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What to expect?

e History of the subject

e Distribution of order restricted monotone estimates.

e Connection with Brownian motion functionals and Airy
functions.

e Application to inverse problems. Smoothed maximum
likelihood estimator (SMLE) and maximum smoothed
likelihood estimator (MSLE) for models for incomplete data.

e Does bootstrapping work for these models?

o (Lecture 2:)
Limit behavior of the order restricted convex and concave
estimates. “Invelope” of integrated Brownian motion +t*.



Lake Mendota

First example in:

‘Statistical Inference under Order Restrictions:

the Theory and Application of Isotonic Regression
Barlow, Bartholomew, Bremner, and Brunk (1972):

Number of days until freezing in the years 1854 +/, i =1,...,111,
in Lake Mendota, Wisconsin ( “most studied lake in the USA™).

Question: Can a warming trend be deduced from the data?



Lake Mendota




Lake Mendota

Barlow, Bartholomew, Bremner, and Brunk (1972):

“According to a simple, useful (if not completely realistic) model,

the days till freezing X; are observations on a normal distribution

with unknown means p;, i =1,2,...,111, and a common variance
2n

o°.

The maximum likelihood estimates of u; under the restriction
1 < -+ < p111 minimize (as a function of the p;):

111

D AXi—wi}?,
i—1

subject to p11 < -+ < 1.



Monotone least squares

We prefer to use the data on duration of ice:
Y; : number of days the lake was frozen in year i.

Monotone (or “isotonic”) least squares estimate is:

157
D = argmin,, {Z{Y, - 1/,-}2} .
i=1

subject to 17 > - -+ > v157.



Lake Mendota ice data

‘Duration of Ice on Lake Mendota (1852/53 - 2011/12 Winter Seasons)]

180
Wisconsin State Climatology Office
160 Median Duration: 105 days (157 seasons)
Shortest Duration: 21 days 2001/02
Longest Duration: 161 days 1880/81
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Computation of monotonic least squares estimate
We consider the cusum diagram, consisting of the points
i 157
(0,0),(1,Y1),(2, Y4+ Ya),o o [, Y5 | [ 157,D0Y)
j=1 j=1

For this set of points we compute the least concave majorant.
Solution is left continuous slope of least concave majorant.

(a) Cusum diagram (+ (b) Cusum diagram minus
least concave majorant) line between endpoints



Isotonic regression function

Lake Mendota freezing data
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Ulf Grenander




Monotone density estimation and isotonic regression

The log likelihood of a specific density f is given by

of) = %Z log f(X;) = / log f(x) dF (x).
i=1

The Grenander maximum likelihood estimator maximizes this
function over all decreasing densities on [0, 00).

Theorem (Grenander (1956))

The maximum likelihood estimator is the left derivative of the least
concave majorant F, of the empirical distribution function IF,.



The Grenander estimator
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Figure: The least concave majorant F, and its derivative f, (the
Grenander estimator) for a sample of size n = 100 from a standard
exponential.



The Grenander estimator is also least squares estimator

The Grenander estimator f,, maximizes
1o >
() == log f(Xi) = / log £(x) dF n(x).
N3 0
but minimizes

o0 2 B o
/0 F(£)2 dt 2/0 £(£) dF (1)

over all decreasing densities f on [0, c0).

Cator (2011): f, is locally asymptotically minimax




Limit distribution of Grenander estimator

Theorem (Prakasa Rao (1969))

Let f, be the Grenander estimate of f under the monotonicity
restriction. Then, if f has a strictly negative derivative f' at the
interior point t:

72 LR = £}/ [P ([ 25 2, o0,

where -2 denotes convergence in distribution, and

7 = argmax,{W(t) — t?}, that is: Z is the (almost surely unique)
location of the maximum of two-sided Brownian motion minus the
parabola y(t) = t2.



/ = argmaxt{ W(t) B t2}

SN

(a) W(t) —t*>and Z (b) W(t) and Z
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The switch relation
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Figure: The switch relation.

Different proof of Prakasa Rao's result: Groeneboom (1985).
Key observation: we have the switch relation

fo(t) > a <= t < Up(a) = argmax {x > 0: F(x) — ax}
and consider the process {U,(a), a € (0,00)}.

