Bn),

for some ¢ > 0. This means that the jth component @ﬁl hj of ﬂe}l ,, satisfies

B () = 4. (B0) (B — Bo) + Run(B)
= hd/ { [1/111,6(/80)(/8 - /80)]]- + an(’lld, e ,ud)} Kh(ul — 51) e Kh(ud — ,Bd) du1 . dud

> h_d/{[wi,g(ﬁo)(u = 0] R ) f K = Bu) - K g = ) da - g = /2

> ch_d/Kh(ul —B1) ... Kp(ug — Bq) duy ... dug — c/2

=c/2,

for 8 € B(S/Q(/Bn) and sufficiently small h, contradicting (S2.10), since Sy, for h = 1/k;, belongs to
B(;/Q(Bn) for large k;.
]

PROOF OF THEOREM 4.1, PART 2 (CONSISTENCY). We assume that (3, is contained in the
compact set ©, and hence the sequence (f3,) has a subsequence (8,, = fn,(w)), converging to
an element S,. If 8,, = B, (w) — Bs, we get by Lemma 3.1,

A

By (6= Bh2) — Fa(t — la),
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where Fj is defined in (3.2). In the limit we get therefore the relation
lim [ ) x{d— (t— }d]}bnk t,x,0)
koo Fnk,gnk(tfﬁakx)e[e,ks]

-/ 2 { Fo(t — ) — F,(t = Bla)} dG(t,z) = 0,
Fg, (t—pLx)€le,1—¢]

nk 7ﬁnk

using that, in the limit, the crossing of zero becomes a root of the continuous limiting function.
Consider

/ .CE{FO t — Byx) — Fg,(t — Bix) }dG t,x)
Fa, (t—BLa)€le1—]
-/ 2{Fot — Bl + (B. — fo)'x) — Fi.(t — Bl } dG (1, ).
Fg, (t—BLx)€le,1—¢]
Since
Fy.(t — L) = / Folt — Bl + (Bs — o)) Fxr—six WIT — B.X = t — Blar) dy,

we get:

650y [ e[ Rt — Bl + (8. — o)) — Fy. (¢~ )} dGi(t.)
Fg(t—B'x)€le,1—¢

/ (8. - ﬁoya:{Fo(t Bt (B — By)'a)
L (t—BLx)Ele,1—¢€]
Folt — Bl + (B — Bo)' ) Fxirpox WIT — BLX = t — Bla) dy} 0G(t, )
- / LG {(8. = B0/ X, Folu+ (B — o) X) | T = BLX = u} fr g x(u)du
= 0.

We first note that by Lemma 4.1 the integrand is positive for all 5, € ©. Suppose that 8, # 5y, then
this integral can only be zero if Cov((8x — o)’ X, Fo(u+ (B« — o) X)|T — 5, X = u) is zero for all u
such that Fg (u) € [e,1—¢|, if fr_g x(u) stays away from zero on this region (Assumptions (A3)),
using continuity of the functions in the integrand (Assumptions (A5)) and the non negativity of
the conditional covariance function (see also Remark 4.2). Since this is excluded by the condition
that the covariance Cov(X, Fy(u+ (8 — 5o)' X)|T — /X = u) is continuous in u and not identically
zero for u in the region {u : € < Fg(u) < 1 — €}, for each § € ©, we must have: 3, = (. O

PROOF OF THEOREM 4.1, PART 3 (ASYMPTOTIC NORMALITY). Before working out the details,
we give a kind of “road map” for the proof of Theorem 4.1, Part 3.

1. We define @ZJ@L at 3, by putting

(S2.11) W (Ba) = 0.
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Note that, with this definition, 1/15621(3”) is in dimension 1 just the convex combination of the
left and right limit at Bn:

(S2.12) €0 (Bu) = ) (Bu) + (1 — @)y} (Bat) = 0,

where we can choose « € [0,1] in such a way that (S2.12) holds. In dimension d higher than
one, we can also define ¢§2L at Bn by (S2.11) and use the representation of the components
as a convex combination since we have a crossing of zero componentwise. Since the following

asymptotic representations are also valid for one-sided limits as used in (S2.12) we can use
Definition (S2.11) and assume wﬁl(ﬁn) =0.

We show:
¥ (Bn)
_ / (&= ot — Bom) }{ Folt — ) — By, (¢ — B) } dPo(t, 2,6)
Fo(t—Ghe)€le1—
i /Fo(tﬁéx)de,le]{x olt = A9 = Falt = )} d(F = F) ..
(S2.13) +o0p (n‘l/2 + B — Bo) :
where

Qﬁo(U) = qbﬁo (U),
and where ¢g is defined by:
(S2.14) ¢op(u) =E {X]T - X = u} .

Since Bn L5 By and

/Fo(t,agz)e[e,lq {# = o0(t = 8o) | { Fo(t = Bhw) — Fj, (¢ = B | dPo(t. .6)

= %,e(ﬂo) (Bn - ﬁO) +op (Bn - BO) 5
this yields, using the invertibility of ¢} (80),
\/E(Bn - 60)

N ) AR )| (R )

t—B{x)Ele,1—¢]
d(P, — Ry)(t, x, 6)} + op (1 +vVn(Bn — 50)) )

As a consequence, the result of Theorem 4.1 follows, since

Vi {2 = o(t = B5) {6 Folt — Bi) } d(Bn — P0) (t,,9)

Fo(t—56$)6[6,1—6]

4 N(0,B).
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2. To show that (S2.13) holds, we need entropy results for the functions u +— F, g(u) and
U dg s (u) (see (S2.15) below). We also have to deal with the simpler parametric functions
F3 and ¢g, parametrized by the finite dimensional parameter 3, which are the population
equivalents of F), 3 and qbﬁ 7

3. The result will then follow from the properties of Fz and ¢g, together with the closeness of
Fn”g to Fg and d)B,Fn,a to ¢g, respectively, and the convergence of ﬂn to Bo.

Let &B i . bea (random) piecewise constant version of qﬁB , where, for a piecewise constant
"y n,ﬁn n

distribution function F' with finitely many jumps at 71 < 7 < ..., the function 4557 F is defined in
the following way.

B gﬁg(Ti), if Fg(u) > F(Ti), u € [Tiﬂ'i—i—l),
(S2.15) g r(u) =< ¢a(s), if Fg(u) = F(s), for some s € [1;, Ty11),
¢p(Tiv1), if Fg(u) < F(7i), u € [1, Tiv).

We can write:

D= [ wfo- - B} Pt
(t—Bpz)€le,1—¢]
:/ {2 =65, (t— Buo)H{o — B 5 (¢ — B2} dPu(t, 2,0)
F, ;5 (t—BLa)ele1—d

+/ ; ¢, (t = Brz) — ¢ (t — B.z)
Fn,gn(t—ﬁgm)e[e,l—e]{ Pr BrsF, 5, }

A8 — Epp(t — Bha)} dPy(t, x,5)
=I+1I,

using

b5 5 (t—=Ba) {6 —F, , (t—Bhx)}dPy(t,2,8) =0,
/F 3 (t—ﬁéx)e[e,l—e] ﬁn’Fnaﬂn { ,Bn }

n,Bn

by the definition of the MLE Fn 5, 88 the slope of the greatest convex minorant of the corresponding

cusum diagram, based on the values of the A; in the ordering of the T; — BT’lXZ (see also Lemma
A5 on p.380 of [2]).

