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Abstract

We show that, for a stationary version of Hammersley’s process, with Poisson “sources”
on the positive x-axis, and Poisson “sinks” on the positive y-axis, an isolated second class
particle, located at the origin at time zero, moves asymptotically, with probability one, along
the characteristic of a conservation equation for Hammersley’s process. This allows us to show
that Hammersley’s process without sinks or sources, as defined in Aldous and Diaconis
(1995), converges locally in distribution to a Poisson process, a result first proved in Aldous
and Diaconis (1995), by using the ergodic decomposition theorem and a construction of
Hammersley’s process as a 1-dimensional point process, developing as a function of (continuous)
time on the whole real line. As a corollary we get the result that EL(t, t)/t converges to 2, as
t → ∞, where L(t, t) is the length of a longest North-East path from (0, 0) to (t, t). The proofs of
these facts need neither the ergodic decomposition theorem nor the subadditive ergodic theorem.
We also prove a version of Burke’s theorem for the stationary process with sources and sinks and
briefly discuss the relation of these results with the theory of longest increasing subsequences of
random permutations.

1 Introduction

Let Ln be the length of a longest increasing subsequence of a random permutation of the num-
bers 1, . . . , n, for the uniform distribution on the set of permutations. As an example, consider
the permutation (5, 3, 6, 2, 8, 7, 1, 4, 9). Longest increasing subsequences are (3, 6, 7, 9), (3, 6, 8, 9),
(5, 6, 7, 9) and (5, 6, 8, 9). In this example the length of a longest increasing subsequence is equal to
4.

In Hammersley (1972) a discrete time interacting particle process was introduced, which has
at the nth step a number of particles equal to the length of a longest increasing subsequence of a
(uniform) random permutation of length n. This process is defined in the following way.

Start with zero particles. At each step, let, according to the uniform distribution on [0, 1], a
random particle U in [0, 1] appear; simultaneously, let the nearest particle (if any) to the right
of U disappear. Then, as shown in Hammersley (1972), the number of particles after n steps is
distributed as Ln. Hammersley (1972) uses this discrete time interacting particle process to show
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that ELn/
√

n converges to a finite constant c > 0, which is also the limit in probability (and, as
noticed later by H. Kesten in his discussion of Kingman (1973), the almost sure limit) of Ln/

√
n.

To prove that ELn/
√

n converges to a finite constant c > 0 is the first part of “Ulam’s problem”,
the second part being the determination of c.

Aldous and Diaconis (1995) introduce a continuous time version of the interacting particle
process in Hammersley (1972), letting new particles appear according to a Poisson process of rate
1, using the following rule:

• Evolution rule: At times of a Poisson (rate x) process in time, a point U is chosen uniformly
on [0, x], independent of the past, and the particle nearest to the right of U is moved to U ,
with a new particle created at U if no such particle exists in [0, x].

For our purposes the following alternative description is most useful. Start with a Poisson point
process of intensity 1 on IR2

+. Now shift the interval [0, x] vertically through (a realization of) this
point process, and, each time a point is caught, shift to this point the previously caught point that
is immediately to the right. Let L(x, y) be the number of particles in the interval [0, x] after shifting
to height y. Then, by Poissonization of the length of the random permutation, we get:

L
Ñx,y

D= L(x, y),

where
Ñx,y = #{points of Poisson point process in [0, x] × [0, y]} D= Poisson(xy).

×

×

×

×

×

×

×
×

×

•

•

•

•

•

(0, 0) (x, 0)

(0, y) (x, y)

× α-point • β-point

.....................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
...........................................................................................................................

........

........

........

........

........

........

........

........

........

........

........

........

........

..................................................................
........
........
........
........
........
........
........
........
........
........
..................................................................

........

........

........

........

........

........

........

........

........

........

........

........

......

................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........................................................................................................................................................

........

........

........

........

........

........

........

..

..........................................................................................................................
........
..................................................................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...

.................................................................
........
........
........
........


Figure 1: Space-time paths of Hammersley’s process, contained in [0, x] × [0, y].

In an alternative interpretation, L(x, y) is the maximal number of points on a North-East path
from (0, 0) to (x, y) with vertices at the points of the Poisson point process in the interior of IR2

+,
where the length of a North-East path is defined as the number of vertices it has at the points
of the Poisson point process in the interior of IR2

+. The reason is that a longest North-East path
from the origin to (x, y) has to pick up a point from each space-time path crossing the rectangle
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[0, x] × [0, y]. Aldous and Diaconis (1995) call the evolving point process y �→ L(·, y), y ≥ 0, of
newly caught and shifted points Hammersley’s interacting particle process.

We can also introduce the evolving point process x �→ L(x, ·), x ≥ 0, running from left to right.
Analogously to the description above of the process running up, we shift in this case an interval
[0, y] on the y-axis to the right through the point process in the interior of the first quadrant, and,
each time a point is caught, shift to this point the previously caught point that is immediately below
this point (if there is such a point). By symmetry, it is clear that the processes y �→ L(·, y), y ≥ 0,
and x �→ L(x, ·), x ≥ 0, have the same distribution.

A picture of the space-time paths, corresponding to the permutation (5, 3, 6, 2, 8, 7, 1, 4, 9) is
shown in Figure 1. In this case [0, x] × [0, y] contains 9 points, and one can check graphically
that there are 4 longest North-East paths (of length 4) from (0, 0) to (x, y), corresponding to the
subsequences (3, 6, 7, 9), (3, 6, 8, 9), (5, 6, 7, 9) and (5, 6, 8, 9). Following a terminology, introduced in
Groeneboom (2001), we call the points of the Poisson point process in the interior of IR2

+ α-points
and the North-East corners of the space-time paths of the Hammersley’s process β-points. In fact,
the actual x-coordinates of the α-points in the picture are different from the numbers 3, 6, . . . , but
the ranks of these x-coordinates are given by 3, 6, etc., if we order the α-points according to the
second coordinate.