Slopes become the time variable of the process U,!



The switch relation
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Figure: The switch relation.

So we have, if a = fy(t) and U,(a) = argmax {x > 0: F,(x) — ax},
P {n1/3{f°n(t) — (1)} > x} =P {fn(t) > a2+ n—1/3x}
switch relation ]P’{Un(a n n71/3x) > t} '

This + "Hungarian embedding” leads to new proof of Prakasa
Rao’s result (see Groeneboom (1985)).



Analytical characterization of distribution of
Z = argmax{W(t) — t>: t € R}?

Figure: Herman Chernoff



Chernoff’s heat equation (Chernoff (1964))

e Define u(s, x) by
u(s,x) = IP’{W(t) > t2 for some t > s|W(s) = x} .

Then u(s,x) =1, x > 52, u(s,x) = 0, x — —o0.
If x < 5%

u(s,x) =E{u(s+¢ W(s+e€))}
2

0 10
=u(s,x)+ Eu(s, x)e + Eﬁu(s,x)e + o(e).

Hence u(s, x) satisfies the heat equation:



Chernoff’s heat equation (Chernoff (1964))

e Define: My = maxees_p g W(t).
Then (using space homogeneity of Brownian motion):
2 s )
IP{T;?{W(L“) t*} > My —s | W(s),Mh}

= u(s,5%) (= 1) — {My — W(s)} dau(s, s?) + Op(h).



Chernoff’s heat equation (Chernoff (1964))

e Similarly:

]P’{ max {W(t) — 2} > My — (s — h)* | W(s— h),l\/lh}

= ;(Sisl:s2) (=1) = {My, — W(s — h)} dau(—s,s%) + Op(h).
o Conclusion
P{Z € [s — h,s]}
~EAMy, — W(s)} {M), — W(s — h)} dau(s, s*)Dru(—s, %)
~ hE ( max B(x)>282u(5,52)82u(—s,52) (B = Brownian Bridge)

x€[0,1]
= %h@gu(s,s2)82u(—s, s?), h]0.



Chernoff's theorem

Theorem (Chernoff (1964))
The density fz of Z = argmax{W(x) — x°} is given by:

fz(s) = 20u(—s,s°)du(s, s?).

where u(s, x) solves the heat equation:

subject to:

u(s,x) =1, x > s, u(s,x) = 0, x - —oo.



Computation of density

Original computations of this density were based on numerically
solving Chernoff’s heat equation.

But (Groeneboom (1984)):
Dou(—s,s%) ~ crexp {—%53 — cs} , S — 00,

where ¢ ~ 2.9458 and c¢; ~ 2.2638. This entails that a numerical
solution of this partial differential equation on a grid will not give a
really accurate solution!



Theorem (Groeneboom (1984),Daniels and Skyrme (1985))

The probability density f of the location of the maximum of the
process t — W(t) — t?, t € R, is given by

f(s) = 3g(s)g(—s).

where
—IUS

8(s) 22/37r oo Ai(i271/30) du.

where Ai is the Airy function Ai.

Density also given in: Janson (2013), Groeneboom, Lalley, and
Temme (2013).

Distribution of the maximum itself:
Janson, Louchard, and Martin-L&f (2010), Groeneboom (2010)
Groeneboom and Temme (2011).
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Density of Z = argmax{W(t) — t?, t € R}
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Figure: The density fz of the location of the maximum Z of
W(t) —t2, t e R.

Also:
var(Z) = 1E mtax{W(t) —t?},

as proved in Groeneboom (2011) and Janson (2013), and (not
using the relation with Airy functions) in Pimentel (2013).



The density can be computed by two lines in Mathematica:

= FIX_1:= (17 (2%xPi)) * 2" (1/3) *
Re[NIntegrate[Exp[-] *uxXx] /A ryA [I *2~ (-1/3) xu], {u, -10, 10}1]

n2l= gIX_1 = (1/72) »f [x] »f [-X]
nap= Plot [g[X], {X, -2, 2}]
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How do the Airy functions enter?