Since the function u — ¢g(u) has a totally bounded derivative (as a consequence of (S2.14) and
assumption (A5)), we can bound the Euclidean norm of the differences ¢g(u) — (;%7 s (u) above

by a constant times |Fy, g(u) — Fj(u)|, for u € A, (see (A2)), i.e

65(u) = b5 5, , (W)l < Ksl Fp(u) — Fa(u)l,

for some constant Kg > 0 where the constant K3 depends on [ through fz (see for this technique
for example (10.64) in [3]). By Assumption (A2) we know that fz is continuous for all 3 € © such
that we can find a constant K > 0 not depending on 3, satisfying,

(52.16) l65(w) = & 5., , (W)l < K|Ey5(u) = Fp(u)l,
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uniformly in 5 € ©. Note that we also need fg(u) > 0 for applying this, which is ensured by (A2).
We have:

v /ﬁn,sn (t—Bgz)e[e,l_e]{%" (¢ = 5) = 03,5, 0= 0 )}
‘ {5 —F, 5 (t— B;x)} P, (t,z,0)
- /F {%(t —Buw) = 5,5, (t— B;x)}

', (t=BLa)ele1—d] .
: {5 —F (- B;z)} d(P, — Po)(t,z,0)
+ {93,00 = 93, , O }H{F3, 00 = By 5, 0} 1y )

F, 5, (u)€le,1—€

m,

+/ ¢s (t—Bhx) —ds 5 (t—Pha)
Fn,én(t_ﬁ'&*T)e[ﬁl—E]{ 6” 5n’Fn,Bn }

. {Fo(t — Bhx) — Fy (t - B;x)} dPy(t, z,0)
=1, + I, + IT.

First consider I1,. Let F be the set of piecewise constant distribution functions with finitely
many jumps (like the MLE F, Bn)’ and let K1 be the set of functions

Ki={(t,z,6) = (¢a(t — B'x) — ¢p p(t — B'z)) (6 — F(t — f'x))
(S2.17) Lje1—q(F(t—p'z)): FeF, 30},

where qz_557 F is again defined by (S2.15). We add the function which is identically zero to K.
The functions u — F(u), for F' € F and (as argued above) u — ¢g p(u) are bounded functions
of uniformly bounded variation. Note that, for Fy, Fo € F,

Fl(t — Bix) — Fg(t — Béx)
= Fl(t_ﬂix) _Fﬂl(t_ﬁix) +F51(t_/81$) _F52(t_ﬂéx)
+ Fa,(t — Byx) — Fa(t — Boa),
and that (see (3.2)):
‘Fﬁl(t - ,81.73) — Fp,(t - ﬁéx)‘

_ ‘ [ B =i+ 81— B (= o) gl — i) dy

- / Fo(t — Bz + (B2 — Bo)' (y — =) fxr—pyx (Y|t — Baw) dy

=0(|B1 — Bl),
by (A2) and (A5).
For the indicator function 1j 1) (F(t — 8'z)) we get, as in (S2.5), using the monotonicity of F,
Ly (F(t = f'z))
=11y (F(t = B'2)) = La—eq) (F(t = 8'2)) = 1o, o) (t = B'2) = Ly_poan) (t = B'2),
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for points acp < ber, where M is an upper bound for the values of ¢ — 'z, implying that the
function

(t,z) = 1peqy (F(t = p'z))

is of uniformly bounded variation. So the functions in K; are products of functions of uniformly
bounded variation, and we therefore get, using Lemma S1.1

sup (Hp (¢, K1, La(Fo)) = O(1),
¢>0

which implies:

¢
/ Hp (u, K1, La(Po) 2 du =0 (<), ¢>o0.
0
Defining

kr(t,x,0) =(¢s(t — B'z) — ¢g p(t — f'2)) (6 — F(t — B'z))
Afea-g(F(t = B'x))

for F € F, we get, using (52.16),

{/ Hkﬁn,ﬁnﬁn (t,z,0) H2 0Pyt 2.9) }2

< /F b5, (t—Bra) — b5 5

o n,Bn
n,Bn

~ 2
(t— ,B;x)H APy (t, z,0)

(t—B;Lm)E[e,l—e}

] 5 R 2
SK/ 3 { ng (= Pn) = F (t*@/ﬂ)} dPy(t,z,0)
Fna/@n(t_ﬁ;lx)e[e71_€] e n

P 2

< K’/ Fo(u)—F; ()} du
A"’f}n (u)e[ﬁ,l—e] { ’Bn ,Bn }
LAY

for constants K, K’ > 0. This implies

(S2.18) Jnll, = \/ﬁ/kﬁF (t,2,8) d(P, — Po)(t,x,8) = o,(1),

Bn

by an application of Lemma SO.1.
Using (52.16), ”Fﬁn - Fn,,é’nH? = 0,(n~'/3) and the Cauchy-Schwarz inequality on the second
term we get,
1T, = 0,(n~2/3).

The functions ¢g and Fjg are of a simple parametric nature, since

65 = E(X|T — §'X),
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and
Fa(u) = / Folu+ (8 — Bo)'z) fxr—sx (@|T — B'X =) da,

see (3.2). Moreover, since:

A~

Fﬁn(u) = FO(U) + (Bn - BO)I/xfO(u)fx|T_3;Lx<x‘u) dx + Op(ﬁn - BO)
(52.19) = Fy(u) + (Bn — Bo) fo(WB{X|T — 3, X = u} + 0p(Bn — Bo),

and since the difference ¢B —¢ 4, F . converges to zero, we get for the third term I1.:
n mny ni/BTL

Fn;Bn(t_Bébm)e[Eyl_G]{ Bn " 'Bn’Fn,ﬁn }

{ Bt - Bha) — B (¢ = B} dPo(t,2,0)
=0y (Bn - 50) .

We therefore conclude,

We now write,

- /ﬁn s (tmx)e[e,le]{x ~ 95,00 Béx)}{é —F, 5, (- Bfﬂ?)} dPn(t, @, 0)
_ /F 5 (tmx)e[e,w{x — 5, (t = B0) } {6 = B, (¢ = Blw) } Aot ,)

+[ . {$—¢3n(t—3f1x)}
F, 5, (t—pBLx)Ee,1—¢]

=1,+ Ip.
We get:

1o

/F B ]{x—gan(t—B;m)}{é—FBn(t—B;:n)}dIP’n(t,a:,é)
(- B)ele—e

z— 65, (t = B0) }{0 = F, (¢ = B2) | d(B, = Po)(t,,)

Fnﬁn (t—pB z)ele,1—¢] {

+ /F b {x — ¢y (t B;x)}{Fo(t — Bhx) — Fy (t - B;:c)} dPy(t, ,9).

17
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For the second integral on the right-hand side we get:

L s A os B R =)~ 1y ¢~ o)} aniea.

