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What to expect?

• Theory and open problems for interval censoring, case 2.

• Same for the bivariate current status model.

• Convex regression.

• The convex envelope of one-sided Brownian motion without
drift.

• Does bootstrapping from the Grenander estimate work for
global statistics?



Interval censoring, case 2

X1,X2, . . . ,Xn ∼ F0.
Instead of observing the Xi ’s, one only observes Xi ≤ Ti or
Xi ∈ (Ti ,Ui ] or Xi > Ui , for some random pair (Ti ,Ui ), where
Ti < Ui , (Ti ,Ui ) independent of Xi .

Xi Ti Ui

δi1 = 1

Ti Xi Ui

δi2 = 1

Ti Ui Xi

δi1 = δi2 = 0

So, instead of observing Xi ’s, one observes

(Ti ,Ui , δi1, δi2) = (Ti ,Ui , 1{Xi≤Ti}, 1{Xi∈(Ti ,Ui ]}).

where (Ti ,Ui ) is independent of Xi .



Interval censoring model

We want to estimate the unknown distribution function F0 of Xi ,
based on the data (Ti ,Ui , δi1, δi2).

The log likelihood function in F (conditional on the (Ti ,Ui )’s) is,
taking δi3 = 1− δi1 − δi2:

n∑
i=1

{δi1 log F (Ti ) + δi2 log(F (Ui )− F (Ti )) + δi3 log(1− F (Ui ))} .

The (nonparametric) maximum likelihood estimator (MLE) F̂n
maximizes the log likelihood over the class of all distribution
functions F .



Interval censoring, case 2, algorithms

Algorithms for computing the MLE:

1 EM algorithm
Start for example with the discrete uniform distribution on a
subset of the observation points and iterate:

F (m+1)(t) = n−1
n∑

i=1

P(m) {X ≤ t|Tj ,Uj , δj1, δj2, j = 1, . . . , n}

Very slow!

2 Iterative convex minorant algorithm (Groeneboom (1991),
using the modification in Jongbloed (1998)).

3 Support reduction algorithm (Groeneboom, Jongbloed, and
Wellner (2008)).
Iterative cone projection, starting with a minimal “feasible”
(finite likelihood) solution. Available in R (MLEcens).



Interval censoring, case 2, non-separated case

Asymptotic local distribution?

Conjecture (Groeneboom (1991))

Let G be the distribution function of (Ti ,Ui ) and let F0 and G be
continuously differentiable at t0 and (t0, t0), respectively, with
strictly positive derivatives f0(t0) and g(t0, t0), Let F̂n be the MLE
of F0. Then

(n log n)1/3
{
F̂n(t0)− F0(t0)

} / {
6f0(t0)2/g(t0, t0)

}1/3 D−→ Z ,

where Z = argmaxt{W (t)− t2}.

Still not proved!



Local rate

1 Shown in Groeneboom (1991): the conjecture is true for a
“toy” estimator, obtained by doing one step of the iterative
convex minorant algorithm, starting the iterations at the
underlying distribution function F0.
Birgé (1999) has constructed a histogram-type estimator,
achieving the local rate (n log n)1/3 in this model. (Minimax)
rate is faster than the rate in the current status model!

2 If the times Ti and Ui are separated, that is:

P{Ui − Ti < ε} = 0,

for some ε > 0, the rate drops to n1/3.

3 The asymptotic distribution of the MLE can in this case be
proved to be the same as the distribution of the toy estimator
(Groeneboom (1996)). Limit distribution is again
Z = argmax{W (t)− t2}. Variance: Wellner (1995).
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Smooth functionals for interval censoring

• The nonlinear aspect of the functional is negligible.

√
n
{
K (F̂n)− K (F0)

}
=
√
n

∫
κF0d

(
F̂n − F0

)
+ op(1).