We use a further extension of Hammersley’s interacting particle process, where we not only
have a Poisson point process in the interior of IR2

+, but also, independently of this Poisson point
process, mutually independent Poisson point processes on the x- and y-axis. We call the Poisson
point process on the x-axis a process of “sources”, and the Poisson point process on the y-axis
a process of “sinks”. The motivation for this terminology is that we now start the interacting
particle process with a non-empty configuration of “sources” on the x-axis, which are subjected
to the Hammersley interacting particle process in the interior of IR2

+, and which “escape” through
sinks on the y-axis, if such a sink appears to the immediate left of a particle (with no other particles
in between). Figure 2 shows how the space-time paths change if we add two sources and three sinks
(at particular locations) to the configuration in Figure 1.
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Figure 2: Space-time paths of the Hammersley’s process, with sources and sinks.
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The interacting particle process with sources and sinks was studied in section 4 of Groeneboom

(2002), where it was proved that, if the intensity of the Poisson processes on the x- and y-axes are λ
and 1/λ, respectively, and the intensity of the Poisson process in the interior of IR2

+ is 1, the process
is stationary in the sense that the crossings of the space-time paths of the halflines IR+ × {y} are
distributed as a Poisson point process of intensity λ, for all y > 0. The stationarity of the process
was proved by an infinitesimal generator argument. It also follows from the computations in the
Appendix of the present paper (Section 4). The process is studied from an analytical point of view
in Baik and Rains (2000) (see Remark 3.1 in Section 3).

In section 2 we compare Hammersley’s interacting particle process, as introduced in Aldous

and Diaconis (1995), with the stationary extension of this process, with sources on the x-axis, and
sinks on the y-axis. However, as an intermediate step, we introduce a process with Poisson sources
on the positive x-axis, but no sinks on the y-axis. From Theorem 2.1 in the present paper we can
deduce that this particle process, with Poisson sources of intensity λ on the positive x-axis, but no
sinks on the y-axis, behaves below an asymptotically linear “wave” of slope λ2 through the β-points
as a stationary process.

In a coupling of the process with the stationary process, having both sources and sinks, this
wave can be interpreted as the space-time path of an isolated second class (or “ghost”) particle
with respect to the stationary process. For the concept “second class particle” in the context
of totally asymmetric simple exclusion processes (TASEP), see, e.g., Ferrari (1992) or Liggett

(1999), Chapter 3. The second class particle jumps to the previous position of the particle that
exits through the first sink at the time of exit, and successively jumps to the previous positions of
particles directly to the right of it, at times where these particles jump to a position to the left of
the second class particle; see Figure 3. The space-time path of the isolated second class particle
moves asymptotically, with probability one, along the characteristic of a conservation equation for
the stationary process. Here we establish a connection with the theory of totally asymmetric simple
exclusion processes. Although we use similar techniques as used for the study of the behavior of
second class particles in TASEP, the situation is in a certain sense simpler in our case, since we do
not have to condition on having a second class particles at the origin at time zero.

In a similar way we prove that Hammersley’s process, with Poisson sinks of intensity 1/λ, λ > 0,
on the positive y-axis, but no sources on the x-axis, behaves asymptotically as a stationary process
above a wave through the β-points of slope λ2, if the Poisson sinks on the positive y-axis and the
points of the Poisson process (of intensity 1) in the interior of IR2

+ are independent. By a coupling
argument, these processes can be compared directly to Hammersley’s process, as defined in Aldous

and Diaconis (1995), which has empty configurations on x- and y-axis. The coupling argument
gives a direct and “visual” proof of the local convergence of Hammersley’s process to a Poisson
point process with intensity λ, if one moves out along a “ray” y = λ2x, which is the main result
Theorem 5 of Aldous and Diaconis (1995). The convergence of EL(t, t)/t to 2, as t → ∞, then
also easily follows. This implies that ELn/

√
n converges to 2, a result first proved by Logan and

Shepp (1977) and Vershik and Kerov (1977).
In section 3 we study the β-points of the stationary Hammersley process. For these points

we prove a “Burke theorem”, showing that these points inherit the Poisson property from the α-
points. This allows us to show, using a time reversal argument, that in the stationary version of
Hammersley’s process, a longest “weakly” North-East path (allowing horizontal and vertical pieces
along x- or y-axis) only spends a vanishing fraction of time on x- or y-axis.
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2 Path of an isolated second class particle and local convergence
of Hammersley’s process

Fix λ > 0, and let t �→ Lλ(·, t) be Hammersley’s process, now considered as a one-dimensional point
process, developing in time t, generated by a Poisson process of sources on the positive x-axis of
intensity λ, λ > 0, a Poisson process of sinks on the time axis of intensity 1/λ, and a Poisson process
of intensity 1 in IR2

+, where the Poisson process on the x-axis, the Poisson process on the time axis,
and the Poisson process in the plane are independent. It is helpful to switch from time to time the
point of view of Hammersley’s process as a process of space-time paths in IR2

+ and Hammersley’s
process as a one-dimensional point process, developing in time. This is somewhat similar to the two
ways one can view the Brownian sheet. Since the second coordinate can (mostly) be interpreted as
“time” in the sequel, we will denote this coordinate by t instead of y, although, with slight abuse
of language, we will continue to call the vertical axis the “y-axis”, following standard terminology.

We add an isolated second class particle to the process, which is located at the origin at time
zero. A picture of the trajectory of the isolated second class particle for the configuration shown
in Figure 2 is shown in Figure 3. Theorem 2.1 below shows that the space-time path of the second
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Figure 3: Path of isolated second class particle in the configuration of Figure 2

class particle is asymptotically linear with slope λ2. This is to be expected from results on totally
asymmetric simple exclusion processes (TASEP), as given in, for example, Ferrari (1992). For
TASEP Burgers’ equation is the relevant conservation equation in a continuous approximation to
the process. The analogue of Burgers’ equation for a macroscopic approximation to Hammersley’s
process (with neither sources nor sinks) is:

∂u(x, t)
∂t

+ u(x, t)−2 ∂u(x, t)
∂x

= 0, (2.1)

where u(x, t) is the intensity of the crossings at (x, t); see Liggett (1999), p. 316, where the
corresponding equation is given for the integrated intensity.
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This leads us to expect that, analogously to the TASEP results,

t−1Xt
a.s.−→ 1/λ2, t → ∞,

where Xt is the x-coordinate of the second class particle, and where a.s.−→ denotes almost sure
convergence, since in this case the path {(x, t) = (t/λ2, t) : t ≥ 0} is a characteristic for the
equation (2.1); compare to, e.g., (12.1) in section 12 of Ferrari (1992).