=/F A {o =05, B Rt - Bra) - By, (0= Bra) f dPo(t,2,0)

P 5, (t—=Bhx)Ele,1—¢]

A s, B H{Fu ) — Rt — B a2,

and next we get, using the definition of ¢g given in (S2.14), for the first integral on the right-hand
side of the last display:

~

/Fné (t_gme[e,l_d{x — ¢, (t = ﬂlx)}{Fo(t — ) = Fy (t - B )} dPy(t,z,6)

- / {o =05, HFow) = F;, )}y () Fir_py x(alu) duda
F, 5, (u)€le,1—¢€]

=0.
Furthermore, we get by expanding Fy(t — f'x) and by the continuity of 5 — ¢g(u) at 8 = o

/ {a: — ¢y (t— B;La:)}{Fo(t — Bhz) — Fo(t — B;x)} dPy(t, z,0)

o (t—Blz)ele,1—¢]

{o=05,(t = B12) }(Bu — Bo) ' folt — Byw) dPo (2., )
+ 0p (ﬁn /80)

n,Bn
/A7A (t—Blz)€ele,1—€]

o1 ]{x_¢O(t_/8(l)x)}x/f0(t_ﬁéx) dPO(t7x75)}(Bn_BO)
Ee €

+op (ﬁn — ,6’0) .

Finally we get from the consistency of Fn R

{/F prereet ]{w — ¢0(t—ﬁ6x)}x’fo(t—66x) dPo(t,a:,d)} <Bn —ﬁo)
o, (= Bhm)Ele 1

- { /Fo(t_ ﬁéx)e[gl_e]{w — ¢o(t — ﬁéw)}w’fo(t — Bhx) dPy(t, 5)} (f;n _ go)
t0p (Bn - 50)
= ¥} (B0)(Bn — Bo) + 0p (Bn _ 50> ,
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So we obtain:
I, = / A {o =05, Ba) o - Fy (¢ = o)} d(Pa - R) (2, ,0)
E, 5 (t=BLa)€le,1—¢
+ 04 (B0) (B — o) + 0p (B — )
We now proceed again as before, and define K} to be the set of functions

Ky ={(t,2,8) = (z — ¢t — f'2)) (6 — F(t — f'2)) 11 _q(F(t — 5'x))
FeF, e},

We add the function
(t,x,8) = (x — do(t — Byz)) (6 — Fo(t — Byz)) Lie,1—q (Fot — Byz))

to the set ;. The distance d is defined by (S2.4) again, with K replaced by K}. We therefore get,
similarly as before, using Lemma S1.1,

sup CHB (CaIC/DIQ(PO)) = 0(1)7
¢>0

which implies:

/C Hp (u, K, La(Po)) " du= 0 (@/2) . (>0
0
Moreover, we get:
(:L'_qbﬁ (t—BIL‘))( F t ) el e]( (t_ﬂ ))
— (z— ot — By )( Fo(t — Byr))1 ele](FOt_BOx))
—{(z =0, (t= B)) (0 - Fy, (¢~ B, >)
— (z— dolt — Byz)) (5 ~ Folt = 862)) P (B 5. (= Bio))
+ (z = ¢o(t — Byx)) (6 — Fo(t — Byx))

) {1[5,1—5} (FO(t - 5(,)1')) - 1[6,1—6] (Fnﬁn (t - B?”L':L'))}
= A, (t,x,6) + By(t,z,9),

implying
/ {(@ =05t = B12)) (5 Fy (t = Bro)) 11 g (B, 5, (0 Bro)
_ (37 — ¢0(t — /36:6)) ((5 — F()(t — 56%))1[6’176} (Fo(t — Béx)) }2 dPo(t, x, 5)

< 2/ {A,(t,2,6)* + Bn(t,2,6)*} dPy(t,x,0) = 0,(1),



20 P. GROENEBOOM AND K. HENDRICKX

since the integrals w.r.t. A2 and B2 tends to zero using the consistency of Bn and Fn B
Hence we get from Lemma S0.1:

I, = — — 3 d— — B d(P,, — Py)(t,x,d
A (R ) O O B R DI
+U4c(80) (B = Bo) + 0y (B — Bo) + 0y (n7112).
This means that we get the conclusion
/ { = g0t = By) } {6 = Folt = Bje) } d (B = Po) (8,2, )
Fo(t—B{x)€le,1—€]
(82'20) = _wi,e(ﬂ(])(ﬁn - /80) + 0p (Bn - /80> + op (n_l/Q) )

if we can show that I is negligible.
Since, by definition of ¢g given in (S2.14),

/F 5 (t—Blhx)€Ele,1—¢

n,Bn
=
F (t—BLz)€le,1—¢]

n,Bn

we have

{CU — 5, (L = Bfﬂ)}

A

A By = Bhw) — F, 5 (0= Br) f d(Py — Po)(t,,0).

The negligibility of I, now follows in the same way as (S2.18), using the parametric nature of the
function ¢g and the entropy properties of the class of functions

N

ur F s (u) = Fp (u).

n,

The conclusion now follows from (52.20). O

REMARK S2.1. Note that the proof above yields the representation

571_/80

~ T (o) T Y (X — B(XGIT — B)X)) {As — Fo(Ti — BpXi}
=1

where 9] (8o) is given by (4.4).

S3. Asymptotic behavior of the efficient estimate based on the MLE Fn,g. In this
section we prove the asymptotic efficiency of the score estimator defined in Section 4.2. The proof
of existence of the root and the consistency proof for the score estimator is similar to the proof of
existence and consistency of the first score estimator defined in Section 4.1, thus omitted.
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S3.1. Asymptotic normality of the efficient score estimator.

PROOF OF THEOREM 4.2 (ASYMPTOTIC NORMALITY). Since the proof is very similar to the
proof of Theorem 4.1, we only give the main steps of the proof. As in the proof of Theorem 4.1, we
(e) 3
can define v, , at 3, by

@Z’é?)lh (Bn) =0,

and @Z)éi)m(ﬁn) is then a combination of one-sided limits at 3.
We prove that:
(831) g (B)
_ / {zfo(t — Boz) — @, (t = Byz)} {6 — Fo(t — Byx)}
Fo(t—Blx)€le,1—€] FO(t - 6(/)1'){1 - FO(t - /B(l)x)}
+ 05,e(80) (B — o) + 0p (172 + (B = B0))

dP,(t,x,9)

where ¢g is defined by
(S3.2) op(t— B'z) =E(X|T — /X =t —Bz)fs(t — f'z),
and v is defined by,

(S3.3) V2,(8)

) {afstt = 8) = oat = B'a) H{6 - Folt — p'o)}
B /Fﬁ(t—ﬁ’a:)e[e,l—e} Fg(t — p'o){1 — Fp(t — B'x)}

dPo(t, Z, 5)

Straightforward calculations show that,

i {afolt = Box) — st — Bow)}
Va.lfo) = /Fo(t—ﬁ(’]m)e[e,l—e] Fo(t — Byo){1 — Fo(t — Byz)}
& {fo(T — BX)? {X —EX|T — B X))} {X — E(X|T — ﬂéX)}/}
‘ Fo(T — By X){1 — Fo(T — BpX)}

dP[)(t, Z, 5)

= Ie(ﬁO)‘

(See also the derivation of the derivative . for the first score equation in the proof of Theorem
4.1, Part 1). Since

N {zfo(t — Byw) — s, (t — Byz) } {0 — Fo(t — Byr)}
Fo(t—B)z)ele1—d Fo(t — Byz){1 — Fo(t — Byr) }