• Transformation to the observation space measure.∫
κF0 d

(
F̂n − F0

)
= −

∫
θF̂n

(t, δ) dQ0(t, δ),

where θF0(t, δ) and θF̂n
(t, δ) are defined via the solutions of

integral equations. No explicit solutions for θF0(t, δ) and
θF̂n

(t, δ)!



Smooth functionals for interval censoring

• Use that F̂n is the MLE.
Replace θF̂n

by θ̄F̂n
(t, δ), where θ̄F̂n

(t, δ) satisfies:∫
θ̄F̂n

(t, δ) dQn = 0, (1)

and write:∫
κF0 d

(
F̂n − F0

) step 2
= −

∫
θF̂n

dQ0

(1)
=

∫
θ̄F̂n

d
(
Qn − Q0

)
−
∫ {

θF̂n
− θ̄F̂n

}
dQ0.

• Asymptotic variance equals information lower bound.

∫
θ̄F̂n

d
(
Qn − Q0

)
=

∫
θF0 d

(
Qn − Q0

)
+ op

(
n−1/2

)
,

In: Geskus and Groeneboom (1996, 1997 and 1999).



SMLE and MSLE?

Once the MLE F̂n is computed, we can easily compute the SMLE
by ∫

Kh(t − x) dF̂n(x), Kh(u) =

∫ u/h

−∞
K (x) dx .

Theory has to use local smooth functional theory again, see
Groeneboom and Ketelaars (2011).

Computing the MSLE is harder. Local limit for separated case is
determined in Groeneboom (2012). Proof is based on the solution
of a non-linear integral equation.



Deconvolution

Zi = Xi + Yi ∼ h0, h0(z) =

∫
g(z − x) dF0(x), z ≥ 0,

g is a known decreasing continuous density on [0,∞).
F0 has support, contained in [0,∞).
MLE maximizes over F :

n∑
i=1

log

∫
g(Zi − x) dF (x).

Conjecture (Groeneboom (1991))

At an interior point t of the support of F0:

n1/3
(

g(0)2

4f0(t)h0(t)

)1/3 {
F̂n(t)− F0(t)

}
−→ Z ,

where Z = argmax{W (t)− t2}.



Bivariate current status I

In the bivariate current status model the observations consist of a
quadruple (T ,U, δ1, δ2), where

δ1 = 1{X≤T}, δ2 = 1{Y≤U}, (2)

and (X ,Y ) is independent of the observation (T ,U).

T

U
(T ,U)

(1, 1)

(1, 0)

(0, 1)

(0, 0)



Bivariate current status II

A maximum likelihood estimator F̂n of F0, the distribution function
of (X ,Y ), maximizes∫

δ1δ2 log F (u, v) d Pn +

∫
δ1(1− δ2) log {F1(u)− F (u, v)} d Pn

+

∫
(1− δ1)δ2 log {F2(v)− F (u, v)} d Pn

+

∫
(1− δ1)(1− δ2) log {1− F1(u)− F2(v) + F (u, v)} dPn

over F , where F1 and F2 are the first and second marginal dfs of F ,
respectively, and Pn is the empirical measure of the observations.
Difficulty: we cannot assume that the mass is located in the
observation points.
Preliminary reduction algorithm to find the points of possible mass.



Theorem (Groeneboom (2013))

Consider an interior point (t, u), and define the square An, with
midpoint (t, u), by:

An = [t − n−1/6, t + n−1/6]× [u − n−1/6, u + n−1/6].

Then, under some regularity conditions, the plug-in estimator

F̃n(t, u)
def
=

∫
An
δ1δ2 dPn(v ,w , δ1, δ2)∫

An
dGn(v ,w)

, (3)

where Gn is the empirical distribution function of the observations
(Ti ,Ui ), satisfies:

n1/3
{
F̃n(t, u)− F0(t, u)

}
D−→ N

(
β, σ2

)
,

where N(β, σ2) is a normal distribution with (specified) parameters
β and σ2.