Theorem (Groeneboom (1989))

Q') s probability distribution of {X(t) : t > s}, where
X(t) = W(t) — t? and X(s) = x < 0.

T =inf{t >s: X(t) = 0}.

@ (Cameron-Martin-Girsanov)

Q) {r edt} = ¢(s, t)EO {e_2 Jo* Bu)du

B(t—s)= —x} dt,

for a (specified) function ¢(s,t), where B is Bessel(3).

(2] 2(3 3) 2
QX (1 dt} = e 3(F=) 12 (1 _g)qt,

where (Feynman-Kac or Ito's formula):

dv, t > 0.

o Ai(i9—1/3,, _ a1/3
ha(t) 1/ e,th1(12 v — 44°x)

T or Ai(i2-1/3v)

V=—00



Bootstrapping the Grenander estimator

Theorem (Kosorok (2008))

The nonparametric bootstrap is inconsistent for the Grenander
estimator, I.e.,

n3 {0~ h0) ) 2 4 (0f (0] 2
does not hold (in probability), conditionally on the data, where

Z = argmax{W(t) — t* . t € R}.



Proof by contradiction

© Suppose n'/3{Fx(t) — f(t)} = |47/ (£)F(£)[1/3Z (in
probability), conditionally on the data. Then:

1/3{ “(t) (t)} 1/3{1?:(15)—f(t)}+nl/3{fn(t)—f(t)}
2 4 F (0] (24 22),

where the Z; are independent copies of argmax{W/(x) — x?}.
® On the other hand,

3 ()~ F(0)}

P, ’4f’(t)f(t)‘1/3 argmax, {Wl(x) + Wh(x) — x2} ,
Right side (with smaller variance than limit in (1)) comes from
Fi(t + n~3x) — Fi(t) — (IF,,(t B3 — IF,,(t))

+Fo(t+n13%) —F,(t) — f(t)n 3%, O



Does generating bootstrap samples for the Grenander estimator
itself work?

Sen, Banerjee, and Woodroofe (2010): No!

In this case we have:

P LB ()~ ()} > 47 (F(2)[7* argmax, {Wa(x) + Va(x))

where W; is two-sided Brownian motion and V5 is the least
concave majorant of the drifting two-sided Brownian motion
Wa(x) — x2, independent of W,



Current status model

X1, Xa, ..., Xpn ~ Fo.
Instead of observing the X;'s, one only observes for each i whether
or not X; < T; for some random T;, T; independent of X;.

So, instead of observing X;'s, one observes

(Ti,0i) = (Ti, Lx<Ty)-

The i-th observation (T, d;) represents the current status of the
hidden variable X; at time T;.



Interval censoring, case 2

X1, X0,..., Xy ~ Fo.

Instead of observing the X;'s, one only observes for each i whether
Xi < Tjor X; € (T;, Uj] or X; > U, for some random pair (T;, U;),
where T; < U;, where (T;, U;) is independent of X;.

Xi T; Ui T; Xi Ui T; U X

on=1 dip=1 0i1 =02 =0
So, instead of observing X;'s, one observes
(Ti, Ui, 6i1,0i2) = (Ti, Ui, Lix< iy Lixoe(T,u))-

Tomorrow! Much harder!



Current status model

We want to estimate the unknown distribution function Fy of X,
based on the data (T;,6;) = (T;, Lix,<7})-

If the X; are independent of the T;, the log likelihood function in F
(conditional on the T;'s) is given by

U(F) =" {dilog F(T;) + (1 — ;) log(1 — F(T;))}.
i=1

A

The (nonparametric) maximum likelihood estimator (MLE) F,
maximizes ¢(F) over the class of all distribution functions F.



MLE is least squares estimator
The MLE F,, minimizes over y1 = F(T(l)) < <Ly = F(T(,,))

the sum: .
2
> {80 —vit

i=1

where J(;) corresponds to T;. Isotonic regression on the 4;)'s!

G (535500)  (6) Folt) = 21 + ), Fao



Local asymptotic distribution

Theorem (Groeneboom (1987))

Let Fy and G be differentiable at t with strictly positive derivatives
fo(t) and g(t). Let F, be the MLE of Fy. Then, as n — oo,

n'PLEA(t) — Fo(t)} o,
{4Fo(6)(1 - Fo(t))fo(t) /g (1)} ’

where Z = argmax, { W(t) — t*}.