L N(0, I(Bo)),

dP,(t,x,9)
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(S3.1) implies, using the non-singularity of ¢ (fo) and the consistency of B,

\/E(Bn - /80)

_ _¢é (BO)_I{\/H 1‘f0(t — 561') — (Pﬁo(t — 561’)

Fo(t—B)z)ele,1—q Fo(t — Boa){1 — Fo(t — Byz) }
{6 = Folt — Byw)} dPu(t,, 5)}

+op(1 + \/E(Bn — o))
4 N (0, 1.(Bo) ™Y -

Let, analogously to the start of the proof of Theorem 4.1, Po,F be a (random) piecewise
ns n’ﬁn

constant version of ¢ B where, for a piecewise constant distribution function F' with finitely many

jumps at 71 < 7 < ..., the function @g r is defined in the following way.
©03(73), if Fg(u) > F(1), u € 15, Tit1),
(S3.4) opr(u) =4 ¢a(s), if Fg(u) = F(s), for some s € [13, Tiy1),

wp(Tiv1), if Fp(u) < F(1), u € [13, Tiv1)-

We now have:

Son(8)
; ol
= / ) S, (6= Blx) = ° _ Fo _ Buit) - dP,(t,x,0)
Fy g t-Bioelei—q Foo (= Bao) (1= F, 5 (t— Bya)}

{fﬂ g, (E— Bnz) — s (t— B;fv)}

/ﬁnﬁn(t—/%;bx)e[e,1_s]
6—F, ; (t— Bja)

B (- Bl - F,, (t— Bho)}

i /Fm (t-Bha)ele1—d {%’ (0250 = P, (0~ B;x)}
§—F, 5 (t—B)

B (- B {1 - F, (6 Bha))

dP,(t,x,9)

dP,(t,z,9)

=I+1I.

Let F be the set of piecewise constant distribution functions with finitely many jumps (like the
MLE F, ; ), and let K3 be the set of functions

Ko = {(t7 xz, 6) = {Spﬂ(t - B/x) - QB,F(t - B/x)}F(t _(;;igt:ﬁ(f)g ﬁ/l’)}

(S3.5) Le1—q(F(t—p'z)): FeF,Be0B},
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where @3 r is defined by (S3.4). We add the function which is identically zero to K. As in the

proof of Theorem 4.1, the functions are uniformly bounded and also of uniformly bounded variation,
using conditions (A4) and (A5). For k; and kg in Ko, we define

(836) d kl,kz /Hkl kz” dP(), kl,kg S ICQ.

For this distance, we therefore get, similarly as before, using Lemma S1.1,

sup (Hp (¢, K2, L2(Fy)) = O(1),
¢>0

which implies:

¢
/ Hp (u,Ka, La(Py))Y2 du = O (cl/z) . (>0
0

Note that the indicator function keeps F(t — 'x) away from zero and one, which is essential for
getting the bounded variation property.
Following the same steps as in the proof of Theorem 4.1, we get:

IT = o, (“_1/2—1‘371—50)-

We now write,

I:/ F o 5, (t = Br) =05, (t = B2)
ﬁ‘"vf}n (t_B;Lx)E[€71—6}{ h.Bn B }
6= Fy 5, (= Bi)
Fop b= B{1=F 5 (¢ = B}
) ©f o5, (t = Br) = 05, (t = B2)
/7L Bn(t /Bn )6[5,1—6}{ h,Bn B }

§—F; (t—p!
- A 5. (¢ Aﬁ”x) — dP,(t,z,0)
Fog, (=B {1 = F, 5 (t = 52)}

o 2o, = Bir) = 05, (6= L)
F . (tﬁ{iz)e[e,le]{ hfn Pn }

n,Bn

dP,(t,z,0)

~

Fj (t=Bhx) = F, 5 (t— Bjx)
Ey (t=Bpa){L—F, 5 (t—Byo)}
+/ ) of o5 (t— Bpr) — @5 (t— By)
o (t—ﬁzar)e[al—d{ I o }

n,Bn
Fj (t=Bha) = F, 5 (t - Bpa)
gn(t—ﬁn {1 —F, 5 (t—Bz)}

dP()(t, x, (5)

d(Pn - PO)(ta z, 5)

=1+ I+ 1.
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For the term I, we get:

: ; af g (t—Boz) — o5 (t— Bhx)
/F 3 (t—ﬁ;az)e[e,l—q{ hBn Bn }

n,Bn
B (t—Br) - 5, (= )
Fy (t— Bl ){1— n,gn(t—ﬁa )}

= _]EXT_“/X: A ) o
éﬂ,gn<t—3;z>e[e,1_€] (e BT - B X = an)}fnh,ﬂn(t C)
F;, (t = Bhw) = F, 5 (t = Bya)
n(t_ﬁé ){1— 5 (= Bh)}
+ Fnp, t = Brx) = f5 (¢ =By, EXT—Bant—B;
/an (t—Pz) [615]{ b 7) = f5.( x)} (X )

dPy(t,z,0)

dP()(t, Z, 5)

Fy (t=Ba) = F, 5 (t = Bjx)
n(t—/% ){1— n,gn(t—ﬂa )}
:[ (t-3, )G[e,l—e]{fnh”én(t_ﬁnx) a fﬁn(t_ﬁnx)}E(X’T_B"X =t = Buz)

n,Bn

dPy(t, z,6)

Fy (t=Ba) = F, 5 (t = Bjx)
o= >{1— oo 0= Byl

{ () = 15, 0 JEOXIT = 3% = wy B2
B WL T g, U

dPy(t,z,0)

fT*BZX (U) du.

aj\

nﬁ (u)€le,1—¢€]

Furthermore,

FBn (u) B Fn ,Bn( )

Fy (w1l = F, 5 w)}

_ 52 (v . . .

- /Fg(e[ele] /K JIWE, 5, () dv = f3 (u }EX\T BX = u)
B, (“){1 ( )y T

:h_2[ ( 6[6,1—6]/K,((u_v)/h) {anﬁ ( ) F ( )} dUE(X|T_ﬁ;LX:U)

n,Bn

@\

{Funs, 0 = 5, (0 JECXT = 3% =) Ty () du

n,Bn (u)€le,1—¢€]

(u) du

. Bn n,Bn .
By 1~ B, 5 () TN
: /Fnﬁn(me[e,u] {/ Kn(u—v)dFs (v) = f5, (u) ( B(X|T = £, X = u)

B o g o
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The last term on the right-hand side has an upper bound of order O,(n=2/7-1/3) = O, (n"13/21)
= 0,(n~1/2), since
1/2

{/F (u)€le,1— e]{/Khu_v)dF (v) — f/;n(u)}2 du} =0, <n72/7>7

a2 (U
n,Bn

and

1/2
(S3.7) {/F e ]{Fnﬁn(u) _FBn(“)}Q du} =0, (n*l/i’»);
n,Bn \WELELTE

using Lemma 3.1 for the last relation. We also use the Cauchy-Schwarz inequality.
The first term on the right is of order O,(n'/7=2/3) = O, (n="/2') = 0,(n=/2) by (S3.7) and
using

h2[ s /K’ w—v /h){ B s (v) - FBn(v)} dvE(X|T — B.X = u)