0.0 0.5 1.0
0.0

0.5

1.0

0.0

0.5

1.0

(a) Plug-in estimate

0.0 0.5 1.0
0.0

0.5

1.0

0.0

0.5

1.0

(b) F0(x , y) = 1
2xy(x + y)

Figure: Plug-in estimate for a sample of size n = 1000 from
F0(x , y) = 1

2xy(x + y) on [0, 1]2.

The grid has a width of order n−1/3, but the binwidth of the
estimator is of order n−1/6!
The plug-in estimate is not a distribution function (for has -some-
negative masses)!



The plug-in estimate is compared with the MLE on a grid and
smoothed maximum likelihood estimator (SMLE) (taking
bandwidths n−1/6 in both directions) in a simulation study in
Groeneboom (2013).
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Figure: MLE, SMLE and plugin estimate for a sample of size n = 1000
from F0(x , y) = 1

2xy(x + y) on [0, 1]2.



The SMLE is (modulo boundary correction) defined by

F̂
(SML)
nh (t, u) =

∫
Kh(t − v)Kh(u − w) dF̂n(v ,w),

where, for a symmetric kernel K ,

Kh(x) =

∫ x/h

−∞
K (y) dy ,

and F̂n is the maximum likelihood estimator on a grid.

1 SMLE will have rate n−1/3, if bandwidth � n−1/6.

2 We can probably achieve higher rates for the SMLE, but then
we have to use higher order kernels.

3 Rate of the MLE is unknown.

4 Certain minimax calculations suggest that the rate for the
MLE will contain logarithmic factors, causing a rate slower
than n−1/3.



Convex regression
The relationship between age and log(income) for Canadian
income data can be expected to be concave.
We can estimate this relationship only using the concavity
restriction.
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Figure: Concave cubic spline estimate with 5 knots at equal quantile
distances (Meyer (2008), blue, dashed) and nonparametric isotonic
estimate (red)



• For the usual cubic spline estimation one would have to
specify the location of the knots in advance. For example, the
estimate in Meyer (2008) uses equal quantile distances.

• The isotonic least squares estimate chooses the locations of
the knots automatically. It minimizes the criterion

n∑
i=1

{Yi − f (ti )}2

just under the restriction that f is convex or concave.



The nonparametric convex LS estimate
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Local limit distribution of the convex regression estimate
n2/5{f̂n(t)− f0(t)} converges in distribution to the value at zero of
the limit, as c →∞, of the minimizer fc of the quadratic form

1
2

∫ c

−c
f (x)2 dx −

∫ c

−c
f (x) d

(
W (x) + 4x3

)
, f (±c) = 12c2,

where W is standard two-sided Brownian motion, originating from
zero.
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Figure: The functions Y (solid)
and H (dashed) for standard
two-sided Brownian motion on
[−0.4, 0.4].

The limit is the second derivative of
the unique cubic spline H lying
above and touching Y = integrated
Brownian motion +t4, the invelope:
Groeneboom, Jongbloed, and
Wellner (2001b)
Open problem: are the points of
touch isolated?



The nonparametric convex LS estimate

The nonparametric convex LS estimate will probably by
asymptotically locally minimax in the same way as the Grenander
estimator, but a proof of this fact is still lacking!

Figure: Eric Cator



The concave majorant of one-sided Brownian motion

line of slope 1/a

τ(a)

Figure: τ(a) = argmaxx{W (x)− x

a
: x ≥ 0}

We have again the switch relation:

St ≥ 1/a ⇐⇒ t ≤ τ(a),

where St is the slope of the concave majorant at time t.



The argmax process a 7→ τ(a) for Brownian motion

Theorem (Groeneboom (1983))

1 The argmax process a 7→ τ(a) is a time inhomogeneous
process with independent increments, and, for u > 0,

P
{
τ(a + h)− τ(a) ∈ du

∣∣ τ(a) = t
}

h
∼ e−u/(2a

2)

a2
√

2πu
du, h ↓ 0.