Note the analogy with the behavior of the Grenander estimator,
but this time we have a distribution function instead of a density.



Niels Keiding




Hepatitis A in Bulgaria
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Fig. 6. Hepatitis A in Bulgaria: estimated distribution of age of occurrence of hepatitis A



Hazard

1991] AGE-SPECIFIC INCIDENCE AND PREVALENCE 389
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Fig. 7. Estimated hepatitis A incidence in Bulgaria, based on the Epanechnikov kernel 0.75(1 - x%)
with bandwidth 15 years (chosen by visual inspection)



Density and hazard estimate in discussion
1991] DISCUSSION OF THE PAPER BY KEIDING
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Smoothed maximum likelihood estimator (SMLE)

The smoothed maximum likelihood estimator (SMLE) F (SML) is
(modulo a boundary correction), defined by
pLSML) y/h
/Kh (t — x)dFn(x), Kh(y):/ K(u) du,

where K is (for example) the triweight kernel

% {1 — U2)3 1[_1’1](U).

We take h =< n~1/5 (the usual bandwidth in density estimation).



Theorem (Groeneboom, Jongbloed, and Witte (2010))

Let Fy be differentiable at t with second derivative fj(t) # 0 and
let g(t) > 0 and let g have a bounded derivative at t. If
h, = cn— Y/, for some ¢ > 0, then

PP (ERn(8) = Fo(t) 2+ N(1.o%), where

p= §c2fo’(t)/”2K(“) du, 0% = {1 € FO ) /
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Figure: Geurt Jongbloed and Birgit Witte



Estimation of distribution functions and densities

Theorem (Groeneboom, Jongbloed, and Witte (2010))
If hy = cn™ /5, for F(SML) (t) = [Kp(t — x) dFa(x)

25 (FSMD(8) — Fo(t)) 25 N(p,02), where
= éczfol(t)/uzK(u)du, 02— {1_FO }/K(u

Theorem (Groeneboom, Jongbloed, and Witte (2010))
If hy = cn™ Y7, then, for £ (8) = [ Ky(t — x) dFa(x),

2T (FSVD (1) — fo(1) = N(j1.0?), where

n,

n= %szoﬂ(t)/uzK(U) du, 0% = Fo(t){1 — Fo(t }/

c3g(t)




SMLE and hazard for Hepatitis A data

Smooth bootstrap estimates of optimal bandwidths in
Groeneboom, Jongbloed, and Witte (2010) produces for the
Keiding data:

@ 0 6

(a) MLE + SMLE (b) Hazard

The results in Groeneboom, Jongbloed, and Witte (2010) are
proved by using local smooth functional theory.



Smooth functionals

Theorem (Groeneboom (1991))

Let Fy be differentiable on [0, B] and let the observation density g
stay away from zero on [0, B]. Then:

ﬁ{/xdﬁn(x) - /xdFo(x)} 2, N(0,0?),

where

52— / FoC){1 — Fo(x)}
g(x)

The mapping F — K(F) = [ x dF(x) is a smooth functional for
the current status model.

F — F(t) is not a smooth functional in the current status model:
van der Vaart (1991)



Smoothed maximum likelihood (SMLE)

The mapping F — K(F) = [ Kp(x — y) dF(x) is a local smooth
functional for the current status model, if h>> n=1/3.
We try to find a representation of the form:

/Kh(x—y) (Fo— Fo)( /9” (0,5)d (B — P) (u,5)
P((nh) 1/2)7

where 6, ¢ (u,d) is (generally) the solution of an integral equation.



Smooth functionals for current status

e The nonlinear aspect of the functional is negligible. This
means:

Vi {K(E) = K(Fo) | =i [ wrd )+ 0p(1).

e Transformation to the observation space measure.

/Ii/:o d(ﬁn — FO) = —/Hfj-n(t, 5) on(t, (5),
where .
d — Fn(t)
g(t)
More generally 9,3-"(15, 0) is the solution of an integral equation
(Groeneboom (2013b)).