A 2
Schl/ F 5 (u)—F; (u du,
2 (u)6[5/2,1—6/2]{ o () = g, ( >}

n,Bn

for small h and a constant ¢ > 0, where we first use Fubini’s theorem and next the Cauchy-Schwarz
inequality in the last inequality, together with

. 2
/F et }{Fnﬁn(u—hw) —FBn(u—hw)} du
n,B u)e|€e,l—e

] 2
“J B g, (w) = Fy ()} du,
Fn,ﬁn(u)E[ﬁ/Q,l—e/Q] { ,Bn Bn }

for small h > 0, together with w € [—1, 1]. Finally we use Lemma 3.1 again.
For the term I. we argue similarly as before using Lemma S0.1 that,

I.= o, (n_l/Q) .
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Finally,

B, 5 (t=Bpz)€le,1—¢] { h,Bn b }
. 6— Fn,ﬁn (t - B;,JJJ)
e “un (8= Bie) = 03,6 = )
Fn,Bn (tﬁéx)E[e,le]{ h,Bn B }
Fo(t — 5(’)1‘) — Fn73n (t - BZ:U)
Fug, (6= Dol = 5, (6= Pio)

d(Pn — Po) (t, Z, 5)

dPy(t,z,0).

This time we consider the class of functions
d—F(t—px) ,
1 F(t —
F(t _ B/l’){l _ F(t _ 5/1‘)} [e,l—e]( ( B :C))
:FeF, feF, e},

- {(t, 0.6) 5 (2f(t — B) — pa(t — Ba)

where F' is a class of uniformly bounded functions of uniformly bounded variation (which have the
interpretation of estimates of F/’i), to which we add the function

d — Fo(t — Byz)
(t — Bpa){1 — Fo(t — Bye)}

(t,z,0) — (a;fo(t — Box) — pp, (t — ﬁéx)) i Lie1—q (Fo(t — By)).

So we get, using Lemma S1.1,

sup gHB (C7K:I27L2(P0)) - 0(1)7
¢>0

which implies:

¢
/OHB (K, La(P)) 2 du =0 (¢2), (>0

As before, we now get:

/Fnﬂn (t—Bpz)€le,1—¢] {xf”hﬁ” (t=Fnz) = Pbn (t= ﬂ”x)}
6—F, 5 (t—Bz)
E 5 (=B {1l —F ; (t— B2}
{folt = Biw) — s (t = B }

. d — Fo(t — Byz)
Fo(t — Bhx){1 — Fo(t — Bhx)}
+op (n_1/2 1B, — 5())

(P, — Po)(t,,0)

/Fo(t—ﬁ()fv)e[al—d

d(P, — Po)(t, z,0)
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and
s (t— Al — 0, (t— Al
/ﬁn,gn (t—By2)ele 1~ (0= B = 03,0 = B}
Rl =)~ Fog =P
= = ~ = (AN
E o5 @ =Bha){l—F, 5 (t—Bhz)}
- { / [afolt — Bye) — oot — i)}
Fo(t—pBz)€le,1—€]
fo(t — Byz)’ .
Folt = B — Fott — gy o) } (5 =)
+ Op (n_1/2 + Bn - /30> .
The result now follows. O

S4. Asymptotic behavior of the plug-in estimator. In this section we first sketch in
Section S4.1 the proof of consistency of the plug-in estimator, denoted by Bn This is the second
result stated in Theorem 4.3. The proof of existence of a root is similar to the proof of existence
of a root of the simple score estimator defined in Section 4.1 and omitted. We next prove the
asymptotic normality result of the plug-in estimator, which is the third result given in Theorem
4.3. The proof of Theorem 4.5 on the asymptotic representation of the plug-in estimator as a sum
of i.i.d. random variables follows from the proof of 4.3. The asymptotic distribution of the estimator
of the intercept, given in Theorem 5.1, is proved in Section S4.2.

Before we start the proofs, we give some auxiliary results on the Lo-distance between the plug-in
estimate F),;, 3 and Fz and between the partial derivative of the plug-in estimate 0gFj,; g and 0gFj
in Lemma S4.1. For simplicity, we derive the proof of Lemma S4.1 for the one-dimensional case and
let © = [Bo —n, fo + n] for some n > 0. The higher-dimensional extension of the one-dimensional
proof is straightforward. Next, we follow the arguments used to prove the asymptotic normality of
the estimators defined in Theorem 4.1 and Theorem 4.2 and give a similar proof for the limiting
distribution of the plug-in estimator.

LEMMA S4.1.  Let the conditions of Theorem 4.3 be satisfied and let k = 1. Let the function Fg
be defined by (3.2). Then we have, for the estimate Fyp, g, defined by (4.8),

sy [ (Fanalt = 52) = Faft = pa))? dG(e.0) = O, (1) + 0, ().
Fpn,p(t—Bx)€le,1—¢] nh
2 1 2
s12) [ (OaFnalt = 52) ~ 03F3(t = Bo)Y dG(t,2) = 0, =15) +0, (1)
Fnh,g(tfﬁx)e[e,lfd n

uniformly in 8 € [Bo —n, Bo +n]. The results remain valid when dG in (S4.1) or (S4.2) is replaced
by dG.,.
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PROOF OF LEMMA S4.1. We first prove the first part and show that (S4.1) holds. Recall that,

_ Gnhp(t — Bz)

Fnp(t — Br) = s (t— B2)
where
Gnh,1,8(t — ) = /5Kh(t — Bz —u+ By) dPy(u,y,9),
and
gt = B2) = [ Kt = B~ u + By) dPa(u,3. )
Moreover,

Falt = 8x) = [ Folt = oo+ (5 = 5o)(y = ) xirpx (ol — 62 dy
We first investigate the bias part.
Byt = ) = [ Folt = fo) Kn(t = B — u-+ 84) dGlu.y)
= [ Fotw+ (8 = B (e — B — o) fr—ax (o) p-_sx(ulo) dy do
= [ Folt = B+ (5 — Go)y — ho) () fr—ax(t — B — hu) fxo_sx(ul - Bz — o) dy o
— fr-ax(t = Ba) [ Folt = o+ (5= Go)ly = o)) Fxr_px(ylt — B dy +O (1),

uniformly in 5 € [By — 1, Bo + n] and ¢, varying over a finite interval, due to the assumptions of
Theorem 4.3. In a similar way, we get

Egnn(t — Bz) = fr_px(t — Bz) + O (h?),
uniformly in 8 € [By — 1, Bo + 1] and ¢,z varying over a finite interval. So we find:

Egnn15(t — Bx)
Egnn g(t — Bx)

= Fg(t — Bz) + O (h?).

uniformly in 8 € [y — 1, 8o + 1] and ¢,z varying over a finite interval, such that Egy; 1 5(t — fz)
stays away from zero.
So we obtain

Fon p(t — Bx) — Fg(t — px)
_ gnh,l,/ﬁ(t - B.’IJ) - Egnh,l,ﬁ<t - 51')
gnh,ﬁ(t - 633)

Egnn,p(t — Bx) — gnn,p(t — Bz)
Inh,p(t — Br)Egnn s(t — Bz)

+ Egnn1,5(t — ) +0 (h?),
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and
{Funp(t — Bz) — Fa(t — Bx)}>

gnh,l,ﬁ(t - ﬁl‘) - Egnh,l,ﬁ(t - 517) } {E - gnh,B( - B:L') - gnh,ﬁ(t - 533) }2
< 3{ gun s — fo) 3 Bnnas = )= B E g (¢t — Ba)

(S4.3)
+0 (h').

uniformly in 8 € [By —n, Bo + 1] and ¢,z varying over a finite interval, such that Eg, 1 s(t — fz)
stays away from zero.