Theorem 2.1 Let t �→ Lλ(·, t) be the stationary Hammersley process, defined above, with intensi-
ties λ and 1/λ on the x- and y-axis, respectively. Let Xt be the x-coordinate of an isolated second
class particle w.r.t. Lλ at time t, located at the origin at time zero. Then

t−1Xt
a.s.−→ 1/λ2, t → ∞. (2.2)

The proof of Theorem 2.1 is based on Lemma 2.1 below. To formulate this lemma we first
introduce some notation. Let ηt, t ≥ 0, be the stationary point process, obtained by starting with
a Poisson point process with intensity γ > 0 in (0,∞) at time 0, and letting it develop according to
Hammersley’s process on (0,∞), with Poisson sinks of intensity 1/γ on the y-axis, and a Poisson
point process of intensity 1 in the interior of the first quadrant. Furthermore, let σt, t ≥ 0, be the
stationary process, coupled to ηt, t ≥ 0, by using the same points in the first quadrant as used
for η, and starting with a (δ/γ)−“thickening”, δ > γ, of the Poisson point process with intensity
γ > 0 on the x-axis, obtained by adding independently a Poisson point process of intensity δ − γ,
and letting σt develop according to Hammersley’s process on (0,∞). To get stationarity for the
process σ, we replace the sinks on the y-axis by a γ/δ-thinned set, obtained by keeping each sink
with probability γ/δ, independently for each sink. Then the sinks on the y-axis for the process σ
have intensity 1/δ. Finally, we let t �→ ξt be the process of second class particles of η w.r.t. σ, i.e.,
the points of ξt denote the locations where the point process σt has extra particles w.r.t. the point
process ηt.

We use the notation ηt[0, x] for the number of particles of ηt in the interval [0, x] at time t,
with the convention that particles, escaping through a sink in the time interval [0, t], are located
at zero. We define σt[0, x] similarly. Furthermore, we use the notation ηt(0, x] (σt(0, x]) for the
number of particles of ηt (σt) in the open half-open interval (0, x] at time t. Finally we define the
“flux” Fξ(x, t) of ξ through x at time t by

Fξ(x, t) = σt[0, x] − ηt[0, x]. (2.3)

The flux Fξ(x, t) is equal to the number of second class particles in (0, x] at time t minus the
number of removed sinks in the segment {0} × [0, t] (through which space-time paths of second
class particles start moving to the right). Relation (2.3) is in fact a conservation law.

A picture of the processes η and ξ is shown in Figure 4. In this case the process σ (inside the
rectangle [0, x]× [0, t]) is obtained from the process η by adding two sources at the locations z1(0)
and z2(0) and removing a sink at height S0. The crossings of horizontal lines of the space-time
paths of the process σ are the unions of the crossings of (the same) horizontal lines of the space-time
paths of the processes η and ξ.
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Lemma 2.1

(i) Let η be Hammersley’s process, defined above, with sources of intensity γ > 0 and sinks of
intensity 1/γ, and let δ > γ. We add independently a Poisson point process of intensity δ−γ
to the Poisson process of sources, and perform a γ/δ-thinning of the Poisson point process of
sinks of intensity 1/γ on the y-axis. Let σ be Hammersley’s process, coupled to η, and having
the augmented set of sources with intensity δ and the thinned set of sinks with intensity 1/δ.
Finally, let Zt be, at time t, the location of the second class particle, for which the space-time
path starts moving to the right through the smallest removed sink. Then

lim
t→∞

Zt

t
=

1
γδ

, a.s.

(ii) Let η′ represent Hammersley’s process developing from left to right, with sources (on the x-
axis) of intensity γ > 0 and sinks (on the y-axis) of intensity 1/γ, and let 0 < δ < γ. We
add independently a Poisson point process of intensity δ−1 − γ−1 to the Poisson process of
sinks of intensity γ−1, and perform a δ/γ-thinning of the Poisson point process of sources of
intensity γ on the x-axis. Let σ′ be the process developing from left to right, coupled to η′,
and having the augmented set of sinks with intensity δ−1 as sources and the thinned set of
sources with intensity δ as sinks. Finally, let Z ′

t be the location of the second class particle
of σ′ w.r.t. η′, for which the space-time path leaves the x-axis through the smallest removed
source (of the original process η). Note that the smallest removed source of η is a removed
sink for η′. Then

lim
t→∞

Z ′
t

t
= γδ , a.s.
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Figure 4: Processes η and ξ

Proof.
(i): Let x > 0. We have:

lim
n→∞

ηn[0, nx]
n

=
1
γ

+ xγ , a.s. ,
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since ηn[0, nx] equals ηn(0, nx] plus the number of sinks for the process η, contained in {0} × [0, n]
(where n is a positive integer), and since ηn(0, nx] and the number of sinks contained in {0}× [0, n]
have Poisson distributions with parameters nxγ and n/γ, respectively. Here we use the stationarity
of the process η, implying that ηn(0, nx] has a Poisson distribution with parameter nxγ. Note that,
for each ε > 0,

∞∑
n=1

P {|ηn(0, nx] − nxγ| > nε} < ∞,

and hence, by the Borel-Cantelli Lemma:

P {|ηn(0, nx] − nxγ| > nε infinitely often} = 0,

implying the almost sure convergence of ηn(0, nx]/n to xγ, as n → ∞. The almost sure convergence
to 1/γ of the number of sinks for the process η, contained in {0} × [0, n], divided by n, follows in
the same way.

Similarly,

lim
n→∞

σn[0, nx]
n

=
1
δ

+ xδ , a.s.

Hence, by (2.3),

lim
n→∞

Fξ(nx, n)
n

=
1
δ
− 1

γ
+ x(δ − γ) = −(δ − γ)

{
1
γδ

− x

}
, a.s. (2.4)

This limit is negative for 0 < x < 1/(γδ) and positive for x > 1/(γδ).
We can number the particles of ξ according to their position at time 0, so that, for i > 0,

particle i is the ith second class particle to the right of the origin at time 0. We then let zi(t) be
the position of the ith second class particle at time t ≥ 0. For i ≤ 0, we let zi(t), i = 0,−1,−2, . . . ,
be the second class particles at time t, for which the space-time paths leave the y-axis through
the removed sinks S0, S1, . . . , respectively, ordering these removed sinks according to the height of
their location on the y-axis; note that Zt = z0(t) (see Figure 4).

Hence Fξ(x, t) has the representation:

Fξ(x, t) = # {i > 0 : zi(t) ≤ x} − # {i ≤ 0 : zi(t) > x} . (2.5)

Note that second class particles zi(·), i ≤ 0, starting their space-time path to the right at a removed
source in {0} × [0, t], and satisfying zi(t) ∈ [0, x], do not give a contribution to (2.5), since they
give a contribution to ηt[0, x] as a particle of ηt, located at zero, and a contribution to σt[0, x] as
a particle of σt in the interval (0, x]. These two contributions cancel in (2.3). It is also clear from
(2.5) that, for fixed t, the flux Fξ(x, t) is nondecreasing in x.