2 Let N(a, b) be the number of jumps of τ in [a, b]. Then

N(a, b)
D
= Poisson (log(b/a)) .

3 As a consequence of 2:

{N(a, b)− log(b/a)} /
√

log(b/a)
D−→ N(0, 1), b/a→∞.



Corollary (Groeneboom (1983))

1 Brownian motion on [0,∞) can be decomposed into the
argmax process τ and Brownian excursions.

2 If Sn is the slope of the concave majorant of the uniform
empirical process Un =

√
n{Fn − F} on [0, 1], then{∫ 1

0
Sn(t)2 dt − log n

}
/
√

3 log n
D−→ N(0, 1).

Part 2 uses Doob’s transformation (to go from Brownian motion to
Brownian bridge) and Hungarian embedding.

Similar methods yield for the number of jumps Nn of the concave
majorant of the uniform empirical process Un =

√
n{Fn − F}:

Theorem (Sparre Andersen (1954))

{Nn − log n} /
√

log n
D−→ N(0, 1).



Ronald Pyke

Theorem (Groeneboom and Pyke (1983))

If Sn is the slope of the concave majorant of the uniform empirical
process Un =

√
n{Fn − F} on [0, 1], then{∫ 1

0
Sn(t)2 dt − log n

}
/
√

3 log n
D−→ N(0, 1).



Order the induced spacings between locations of vertices of the
least concave majorant:

Dn0;Dn1,1, . . . ,Dn1,Jn1 ; . . . ;Dni ,1, . . . ,Dni ,Jni ; . . .

where there are Jni i-step spacings. Then:∫ 1

0
Sn(t)2 dt =

n∑
i=1


Jni∑
j=1

i2

nDn,ij
− 1

 .

Replace this by:
n∑

i=1


Ni∑
j=1

i2

Sn,ij
− 1

 .

where (independently) Ni ∼ Poisson(1/i), Sn,ij ∼ Γ(1, i) and
condition on

n∑
i=1

iNi = n,
n∑

i=1

Ni∑
j=1

Sn,ij ∼ n.



Further work on this topic
Pitman (1983): interpretation in terms of Bessel processes and
path decomposition (David Williams).



Theorem (Pitman (1983))

Fix b ∈ (−∞, 0) and let T0 = τb = argmin{W (x)− bx}. Then:

(i) The next slope α0 of the convex minorant is uniformly
distributed on (b, 0), and conditionally on α0, . . . , αn, the
next slope αn+1 is uniform on (αn, 0).

(ii) The preceding slope α−1 has density |b|x−2 on the interval
(−∞, b), and, conditional on α−n, . . . , α−1, α−n−1 has
density |α−n|x−2 on (−∞, α−n).

(iii) The sequences {αi , i < 0} and {αi , i ≥ 0} are independent.

(iv) Conditional on all the slopes αi , the lengths of the segments
Ti are independent, and Ti has a gamma(12 ,

1
2α

2
i ) distribution:

P
{
Ti ∈ dt

∣∣ αi = a, αj , j 6= i
∣∣ =

|a|√
2πt

e−
1
2a

2tdt.
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Çinlar (1992): connection with queueing systems (“Sunset over
Brownistan”),

Balabdaoui and Pitman (2011): maximal difference between
Brownian bridge and its concave majorant,

Pitman and Ross (2012): greatest convex minorant of Brownian
motion, meander, and bridge,

Pitman and Uribe Bravo (2012): the convex minorant of a Lévy
process.



The process a 7→ V (a) = argmax{W (t)− (t − a)2}

Figure 4.1 in Groeneboom (1989) (PTRF):



(Stationary) point process of locations of maxima:

V (a) = argmaxx{W (x)− (x − a)2 is maximal}.