Since 7 > 0 is chosen in such a way that a;(8) = Fﬁ_l(e) > a, bi(B) = Fﬂ_l(l —€) < b, for
each B € [By — ), Bo + 1] and since gnn g stays away from zero with probability tending to one if
€ < Fupp(t —Br) <1—€ we get

—Bz)—F - 2
/ {gnh,l,ﬁ(t Br) — Egun,1,6(t Bx)} dG(t, )
Fop,p(t—pBz)€le,1—¢]
S

gnh”@’(t - ,B.T)

/ {9nh1,8(t — Bx) — Egnn1,5(t — Bx)}? dG(t, x)
Foh,g(t—Bx)€le,1—¢]

Furthermore

2
E {gun1.5(t — ) — Egu5(t — Bz)} — E { [ 55— —ut 89) B~ P, 5)}

=0 (nlh)

uniformly for (¢, x) in a bounded region, so we get

1
E / {gnn1,5(t — Bz) — Egni,p(t — Bz)}* dG(t,z) = O (h) .
i p (1= B2)€le, 1~ "

_ —E _ 2
/ {gnh,l,g(t Bx) — Egnn1.5(t Bx)} dC(t.2) = O, ( 1 )
Fon p(t—B)€le,1—¢] Inh,p(t — BT) nh

The second term on the right-hand side of (S4.3) can be treated in a similar way. So we get (S4.1).
This proves (S4.1).
We next replace dG in part (S4.1) by dG,, and we get
/ {th,l,ﬁ(t — Bz) — Egnn1,5(t — Bz)
Fon,5(t—Bz)ele,1—¢] Gnn,p(t — Bx)

{gnn1 8t — Bx) — Egnn1 5(t — Bx)}? dGy(t, z)

Hence

}2 Gy (t, )

<

~

/Fnhﬁ(tﬁz)e[e,le]

1 n
= > A{9nn1.8(Ti = BXi) = Bgun1,5(Ti — BXi)} LeaFop o(1i—5X1) <1~}
=1
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Moreover,

1 n
& > Agnn1,8(T = BX) — Bgnn p(Ti = BX)Y Lea P p(T—pxi) <1}
=1

=E{gnn1,6(T1 — BX1) — Egun1,5(T1 — BX1) Y Lec o o (Ti—px1) <1}
SE | {gnn1.5(t — B2) — Bgun1 5t — B2)}? dG(t, )
€/2<Fg(t—Bx)<l—e/2

of)

This implies by the Markov inequality,

_ —E _ 2
/ {gnh,l,ﬁ(t Bx) Gnh1,8(t Bzc)} 4G (t, 1) = O, <1> |
Fpp,p(t—Bx)€le, 1~ Inh,p(t — Bx) nh

The other term on the right-hand side of (S4.3) is treated similarly; and the result of (S4.1) also
follows when we replace dG by dG,,.

We next continue with the proof of (54.2).
We have:

f(y — 1‘){5 B Fnh,ﬁ<t B ﬁx)}K;I(t — ,3.% — U+ 63/) dPn(ua Y, 5) ]

(S4.4) pFnnp(t — Bzx) = Gnh,p(t — Bzx)

We consider the numerator of (S4.4). It can be rewritten as
[ =25 = Folu = o) M ¢ = Bz~ + By) P (. .0)
+ [t 2} Fo(u— Pog) — Fp(t = B} K4t~ B — u+ By) dGu(us )
+AFp(t = 52) = Fanlt = Ba)} [ (y = 2)K}(t ~ o — u+ y) dGfu,).

The first term can be written as

def

Atz ) % / (y — 2){6 — Folu— foy)} Iy (t — B — u+ By) d(Po — Po)(u,y, 6),

and we have:

E / An(t 2, 8)% dG(t,z) < E / An(t, 2, B dG(L, 2)
Fnh,B (tfﬁx)e[e,lfe]

~ n;g/Var(XW)Fo(v){l — Fo(v)} fr—px (v) dv/K’(u)Qdu, n — oco.

In the second term we must compare Fy(u — Boy) with

Fa(t — pz) = /Fo(t — Box + (B — Bo)(z — 2)) fxjr—px (2|t — Bx) dz.
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We can write
Fo(u— foy) — Fy(t - Bo)
— [ {Fulu — o) — Folt = o+ (8 = o)z — 2))} Ly (eIt — o) =
So we find for the second term
Bult,2,8) ™ [ (v o) (Folu = o) = Falt — 5o)} Kyt — B — u + 5y) dGa(u. )
— [ [ =) (Fotu= o)~ Fott = o+ (5 = o)z = o))} (el — B) s
K, (t — Bz —u+ By) dGp(u,y)
— =) [ 1ot Boy) = Folt o + (5 = o)z — )} Frsxc(elt — o) dz
K (t — Br —u + By) dG(u,y)
+ [=a) [ 1ot poy) — Fot = Pz + (5 = B0)(z — 2)} fxpsx (elt — ) da

K (t = Bz — u+ By) d(Gp, — G)(u,

= fr_px(t — Bx)0sF3(t — Bz) + O(h) + O, ( 23)

where, using integration by parts, the last line follows by straightforward calculation. Since
Guns(t = Br) = fr-px(t = fz) + Op(h%),

we get,

Bn(tvxaﬁ) }2 < 1 > 2
T B) g pat— B\ Gt z) =0, [ —= ) + 0, (h2).
/Fnh,w—/sx)e[al—s]{gnh,ﬁ(t—ﬂx) pFplt ~ ) (t:2) = Op \ 7z ) + O (1)

Finally, defining

Cult, 2, B) & {Fy(t — Ba) — Fop 5t — B2) }/ — 2)Kp(t — B — u+ By) dGn(u, y),

we get, using,

/ (y — @)K} (t — B —u + By) G (u,y)

= /(y—w)Ké(t — Br —u+ By) dG(u,y) + /(y—:r)Ké(t — B —u+ By) d(Gy — G)(u,y)

:/(y—ﬂv)K;Z(t—Ba:—v)fT_gX( )fX‘T ax (y|v) dvdy + O, < 23>

:/(?/—x)Kh(t—ﬁm—U {fr—px () fxir—px(ylv)} dvdy+ O, < 23)
:Op(l)v

Y)

31
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and using the first part of Lemma S4.1 for the factor F(t — fx) — Fpp 8(t — Bx) that

1

/ Ch(t,z,8)*dG(t,z) = O, () +0, (hY).
Fpop,p(t—Bx)€le,1—¢] nh

This proves (S4.2). The second part of the result, replacing dG by dG,, in (S4.2) is proved in the
same way as the second part of (S4.1). O

S4.1. Consistency and asymptotic normality of the plug-in estimator. We first prove that Bn is
a consistent estimate of (.