Relation (2.5) shows that Fξ(Zn, n) = Fξ(z0(n), n) is equal to zero at each time n, and since
Fξ(nx, n) is nondecreasing in x for fixed n, we get from (2.4):

lim
n→∞

Zn

n
=

1
γδ

, a.s.

But, since Zt is nondecreasing in t, we then also have:

lim
t→∞

Zt

t
=

1
γδ

, a.s.
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(ii): The result is obtained from part (i) by reflecting the processes w.r.t. the diagonal, and not-
ing that the reflected processes have the same probabilistic behavior, but with the role of sources
and sinks interchanged. The limit 1/(γδ) changes to γδ because of the interchange of x- and y-
coordinate. �

Proof of Theorem 2.1: We couple the process t �→ (Lλ(·, t), Xt) with the process t �→ (ηt, σt),
where the processes η and σ are defined as in part (i) of Lemma 2.1, and where Lλ(·, t) = ηt and
δ > γ = λ. Then Zt ≤ Xt, for all t ≥ 0, where Zt is defined as in part (i) of Lemma 2.1. This is
seen in the following way.

At time zero, we have Z0 = X0 = 0. Since the process σ is obtained from the process η by a
thinning of the sinks and a “thickening” of the sources, and the space-time path of Zt leaves the
axis {0} × IR+ through the smallest removed sink, it will leave this axis at a time which is larger
than or equal to the time the space-time path of Xt leaves the axis, since the space-time path of
Xt will leave the axis through the smallest sink in the original set of sinks. Note that since σ has
less sinks and more sources:

ηt(0, x] ≤ σt(0, x], t ≥ 0, x > 0. (2.6)

This means that not only Zt becomes positive at a time that is at least as large as the time that
Xt becomes positive, but also moves to the right at a speed that is not faster than that of Xt. Also
note that if Zt jumps to a position x > Zt−, an η-particle jumps over it from a position x′ ≥ x.
Here and in the sequel we use the notation Zt− to denote limt′↑t Zt′ , with a similar convention for
Xt−.

If Xt− < x and Zt− ≤ Xt−, Xt will jump to x′. Since Zt ≤ x′, Zt can never overtake Xt. Note
that we can have x′ > x if several second class particle are next to each other, without a first class
particle in between. In this case Zt does not have to move to the position of the η particle, but can
move to the position of the closest second class particle to the right of it.

Hence we have, with probability one:

lim inf
t→∞

Xt

t
≥ lim

t→∞
Zt

t
=

1
γδ

=
1
δλ

.

Since this is true for any δ > λ, we get:

lim inf
t→∞

Xt

t
≥ 1

λ2
.

For the reverse inequality, we switch the role of the sources and the sinks, and view Hammersley’s
process as developing from left to right. This time we add independently a Poisson point process of
intensity δ−1 − γ−1 to the Poisson process of sinks of intensity γ−1, and perform a δ/γ-thinning of
the Poisson point process of sources of intensity γ on the x-axis, where γ = λ and 0 < δ < γ, and
use the process η′ and σ′, defined in part (ii) of Lemma 2.1. Note that η′ has the same space-time
paths as the process η, defined above. In the coupling we now consider Lλ as a process developing
from left to right and take Lλ(t, ·) = η′t.

Let X ′
x be an isolated second class particle for the process running from left to right in the same

way as Xt is an isolated second class particle for the process running upward. Trajectories of X
and X ′ are shown in Figure 5.
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Figure 5: Trajectories of (Xt, t) and (x, X ′
x)

We have:

X(X ′(x)) ≤ x, x ≥ 0, (2.7)

writing temporarily X ′(x) instead of X ′
x and X(u) instead of Xu. Equation (2.7) is equivalent to

the property of the process that the trajectory of (Xt, t) lies above the trajectory of (x, X ′
x) (see also

Figure 5). This follows by noting that if (Xt, t) hits a space-time path at a point North-West of the
point where (x, X ′

x) hits the same space-time path, this must also be true for the next space-time
path, since the first trajectory moves up, and the second trajectory moves to the right.

By Lemma 2.1 and the argument above, now applied on the process moving from left to right,
we get the relation

lim inf
x→∞

X ′
x

x
≥ lim

x→∞
Z ′

x

x
= δλ , (2.8)

with probability one. But the almost sure relation lim infx→∞ X ′
x/x ≥ δλ implies for the process

t �→ Xt the almost sure relation

lim sup
t→∞

Xt

t
≤ 1/ (δλ) , (2.9)

since we get for each λ′ > 1/ (δλ), with probability one,

lim sup
t→∞

X(t/λ′)
t/λ′ ≤ lim sup

t→∞

X(X ′(t))
t/λ′ ≤ lim

t→∞
t

t/λ′ = λ′,

using (2.8) in the first inequality and (2.7) in the second inequality.
Since (2.9) is true for any δ < λ, we get, with probability one,

lim sup
t→∞

Xt

t
≤ 1

λ2
.

10



The result now follows. �

Remark 2.1 The second class particle X ′
x, introduced at the end of the proof of Theorem 2.1,

plays the same role for Hammersley’s process, running from left to right, as the second class particle
Xt plays for Hammersley’s process, running up. It therefore has to satisfy:

lim
x→∞

X ′
x

x
= λ2, (2.10)

with probability one. Note that we get an interchange of the x and t coordinate which leads to λ2

in (2.10) instead of the 1/λ2 in (2.2), but that the line along which (x, X ′
x) tends to ∞ is in fact

the same as the line along which (Xt, t) tends to ∞.

The following lemma will allow us to show that Theorem 2.1 implies both the local convergence
of Hammersley’s process to a Poisson process and the relation c = 2 (which is the central result
Theorem 5 on p. 204 in Aldous and Diaconis (1995)).

Lemma 2.2 Let Lλ be the stationary Hammersley process, defined in Theorem 2.1. Furthermore,
let L−y

λ be the process, obtained from Lλ, by omitting the sinks on the y-axis, and let L−x
λ be the

process, obtained from Lλ, by omitting the sources on the x-axis. L−y
λ is coupled to Lλ, by using

the same point process in the interior of IR2
+, and the same set of sources on the x-axis, and L−x

λ

is coupled to Lλ, by using the same point process in the interior of IR2
+, and the same set of sinks

on the y-axis. Then:

(i) The processes Lλ and L−y
λ have the same space-time paths below the space-time path t �→

(Xt, t) of the isolated second class particle Xt for the process t �→ Lλ(·, t).