Theorem (Groeneboom (1985), Groeneboom, Hooghiemstra,
and Lopuhaä (1999))

Let f be a twice differentiable decreasing density on [0,1]. Then
(under some additional conditions) we have, with

µ = E |V (0)|
∫ 1
0 |4f

′(t)f (t)|1/3 dt,

n1/6
{
n1/3

∫ 1

0
|f̂n(t)− f (t)| dt − µ

}
D−→ N(0, σ2),

where σ2 = 8
∫∞
0 covar(|V (0)|, |V (c)− c |) dc.



Durot-Lopuhaä k-sample tests

Setting: we want to test the hypothesis

H0 : f1 = f2 = · · · = fJ against H1 : fi 6= fj , for some i 6= j ,

where fj : [0,B]→ R is decreasing. The fj can be densities,
regression functions, etc. Consider the test statistic:

TN =
J∑

j=1

∫ B

0

∣∣∣f̂j ,nj (t)− f̂N(t)
∣∣∣ dt, N =

J∑
j=1

nj ,

where f̂j ,nj is the isotonic estimate in the jth sample of size nj (for

example the Grenander estimate), and f̂N is the isotonic estimate
in the combined samples.
We want to use the bootstrap to find a critical value c such that
(for example):

P {TN ≥ c} = 0.05.



Rik Lopuhaä and Cécile Durot



Durot and Lopuhaä: under a number of regularity conditions there
are constants µ and σ such that

N1/6
{
N1/3TN − µ

}
/σ

D−→ N(0, 1), (4)

under H0.

µ depends on f and f ′, if f is the common density or regression
function. So we cannot use (4) to find the critical value without
first estimating f ′.

Consider: fλ(x) = λe−λx/(1− e−3λ) on [0, 3].
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Figure: Truncated exponential densities with λ equal to 0.5 (red) 1
(black) and 2 (blue) on [0, 3].



Bootstrapping the critical value

Will bootstrapping from the Grenander estimator work to find the
critical value? We try it out!

General procedure: We generate 10,000 sets of 3 samples of size
100, where the first two samples are from a truncated standard
exponential density (λ = 1) on [0, 3] and the third sample from a
truncated exponential density with varying parameter λ.

Bootstrap procedure: For each of the original samples we generate
10,000 bootstrap samples from the Grenander estimate f̂N for the
combined original samples. Next we count how many times the
test statistics in the original sample exceed the 95% percentile of
the test statistics in the 10,000 bootstrap samples. This gives an
estimate of the power of the tests.



Verification procedure

1 We first generate 10,000 samples of size 300 from the mixture
density:

gλ(x) =
2

3

e−x

1− e−3
+

1

3

e−λx

1− e−3λ
, x ∈ [0, 3],

and compute the test statistics for each sample. Then we
determine the 95% percentiles for the values so obtained for
the two statistics. This gives the critical values for step 2:

2 We generate 10,000 sets of 3 samples of size 100, where the
first two are generated from a standard truncated exponential
and the third from an truncated exponential density with
parameter λ and count how many times the test statistics
exceed the critical values obtained in the first step. This gives
estimates of the power functions.
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Figure: Estimate of the power of the Durot-Lopuhaä test on the interval
[0, 3]. Solid: bootstrap estimate from the Grenander estimate; red and
dashed: direct estimate of the real power.



Concluding remarks

• Local limit distribution of MLE for interval censoring, case 2,
non-separated case, is still only conjectured.

• Local limit of MLE for deconvolution is still only conjectured.

• Local limit of MLE for bivariate current status is still
unknown. There are estimators, achieving the n1/3-rate.

• Limit of LS estimator for convex regression has been
determined, but the structure of the limiting process has not
been analytically determined.

• Convex envelope of Brownian motion without drift is very
different from convex envelope of Brownian motion with
parabolic drift.

• Possibly the bootstrapping of global statistics can be done
from the Grenander estimator, as suggested by simulations.
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