PROOF OF THEOREM 4.3, PART 1 (CONSISTENCY OF THE PLUG-IN ESTIMATOR). We assume
that (3, is contained in the compact set ©, and hence the sequence (f,) has a subsequence
(Bn, = Bn,(w)), converging to an element f,. It is easily seen that, if 5, = fp, (w) — B,
we get:

5 def
E, 5 (t—p,2) — Fp(t - Bx) = [ Fy(t—Bla+ (B — B0)'y) fxir—p, x (ylt — Bix) dy.
k 75nk
In the limit we get therefore the relation

(S4.5)

lim —(B,, — fo)’

k—o00

{6 N Fnkh73nk (t - B;ka)}aﬁFnkh,ﬁ(t - ﬂlx)’rgzgnk

) - - dPy,, (t,z,0)
Fyinn, GBoeled—d  F 5 (t=F,o){1-F, 5 (t=75,2)}
(54.6)
Fo(t — Byx) — Fp,(t — Bix) t 0 Fs(t — B'x)|g=p,
Fp, (t=BLa)ele 1~ 5. (t = Bir){1 — Fp, (t — Bix)}
which can only mean /3, = By by condition (4.14).
O

We next continue with the proof of the asymptotic normality of the plug-in estimator.

PROOF OF THEOREM 4.3, PART 2 (ASYMPTOTIC NORMALITY OF THE PLUG-IN ESTIMATOR).
To prove the asymptotic normality of the plug-in estimator, we follow the reasoning of the corre-
sponding proofs of the simple score estimator and the efficient score estimator described in Section
4.1 and Section 4.2. We prove that,

(S4.7)
D8 (Ba)

_ / {E(X|T - ByX =t — Byz) — =} folt — Byw) {6 — Fo(t — o)}
Fo(t—B)z)€le,1—d Fo(t — Bye){1 — Fo(t — Byr) }

o+ 05.e(80) (B — o) + 0p (172 + (B = B0))

dPy(t,x,9)
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where 13 . is defined by,

051t — B){ 6~ Filt — ')}
(S4.8) V3.6(8) = /Fﬁ(t_w)e[ﬁl_d Fg(t — B'z){1 — Fs(t — B'z)}

dPO(taxv 5)7

and

fo(T — BpX)? {X — E(X|T — X))} {X — E(X|T — 56X>}'} — —L.(5o)
Fo(T — BpX){1 — Fo(T — ByX)} <(Bo),

V3. (Bo) = —Ee {
which follows by straightforward calculations after noting that,
IpFp(t — f'z) = /(y — ) fo(t — Box + (B — Bo) (y — ) fxyr—pxWIT — B'X =t — f'z)dy
4 [ Falt = 50+ (5= 50 (0 = 20w GIT — B'X =t - Fa) dGi(t )

is, at 8 = By equal to
fo(t = Bor)EA{X —2|T — GoX =t — By}

We have,
5= By, (0= Bia)
:/ ) O Fpn(t — B'v) |5_p, = R = dPy(t, 2, 0)
Fon g (t=Prz)€le1—¢] Fnh,Bn (t = Bre){l— Fnh,Bn (t = Bra)}
§—F , - (t—f2)
= / A OpFs(t — Bw) |5 e ———dP,(t,2,0)
Fon g, (t=Bra)€le1—d Fong, (& = Pra){l = Fy 5 (E = Bra)}

+/ A 85Fnh”3(t — ﬁlx) | _A —(95F5(t - ﬁlﬂj) | _A
Fh,an&—ﬂ;x)e[e,l—e]{ o= s}

0 — Fnh Bn (t - B;L$)
Foyps, (= B,2){1 = Fy 5 (t— Ba)}

dP,(t,x,9)
=14+1I

Let F be a class of functions with the property that

f'(u)?du < M.

Z/2<Fﬁ(u)<1—€/2

if f € F, for a fixed M > 0. Using Proposition 5.1.9, p. 393 in [1], withm = 1, p = 2 and h < n=/5,
we may assume that the functions u — F,, g(u) and u — 0gF,5 g(u) belong to F . Since the plug-in
estimates are monotonically increasing with probability tending to one we get that the function

(t7 l‘) = 1[6,1—6] (Fnh,ﬁ(t - Blw)) s
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can be written in the form

Al — Al _al
(t7x)Hl[ae’Fnh,ﬁ’be’Fnh,ﬁ](t 2 1[“67Fnh,ﬁ’°°)(t Fz) 1<b€’Fnh,ﬁ’°°)(t F),

for a, Fang < be, Fon.g for large n, with probability tending to one. The function is therefore of
uniformly bounded variation for n sufficiently large (see also the proofs of Theorems 4.1 and 4.2). It
now follows that the bracketing (—entropy Hg((, K3, La(Fp)) for the class K3 of functions consisting
of the function which is identically zero and the functions

d—F(t—p'z)
Bt —p'z){1 - F(t - p'z)}

e {(t’ 2,0) = {3 Fun plt — B'2) = aF(t — Fa)}
(54.9)

Ape1—q(Fanp(t —f'x)) : Fe F, B e 6},

w.r.t. the Lo-distance satisfies:

sup (Hp (¢, K3, L2(Fy)) = O(1),
>0

which implies:

¢
/ Hip (0, K, La(Po))/* du=0 (¢2), (>0
0

Moreover, by Lemma S4.1 we also have,

/ {{aﬂFnh,B(t — B'z) — OgFp(t — B'z)}
Fpon,p(t—p'z)€le,1—¢]

2
6 — Fpp(t — f'z) ,
Fanp(t — Ba){1 — Fup(t — B'z)} } dPy(t,x,8) = 0.

This implies by an application of Lemma S0.1, that,

{{aﬁpnhﬁ(t —B2) |y_p, —0sFs(t — B2) |5 Bn}

. 0 = Fop 3, (t = Bp7)
Fop gt = Bpe){l = E, 5 (t = Bra)}
Furthermore, an application of the Cauchy-Schwarz inequality and Lemma S4.1 yield that

\/ﬁ/ OsFs(t — B'x) | ,_s —0sFunp(t—x) |, 4
F h,gn(t—ﬁx)e[e,l—e}{ B=0n 5 ﬁn}

_ { Fo(t — Box) — Fy 5, (t = Bya)
s (t=Bho){1 = F,, 5 (t = Bha)}

/F i (t=Brz)Ele1—]

n

} d(Py, — Po)(t,z,8) = op (n—1/2)

} dPy(t,x,0)
= 0, (n711) + 0, (Vi (Bu — )
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The conclusion is that
11 = o, (n_1/2 + (Bn — Bo))

We now write:

= / . DpFp(t — B'x) [5_p,
Fop 5, (t=Bhz)€le1—¢]
0 — Fnh Bn (t - B?l’bx)
Fung (= B} (1= Fry g, (¢ = B}

OpFp(t —B'x) |5_p,

dP,(t,z,9)

- /Fnh,an (t—BLz)€le,1—¢]