(ii) The processes Lλ and L−x
λ have the same space-time paths above the space-time path t �→

(t, X ′
t) of the isolated second class particle X ′

t for the process t �→ Lλ(t, ·), running from left
to right.

Proof. (i). Omit the first sink at location y1 on the y-axis. Then the path of Lλ leaving through
(0, y1) is changed to a path traveling up through the β-point with y-coordinate y1 to the right of
(0, y1) until it hits the next path of the original process. At this level the path of the changed
(by omitting the smallest sink) process is going to travel to the left, and the next path will go up
(instead of to the left) through the closest β-point to the right. And so on. The “wave” through
the β-points that is caused by leaving out the first sink is in fact the space-time path of the isolated
second class particle Xt (see Figure 3).

We can now repeat the argument for the situation that arises by leaving out the second sink.
This will lead to a “wave” through β-points that is going to travel North of the first wave that was
caused by leaving out the first sink. This wave is the space-time path of an isolated second class
particle in the new situation, where the first sink is removed. Below the first wave the space-time
paths remain unchanged. The argument runs the same for all the remaining sinks.
(ii). The argument is completely similar, but now applies to the process running from left to right
instead of up (see the end of the proof of Theorem 2.1). �

In the proof of Corollary 2.1 we will need the concept of a “weakly North-East path”, a concept
also used in Baik and Rains (2000).
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Definition 2.1 In the stationary version of Hammersley’s process, a weakly North-East path is a
North-East path that is allowed to pick up points from either the Poisson process on the x-axis
or the Poisson process on the y-axis before going strictly North-East, picking up points from the
Poisson point process in the interior IR2

+. The length of a weakly North-East path from (0, 0) to
(x, t) is the number of points of the Poisson processes on the axes and the interior of IR2

+ on this
path from (0, 0) and (x, t). A strictly North-East path is a path that has no vertical or horizontal
pieces (and hence no points from the axes).

Note that the length of a longest weakly North-East path from (0, 0) to (x, t) in the stationary
version of Hammersley’s process is equal to the number of space-time paths intersecting [0, x]×[0, t],
just as in the case of Hammersley’s process without sources or sinks (in which case only strictly
North-East paths are possible).

Corollary 2.1 (Theorem 5, Aldous and Diaconis (1995)) Let L be Hammersley’s process on IR+,
started from the empty configuration on the axes. Then,

(i) For each fixed a > 0, the random particle configuration with counting process

y �→ L(t + y, at) − L(t, at), y ≥ −t,

converges in distribution, as t → ∞, to a homogeneous Poisson process on IR, with intensity√
a.

(ii)
lim
t→∞

EL(t, t)/t = 2.

Proof. (i). Fix a′ > a, and let, for λ =
√

a′, L−y
λ be Hammersley’s process, starting from Poisson

sources of intensity λ on the positive x-axis, and running through an independent Poisson process
of intensity 1 in the plane (without sinks). Then we get from Theorem 2.1 and Lemma 2.2 that
the counting process y �→ L−y

λ (t + y, at) − L−y
λ (t, at) converges in distribution to a Poisson process

of intensity λ, since the process, restricted to a finite interval, lies with probability one at level t to
the right of the space-time path of the isolated second class particle Xt, as t → ∞.

If we couple the original Hammersley process and the process L−y
λ via the same Poisson point

process in the plane, we get that at any level the number of crossings of horizontal lines of the
process L is contained in the set of crossings of these lines of the process L−y

λ , since the latter
process has sources on the x-axis and no sinks on the y-axis. Hence, for a finite collection of
disjoint intervals [ai, bi), i = 1, . . . , k, and non-negative numbers θ1, . . . , θk, we obtain:

E exp

{
−

k∑
i=1

θi {L(t + bi, at) − L(t + ai, at)}
}

≥ E exp

{
−

k∑
i=1

θi

{
L−y

λ (t + bi, at) − L−y
λ (t + ai, at)

}}
.

But the right side converges by Theorem 2.1 and Lemma 2.2 to

exp

{
−

k∑
i=1

λ(bi − ai)
{

1 − e−θi

}}
,
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so we get

lim inf
t→∞

E exp

{
−

k∑
i=1

θi {L(t + bi, at) − L(t + ai, at)}
}

≥ e−
∑k

i=1 λ(bi−ai){1−e−θi}. (2.11)

A similar argument, but now comparing the process L with a process L−x
λ , having sinks of

intensity 1/λ = 1/
√

a′ on the y-axis (which can be considered to be “sources” for Hammersley’s
process, running from left to right), but no sources on the x-axis, shows

lim sup
t→∞

E exp

{
−

k∑
i=1

θi {L(t + bi, at) − L(t + ai, at)}
}

≤ e−
∑k

i=1 λ(bi−ai){1−e−θi}, (2.12)

for any a′ < a, since in this case the crossings of horizontal lines of the process L are supersets of
the crossings of these lines by the process L−x

λ .
That the crossings of horizontal lines of the process L are supersets of the crossings of horizontal

lines by the process L−x
λ can be seen in the following way. Proceeding as in the proof of Lemma

2.2, we can, for the process Lλ, omit the sources one by one, starting with the smallest source. The
omission of the smallest source will generate the path of a second class particle X ′

t, and the paths of
Lλ will, at the interior of a vertical segment of the path of X ′

t, have an extra crossing of horizontal
lines w.r.t. the paths of the process with the omitted source. On the other hand, the process with
the omitted source will have extra crossings of vertical lines, since some particles will make bigger
jumps to the left. We can now repeat the argument by omitting the second source, which will lead
to a further decrease of crossings of horizontal lines, etc.

Combining (2.11) and (2.12), we find:

lim
t→∞

E exp

{
−

k∑
i=1

θi {L(t + bi, at) − L(t + ai, at)}
}

= e−
∑k

i=1(bi−ai)
√

a{1−e−θi},

and the result follows.
(ii). Since the length of a longest strictly North-East path is always smaller than or equal to the
length of a longest weakly North-East path, in the situation of a stationary process with Poisson
sources on the positive x-axis and Poisson sinks on the positive y-axis, both with intensity 1, we
must have, for each t > 0,

EL(t, t)/t ≤ 2,

since the expected length of a longest weakly North-East path from (0, 0) to (t, t) is 2t for the
stationary process.