Hﬁn(ta 5) =



Use that £, is the MLE.
Replace 6 by 0z (t,0) = (6 — Fa(t))/&(t), where g is
constant on the same intervals as I—i,. Then:

/éﬁn(t, §)dQ, =0,

and

/ iy d(Fy — Fo) " EET / 6z dQo

(2/%"((\%— Qo) —/{913-” —éﬁn} dQo.

Asymptotic variance equals information lower bound
Show:

[ 82, 4@~ @) = [ r,d(Q0— Q) + 05 (n712).

where
d — Fo(t)

OF,(t,0) = g(t)



Maximum smoothed likelihood estimator (MSLE)

Instead of smoothing the MLE, we can first smooth the likelihood
and then compute the maximum likelihood estimator:
maximum smoothed likelihood estimators (MSLE’s).
The MSLE (maximum smoothed likelihood estimator) minimizes
the Kullback-Leibler distance:

K(Qn, P) = |og@ dQ,

’ dP

over the measures P is the allowed class, for a O,, which is a
smoothed empirical Q,.

MLE does the same for

dQ,
K(Qp, P) = / log Cj% 0,




Maximum smoothed likelihood estimator (MSLE)
MLE is slope of greatest convex minorant of

(/ dGp(u), (5dIP’,,(u,5)> , t>0.
[0,] [0,]

The MSLE is slope of greatest convex minorant of

(/K,, £ x) dGn(x /5K,, £~ x) dPa(x, 5))

Figure: Unsmoothed and smoothed cusum diagram



MSLE for current status

The MSLE F{MLE) maximizes the object function

M M
| o8 F(0)d6i(w) + [ tog{1 ~ F(u)} d(Gun — Gla)(u)
0 0

where:

Gon(t) = /]Kh(t ) dG(x), t € [0, M],

and
Gl () = /5K;,(t — x)dPy(x,0), t € [0, M],

and where Kp(u fu/h K(y) dy, for a symmetric kernel K.



MLE, SMLE and MSLE
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Figure: MLE (black) and SMLE (red) and MSLE (blue) for a current
status sample of size 100 from Fo(t) = 1t(1 + t) (dotted). Observation
distribution is uniform.



Asymptotic distribution of MSLE

Theorem (Groeneboom, Jongbloed, and Witte (2010))

Fix t € (0, M) so that fj’ and g" exist and are continuous at t. Let
h = h, ~ cn~Y> (c > 0) be the bandwidth used in the definition
of gnn and g,‘fh. Then

PO EMSLE — Fo(t)} 25 N(u, 02),

u=te {00+ 22O [k an

where

and

»  Fo(t)(1— Fo(t)) )
o° = &) /K(u) du.

Key to proof: Monotonicity constraint is asymptotically not active.



General remarks on the MLE, SMLE and MSLE

e The MSLE can be used in situations where the MLE and
SMLE fail.
Example: The continuous mark model with current status
data. The MLE and SMLE are inconsistent, in contrast with
the MSLE: Groeneboom, Jongbloed, and Witte (2012).

e The MLE gives asymptotically efficient estimates of smooth
functionals for the interval censoring model (so in particular
for the current status model). The proof for the general
interval censoring model is pretty hard! (Lecture 2).

e The difference between the MSLE and SMLE mainly turns up
in the bias; in general one cannot say that one of them is
uniformly better than the other estimator.

e There exists an LR-type two-sample test for current status
data, based on MSLE's, which is independent of the

observation distributions in the two samples (Groeneboom
(2012)).



Concluding remarks

Discussed:

e The computation of isotonic estimates via greatest convex
minorants and least concave majorants

e The limiting distribution of Grenander's estimator

e Chacterization of the limit density via Chernoff's heat
equation

e Characterization of the limit density via Airy functions
e Does the bootstrap work?
e The MLE, SMLE and MSLE for the current status model



Lecture 2:

Theory and open problems for interval censoring, case 2.

Same for the bivariate current status model.

e Convex regression.

The convex envelope of one-sided Brownian motion without
drift.

Does bootstrapping from the Grenander estimate work for
global statistics?
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