5—F@@—Bm0
F 5 (t=Ba){1—F, 5 (t— )}
o 0Fp(t — B'2) |,
F,, 5 (t-Bh2)ele1—d

| Fy (t=Bx) = F, 5 (t = f)
By (t=Ba) {1 F, 5 (t— By)}

dIP)TL (tv z, 5)

dP,(t,x,d)
=1, + Ip.
We now get, using Lemma S4.1 and
D Falt — ) |5, = E(X —a|T = B,X =t = fe) folt = Bx) + Oy (B — o)

that I, = op (n_l/ 24 Bn — B()). The result of Theorem 4.3 now follows by showing that,

. OsFp(t — B'z) |5 5
/Fnh,én (t=Bp)€le1~€] B=bn
(S4.10)
0 — Fy, (t— Bw)

Fyp (= Bpn) {1 = Fyy 5 (6= Bha)}

= / 05Fs(t — B'7) sy
Fo(t—pjz)€le,1—€]
0 — Fo(t = Byz)

" Folt — Bpx) {1 — Folt — Byz)}

d(P, — Py)(t,z,0)

d(Pn - PO)(t7 €, 5)]

+op <n71/2 + B — ﬂo)
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and,

OpFs(t — A
L ey B8 o,

o, (E—BhT)Ele1-¢]
§—Fy (t— B
(S4.11) , ( ) unges)
Fnh,én(t rr){1l — nhﬁ (t—BLa)}

=¢gww@n—m»+%(w”?+&—5@.

The proof of (S4.10) and (S4.11) is similar to the proof of the corresponding steps given in the
proof of Theorem 4.1 and omitted. O

REMARK S4.1. It follows from the proof of Theorem 4.3 that
VI (B0)(Bn — Bo)
=2y fo(Ts = BuX{E(XG|T; — By Xi) — Xi}

A — Fo(T; — By Xs)
Fo(T; — ByX){1 — Fo(Ti — By X:)}

Therefore the result of Theorem 4.5 follows.

Lea—g {Fo(Ti — BoXi) } + 0p(1).

S4.2. Estimation of the intercept.

ProoF OoF THEOREM 5.1. We will denote dz; ...dx; by de. We have

Qy — o :/UanhB (u) — /udFo /{Fo nhﬁn )}du
) /Fo<t—5;x>—Fnh,gn< B
fT—B{lX(t_B;l$)

(84.12) :/Fo(t—ﬁ“;x)—Fo(t—ﬁgx) dG(wH/Fo(t—Boa:) E 5, = Bh) 4Gt 2)

Fr_p x(t = Bra) Fr_p x(t = Bix)

dG(t,x)

For the first term in the last expression we get

Fo(t — Biz) — Fy(t — Bha)
fT 5/ ﬁ/ )

= /{FO(U) - FO(U+ I/(Bn - 50))}fX|TthX(x|T - B;LX = u) du dx

dG(t,x)

~ _/x/(Bn — Bo) fo(u) fxjr—pyx (2|T — BoX = u) dudz
" { JEXT = 54X = ) otw) du} (B — )
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This term, multiplied with /n, is asymptotically normal, with expectation zero and variance

o2 % (B0 1(Bo) "L a(Bo),

where a(fp) is the k-dimensional vector, defined by

a(Bo) = [ BLXIT = 55X = u}fo(w) du
For the second term in (S4.12), we first note that,

S48 = Fot = 8a)VE(t = Bie = ut Bhy) Ao, ,6)
Gt (t — )

We write (S4.13) as the sum of the integral over dPy and the integral over d(P,, — Fy) and show that
the contribution of the dPy integral, evaluated in (S4.12) is negligible and that the contribution of
the d(P,, — Py) integral will yield an asymptotic normal distribution.

We have

(S4.13) F, ; (t— fo) — Folt — Bhar) =

/{5 — Fo(t — Box) Y Ku(t — Bla — u+ By) dPo(u, y, 6)
= /{Fo(u — Boy) — Fot — Box) }Kn(t — Bz — u+ Bly) dG(u, y)
— [{Ra(w + (B = o))~ Folt = B5) Y it = B = 0
. fT—B;X(U)fX\T—B;X(mT - B;ZX =v)dvdy
— Iyt = Bi) [{Fult = B+ (B = o)) — Folt — 550)
: fX|T—B;LX<y‘T - B%X =1- /37/137) dy + Op (h2)
= fr_ gy x(t = Bpx) folt = Bo) (Bn — Bo) BAX —2|T = 5, X =t — f}
+ 0y (1*) + 0p (118 = Boll)

where ||z|| is the euclidean norm of the vector x. Hence we get

/f{6 Fo(t — Bye) YK (t — Bz — u + By) dPo(u,y, 6) dG(t, z)

G (b — Bu) <t — o)
-y [ AEO ol - X = e i)
Inn(t — B,)
— (B = 60 [ JWIELX = alT = 55X = 0} fxpr_sgx (ol = 55X = ) dido

+Op (?) + 0p([|3n = foll)

dG(tv fL‘) + O;D (h2) + Op(Bn - BO)

=0, (1) + 0,([1Bn — Boll).

which is 0,(n™1/2) if h < n=1/4.
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Finally,
J{6 = Folt — Byz) }Kn(t — By — u+ Bry) d(Pn — Po) (u,y,6)
gnhﬁ( 5 )fT BLXx ( _le)

_ {6 - Fot—ﬁox)}Kh(t_ﬁlx—u+,8 Y it 2 d(B. — P (v
f// PRI SN 77 B R

e [ =Bw)Y n by , -
_\/> fogéX(u—,@(l)y) d(Pn PO)( ’y’5)+OP (h )+Op(||ﬁn BOH)

is asymptotically normal, with expectation zero and variance

(S4.14) / Folv fT{lﬁ’_ Folv )}dv,

dG(t,z)

if h < nl/4,
Both terms in the representation on the right of (S4.12) are, apart from a negligible contribution,
sums of independent variables with expectation zero. By Theorem 4.5 we have

\/ﬁ(/én - BO)
=0 2L(B0) Y fo(Th = BoX{E(XGIT; — BpXi) — Xi}

i=1
A = Fo(Ti — By X5)

Fo(T; — ByX:){1 — Fo(T; — By X:)}

and the second term of (S4.12) has the representation

Le1—q {Fo(T; — ByXi) } + 0p(1)

_ A; — Fo(T; — BLX5)
n-1/2 of 0
Z fT BLX T Bo )

By the independence of the summands with indices i # j, the only contribution to the covariance
of the two terms in the representation can come from summands with the same index. But,

fo(Ti = By X (BT, — BoXi) = XiHA = Fo(T, = 5 X)) _ax,
8 { FO(E - /BéXz){l — FO(E — BéXi)}fT—ﬁ(’)X(ﬂ _ B(I)Xz) 1[6,1—6}{F0(Tz /BOXz)}} .
_ folu — By {E(X|T — BhX = u — Bhy) — y}{d — Fo(u — Bhy)}? 5
_T/< rclea—d Fou— Byw) 1~ Fo(u — )Moy (e — ) o)

_ Ffo{E(X|T — By X =v) — y} Fo(v){1 — Fy(v)} P
- // (w)ele,1—¢] (){1 — Fo(v)} Fxr—gyx (ylv)dvdy

B P e BB - R}
‘me&A/m“W PoX =) =k xir-six Wl =g e Ry

=0

So the covariance is zero and Theorem 5.1 follows.
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