The latter fact was proved in Groeneboom (2002), and comes from the simple observation that
the length of a longest weakly North-East path from (0, 0) to (t, t) is equal to the total number
of paths, crossing {0} × [0, t] and [0, t] × {t}. Since the number of crossings of {0} × [0, t] has
a Poisson(t) distribution by construction, and the number of crossings of [0, t] × {t} also has a
Poisson(t) distribution, this time by the stationarity of the process Lλ, where λ = 1 in the present
case, we get that the expectation of the total number of crossings of the left and upper edge is
exactly 2t.

To prove conversely that lim inft→∞ EL(t, t)/t ≥ 2, we first note that L(t, t) is in fact the
number of crossings of Hammersley’s space-time paths with the line segment [0, t] × {t}. Take a
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partition 0, t/k, 2t/k, . . . , t of the interval [0, t], for some integer k > 0. Then the crossings of the
space-time paths of L of the segment [(i−1)t/k, it/k]×{t} contain the crossings of this line segment
by the paths of a Hammersley process L−x

λi
with sinks of intensity 1/λi = 1/

√
ai, ai < k/i, on the

y-axis, but no sources on the x-axis.
But, by Theorem 2.1 and Lemma 2.2, the crossings of the process L−x

λi
with the segment

[(i− 1)t/k, it/k]×{t} belong, as t → ∞, to the stationary part of the process with probability one,
since ai < k/i.

We now have:
lim
t→∞

t−1E
{

L−x
λi

(it/k, t) − L−x
λi

((i − 1)t/k, t)
}

=
λi

k
,

by uniform integrability of t−1L−x
λi

(γt, t), γ ∈ (0, i/k], t ≥ 0, using (for example) the fact that
the second moments are bounded above by the second moments of the corresponding stationary
process with sources of intensity λi and sinks of intensity 1/λi. Hence we get, by summing over the
intervals of the partition:

lim inf
t→∞

EL(t, t)/t ≥ 1
k

k∑
i=1

√
ai .

Letting ai ↑ k/i, we obtain (still for fixed k)

lim inf
t→∞

EL(t, t)/t ≥
k∑

i=1

1/
√

ik = 2(1 + O(1/k)),

and (ii) follows by letting k → ∞ in the latter relation. �

3 Burke’s theorem for Hammersley’s process

In this section we show that, in the stationary version of Hammersley’s process with sources on the
x-axis and sinks on the y-axis, the β-points inherit the Poisson property from the α-points. One
could consider this as a version of Burke’s theorem for Hammersley’s process. Burke’s theorem
(see Burke (1956)) states that the output of a stationary M/M/1 queue is Poisson. An interesting
generalization of Burke’s theorem is discussed in O’Connell and Yor (2002). A version of Burke’s
theorem for totally asymmetric simple exclusion processes is given in Ferrari (1992), Theorem
7.1. Burke’s theorem is essentially based on a time-reversibility property and for our result on the
β-points this is also the case. Our version of Burke’s theorem runs as follows.

Theorem 3.1 Let Lλ be a stationary Hammersley process on [0, T1]×[0, T2], generated by a Poisson
process of “sources” of intensity λ on the positive x-axis, a Poisson process of intensity 1/λ of
“sinks” on the positive y-axis, and a Poisson process of intensity 1 in IR2

+, where the three Poisson
processes are independent. Let Lβ

λ denote the point process of β-points in [0, T1] × [0, T2], that is,
the North-East corners of the space-time paths of the process Lλ, restricted to [0, T1] × [0, T2], Lin

λ

the entries of the space-time paths on the East side of [0, T1]× [0, T2] and Lout
λ the exits of the space-

time paths on the North side. Then Lβ
λ is a homogeneous Poisson point process with intensity 1 in

[0, T1] × [0, T2], Lin
λ is a homogeneous Poisson process of intensity 1/λ and Lout

λ is a homogeneous
Poisson process of intensity λ, and all three processes are independent.
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Proof. We define a state space E as the possible finite point configurations on [0, T1], so E =
	∞

n=0En, where

En = {(x1, . . . , xn) : 0 ≤ x1 ≤ . . . ≤ xn ≤ T1} (n ≥ 1)

and E0 = {∅}, the empty configuration. We endow each En with the usual topology, which makes
E into a locally compact space. We define a Markov process (Xt)0≤t≤T2 on E such that Xt is the
point configuration of the Hammersley process L on the line [0, T1] × {t}. In particular we have
that X0 is distributed according to a Poisson process with intensity λ. From the definition of the
Hammersley process it is not hard to see that the generator G of this Markov process is given by

Gf(x) =
∫ T1

0
f(Rtx)dt +

1
λ

f(Lx) −
(

1
λ

+ T1

)
f(x)

where f ∈ C0(E), L corresponds to an exit to the left and Rt corresponds to an insertion of a new
Poisson point at t, so

L : E → E : Lx =
{

(x2, . . . , xn) if x ∈ En (n ≥ 2),
∅ if x ∈ E0 	 E1

and for 0 < t < T1:

Rt : E → E : Rtx =
{

(x1, . . . , xi−1, t, xi+1, . . . , xn) if xi−1 < t ≤ xi (x ∈ En),
(x1, . . . , xn, t) if xn < t (x ∈ En).

Here we use the convention that x0 = 0. To prove that G is indeed the generator, we fix f ∈ C0(E)
and x ∈ E and consider the transition operators

Ptf(x) = E(f(Xt)|X0 = x) (t ≥ 0).

We will consider the process for a time interval [0, h] (h ↓ 0) and call Ah the number of Poisson
points in the strip [0, T1] × [0, h] and Sh the number of sinks in {0} × [0, h]. Then

Phf(x) = f(x)P (Ah = 0 and Sh = 0) +
1
T1

∫ T1

0
f(Rtx)dt · P (Ah = 1 and Sh = 0) +

+f(Lx)P (Ah = 0 and Sh = 1) + O(h2)

= f(x)(1 − T1h − 1
λ

h) + h

∫ T1

0
f(Rtx)dt +

h

λ
f(Lx) + O(h2).

This shows that for every f ∈ C0(E) and every x ∈ E:

d
dt

∣∣∣∣
t=0

Ptf(x) = Gf(x).

Since Xt is clearly a homogeneous Markov process, we get for t ∈ [0, T2]:

d
ds

∣∣∣∣
s=t

Psf(x) = GPtf(x). (3.1)
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Now we note that G is a continuous operator on C0(E), so etG exists and is also a continuous
operator. Since

d
ds

∣∣∣∣
s=t

esGf(x) = GetGf(x),

equation (3.1) together with the uniqueness of solutions of a differential equation proves that

Ptf(x) = etGf(x).

The key idea to prove the theorem is by considering the time-reversed process

X̃s = lim
s′↓s

XT2−s′ (X̃T2 = X0).

We take the left-limit of the original process X to ensure the càdlàg property of (X̃s)0≤s≤T2 . Since,
given Xt, the past of the process X is independent of the future, it follows immediately that X̃ is
a Markov process, possibly inhomogeneous. However, if we define µ as the probability measure on
E induced by a Poisson process of intensity λ, then X0 ∼ µ and µ is a stationary measure for the
generator G, which implies that X̃ also is stationary and homogeneous. The stationarity of X was
shown in Groeneboom (2002), but will also be a consequence of calculations done in the appendix
(Section 4). Now consider the transition operators

P̃tf(x) = E(f(X̃t)|X̃0 = x) (t ≥ 0)

for the time-reversed process. Then, for f, g ∈ C0(E) and h > 0:

E(f(Xt+h)g(Xt)) = E(g(Xt)E(f(Xt+h)|Xt))
= E(Phf(Xt)g(Xt))

=
∫

E
Phf(x)g(x)µ(dx).

We also have:

E(f(Xt+h)g(Xt)) = E(f(Xt+h)E(g(Xt)|Xt+h))
= E(f(Xt+h)P̃hg(Xt+h))

=
∫

E
f(x)P̃hg(x)µ(dx).

We use that, due to the stationarity of the process X, Xt and Xt+h both have marginal distribution
µ. Combining these results gives∫

E
Phf(x)g(x)µ(dx) =

∫
E

f(x)P̃hg(x)µ(dx). (3.2)

In Section 4 we calculate the operator G∗, defined by the equation∫
E

Gf(x)g(x)µ(dx) =
∫

E
f(y)G∗g(y)µ(dy), for all f, g ∈ C0(E). (3.3)
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It is shown there that

G∗g(y) =
∫ T1

0
g(Lsy)ds +

1
λ

g(Ry) −
(

1
λ

+ T1

)
g(y), (3.4)

where in an analogous way as before we define R : E → E as an exit to the right and Ls : E → E
as a new point at s such that the point directly to the left of s moves to the right.

We will use (3.4) several times. First of all, since G∗1 = 0, it shows that µ is a stationary
measure. Secondly, we see that for g ∈ L∞(µ)

‖G∗g‖∞ ≤ 2
(

1
λ

+ T1

)
‖g‖∞,

which proves that G is in fact a continuous operator on L1(µ), as well as a continuous operator on
C0(E). Since Pt = etG, Pt is also a continuous operator on L1(µ). Therefore, (3.2) now shows that
P̃t = P ∗

t = etG∗
, so in fact, using the same argument as before, G̃ = G∗. So the reversed process

has the generator G∗.
Now we define a reflected Hammersley process XV as follows: we take the original stationary

Hammersley process and reflect all the space-time paths with respect to the line segment {1
2T1} ×

[0, T2]; call this a vertical reflection. So all points now move to the right and exit on the East side.
One verifies that the generator for XV is given by G∗ in the same way we did it for the process
X, and as XV also starts with a Poisson distribution of intensity λ, it has the same distribution
as X̃. Note that if one wishes to make a picture of the space-time paths of X̃, one can take the
original Hammersley process and reflect all the space-time paths with respect to the line-segment
[0, T1] × {1

2T2}, a horizontal reflection.
Since in XV all the jumps in (0, T1)× (0, T2) are made towards a point of a vertically reflected

Poisson process, and in the process X̃ all these jumps are made to the horizontally reflected β-points
of the original Hammersley process, we have proved that the β-points are distributed according
to a Poisson process with intensity 1. Furthermore, in the process XV paths exit on the East
side according to a Poisson process with intensity 1/λ, and this corresponds to Lin

λ , horizontally
reflected. The process Lout

λ , also horizontally reflected, corresponds to the entries of XV at the
x-axis, and is therefore Poisson with intensity λ. Finally, the independence of the three processes
follows from the fact that this is true (by construction) for XV . �

Theorem 3.1 allows us to show that a longest weakly North-East path from (0, 0) to (t/λ2, t)
only spends a vanishing proportion of time on either x- or y-axis. For the concept of longest weakly
North-East path, see Definition 2.1.

Corollary 3.1 Under the same conditions as Theorem 3.1, a longest weakly North-East path from
(0, 0) to (t/λ2, t) spends a vanishing proportion of time on either the x- or y-axis, in the sense that
the maximum distance from (0, 0) of the point where a longest weakly North-East path leaves the x-
or y-axis, divided by t, tends to zero with probability one, as t → ∞.

Proof. Consider a longest weakly North-East path from (0, 0) to (t/λ2, t). Such a path can be
associated with a path of a second class particle from (t/λ2, t) to (0, 0) for the time-reversed process,
running through the same α-points as the longest weakly North-East path, but for which the roles
of α and β-points are interchanged. This means that for the reversed process the associated path
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lies below or coincides with the path of the second class particle that starts moving through the
crossing of the upper edge [0, t/λ2]×{t}, closest to (t/λ2, t), moves down to the first α-point on the
path of the crossing, then moves to the left until it hits the path below the highest path crossing the
rectangle [0, t/λ2] × [0, t], then moves down again, etc. Similarly this path lies above or coincides
with the path of the second class particle that starts moving to the left through the crossing of the
right edge {t/λ2} × [0, t], closest to (t/λ2, t), starts moving down when it hits the α-point on the
path of the crossing, moves to the left when it hits the next path, etc.

According to Theorem 2.1 and Remark 2.1, now applied on the reversed process, the “β waves”
of the lower and upper path are asymptotically linear along the line through the origin with slope
λ2. This implies the statement of Corollary 3.1. �

Remark 3.1 It is proved in Baik and Rains (2000) that t−1/3{Lλ(t, t)− 2t}, where Lλ(t, t) is the
length of a longest North-East path from (0, 0) to (t, t) in the stationary Hammersley process (as
defined in Theorem 3.1, with λ = 1), converges in distribution to a distribution function F0, which
is related to, but different from the Tracy-Widom distribution function. This has the interesting
consequence that the correlation between the number of points on the left edge and the number of
crossings of the upper edge of the square [0, t]2 tends to −1, as t → ∞. Otherwise the variance of
Lλ(t, t) would be larger than ηt, for some η > 0, instead of being of order O(t2/3). We do not need
their result in our argument, however. Baik and Rains (2000) use an analytical approach, applying
the Deift-Zhou steepest descent method to an appropriate Riemann-Hilbert problem (after using
a representation of the distribution function in terms of Toeplitz determinants). This approach is
rather different from the approach taken here.

As noted in Baik and Rains (2000) the stationary process is a transition between two situations:
if the intensities of the Poisson processes on the x-axis and y-axis are strictly smaller than 1, we
get that t−1/3{Lλ(t, t) − 2t} converges in distribution to the Tracy-Widom distribution. On the
other hand, if one of these intensities is bigger than 1 (but the intensities are not equal), we
get convergence of Lλ(t, t) to a normal distribution, with the usual t−1/2 scaling (and a different
centering constant).

Remark 3.2 In Groeneboom (2001) a signed measure process Vt was introduced, counting α- and
β-points, contained in regions of the plane. The Vt measure of a rectangle [0, x] × [0, y] is defined
as the number of α-points minus the number of β-points in the rectangle [0, tx]× [0, ty], divided by
t. The Vt-process has the property that

Vt(S) → V (S),

almost surely, for rectangles S in the plane, where V is a positive measure with density

fV (x, y) def=
∂2

∂x∂y
V (x, y) =

c

4
√

xy
, x, y > 0. (3.5)

Here we use the notation V (x, y) to denote the V -measure of the rectangle [0, x] × [0, y]. Likewise
we write Vt(x, y) for the Vt-measure of the rectangle [0, x] × [0, y].
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The problem of proving part (ii) of Corollary 2.1 of the present paper was reduced to showing
that ∫

B
Ṽt(u, v) dVt(u, v) a.s.−→

∫
B

V (u, v) dV (u, v) = 1
4c2xy, (3.6)

where
Ṽt(u, v) =

∫
[0,u]×[0,v)

dVt(u′, v′).

Although (3.6) indeed has to hold, the argument for it, given in Groeneboom (2001), is incomplete,
and needs a result like Theorem 2.1 of the present paper to be completed (the difficulty is caused
by the locally unbounded variation of the measure Vt, as t → ∞, which has to be treated carefully
to explain why we need Ṽt as integrand in the integral in the left-hand side of (3.6) instead of, for
example, Vt, which leads to an integral that is asymptotically twice as large). But since Theorem
2.1 allows us to prove both the local convergence to a Poisson process and convergence of EL(t, t)/t
to 2, we did not pursue the approach in Groeneboom (2001) any further in the present paper.

4 Appendix

The purpose of this Appendix is to prove Equation (3.4). Remember that

E = 	∞
n=0En

where E0 = {∅} and

En = {(x1, . . . , xn) : 0 ≤ x1 ≤ . . . ≤ xn ≤ T1}.

A Poisson process of intensity λ induces a probability measure µ on E. Denote by µn the restriction
of µ to En, so µn(dx) = λne−aT1dx. The generator was given by

G : C0(E) → C0(E) : Gf(x) =
∫ T1

0
f(Rtx)dt +

1
λ

f(Lx) −
(

1
λ

+ T1

)
f(x).

Define G+f = Gf + (1/λ + T1)f ; we will calculate the dual of G+. Let f, g ∈ C0(E).∫
E
G+f(x)g(x)µ(dx) = e−λT1G+f(∅)g(∅) +

∞∑
n=1

∫
En

G+f(x)g(x)µn(dx)

= e−λT1
1
λ

f(∅)g(∅) + e−λT1

∫ T1

0
f(t)g(∅)dt +

e−λT1

∞∑
n=1

[
λn

∫
En

∫ T1

0
f(Rtx)g(x)dtdx + λn−1

∫
En

f(Lx)g(x)dx

]
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= e−λT1
1
λ

f(∅)g(∅) + e−λT1

∫ T1

0
f(t)g(∅)dt +

e−λT1

∞∑
n=1

n∑
i=1

λn

∫
{x∈En,xi−1<t≤xi}

f(x1, . . . , xi−1, t, xi+1, . . . , xn)g(x)dxdt +

e−λT1

∞∑
n=1

λn

∫
{x∈En,t>xn}

f(x1, . . . , xn, t)g(x)dxdt +

e−λT1

∞∑
n=1

λn−1

∫
En

f(x2, . . . , xn)g(x)dx.

Now we make a change of variable for each term in such a way that we get f(y) in each of the
integrals:∫

E
G+f(x)g(x)µ(dx) = e−λT1

1
λ

f(∅)g(∅) + e−λT1

∫ T1

0
f(y)g(∅)dy +

e−λT1

∞∑
n=1

n∑
i=1

λn

∫
{y∈En,yi≤s≤yi+1}

f(y)g(y1, . . . , yi−1, s, yi+1, . . . , yn)dyds +

e−λT1

∞∑
n=1

λn

∫
En+1

f(y)g(y1, . . . , yn)dy +

e−λT1

∞∑
n=1

λn−1

∫
{y∈En−1,s≤y1}

f(y)g(s, y1, . . . , yn−1)dyds

=
1
λ

f(∅)g(∅)µ0(E0) +
1
λ

∫
E1

f(y)g(∅)µ1(dy) +

∞∑
n=1

n∑
i=1

∫
{y∈En,yi≤s≤yi+1}

f(y)g(y1, . . . , yi−1, s, yi+1, . . . , yn)µn(dy)ds +

∞∑
n=0

∫
{y∈En,s≤y1}

f(y)g(s, y1, . . . , yn)µn(dy)ds +

∞∑
n=2

1
λ

∫
En

f(y)g(y1, . . . , yn−1)µn(dy)

=
∞∑

n=0

∫
En

f(y)
(∫ T1

0
g(Lsy)ds

)
µn(dy) +

∞∑
n=0

1
λ

∫
En

f(y)g(Ry)µn(dy)

=
∫

E
f(y)

(∫ T1

0
g(Lsy)ds +

1
λ

g(Ry)
)

µ(dy).

Here we define R as an exit to the right and Ls as a new point at s such that the point directly to
the left of s moves to the right, that is

R : E → E : Rx =
{

(x1, . . . , xn−1) if x ∈ En (n ≥ 2),
∅ if x ∈ E0 	 E1
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and for 0 < s < T1:

Ls : E → E : Lsx =
{

(x1, . . . , xi−1, s, xi+1, . . . , xn) if xi ≤ s < xi+1 (x ∈ En),
(s, x1, . . . , xn) if s < x1 (x ∈ En).

Since G∗g = G∗
+g − (1/λ + T1)g, we have shown that

G∗g(y) =
∫ T1

0
g(Lsy)ds +

1
λ

g(Ry) −
(

1
λ

+ T1

)
g(y).
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