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Abstract

Let Ln be the length of the longest increasing subsequence of a random permutation of the numbers 1; : : : ; n, for
the uniform distribution on the set of permutations. We discuss the “hydrodynamical approach” to the analysis of the
limit behavior, which probably started with Hammersley (Proceedings of the 6th Berkeley Symposium on Mathematical
Statistics and Probability, Vol. 1 (1972) 345–394) and was subsequently further developed by several authors. We also
give two proofs of an exact (non-asymptotic) result, announced in Rains (preprint, 2000). c© 2002 Elsevier Science B.V.
All rights reserved.

MSC: primary: 60C05; 60K35; secondary 60F05

Keywords: Longest increasing subsequence; Ulam’s problem; Hammersley’s process

1. Introduction

In recent years quite spectacular advances have been made with respect to the distribution theory
of longest increasing subsequences Ln of a random permutation of the numbers 1; : : : ; n, for the
uniform distribution on the set of permutations. Recent reviews of this work are given in [1,3].

However, rather than trying to give yet another review of this recent work, I will try to give a
description of a diEerent approach to the theory of the longest increasing subsequences, which in
[2] is called “hydrodynamical”.

As an example of a longest increasing subsequence we consider the permutation

�n = (�n(1); : : : ; �n(n)) = (7; 2; 8; 1; 3; 4; 10; 6; 9; 5); n= 10;
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also used as an example in [3]. A longest increasing subsequence is

(1; 3; 4; 6; 9):

and another longest increasing subsequence is

(2; 3; 4; 6; 9):

For this example we get

Ln = ‘n(�n) = 5:

It was proved in [10] that, as n → ∞,

Ln=
√
n

p→c;

where
p→ denotes convergence in probability, and

lim
n→∞ELn=

√
n= c;

for some positive constant c, where �=26 c6 e. Subsequently Kingman [12] showed that

1:59¡c¡ 2:49;

and later work by Logan and Shepp [14] and Vershik and Kerov [20] (expanded more fully in
[21,22] showed that actually c = 2. The problem of proving that the limit exists and Jnding the
value of c has been called “Ulam’s problem”, see, e.g., [6, p. 633].

In proving that c = 2, Aldous and Diaconis [2] replace the hard combinatorial work in [14,20],
using Young tableaux by “hydrodynamical argument”, building on certain ideas in [10], and it is
this approach I will focus on in the present paper.

I will start by discussing Hammersley [10] in Section 2. Subsequently I will discuss the methods
used in [2,18]. Slightly as a side-track, I will discuss an exact (non-asymptotic) result announced in
[15], for which I have not seen a proof up till now, but for which I will provide a hydrodynamical
proof below.

2. Hammersley’s approach

The Berkeley symposium paper [10] is remarkable in several ways. The opening sentences are:
“Graduate students sometimes ask, or fail to ask: “How does one do research in mathematical
statistics?” It is a reasonable question because the fruits of research, lectures and published papers
bear little witness to the ways and means of their germination and ripening”. This beginning sets
the tone for the rest of the paper, where Hammersley describes vividly the germination and ripening
of his own research on the subject.

In Section 3, called “How well known is a well-known theorem?”, he describes the diOculties
encountered in Jnding a reference for a proof of the following theorem:

Theorem 2.1. Any real sequence of at least mn+1 terms contains either an ascending subsequence
of m + 1 terms or a descending subsequence of n + 1 terms.
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This result, due to ErdQos and Szekeres [9], is called the “pigeonhole principle” in Hammersley [10],
a term also used by other authors. A nice description of this problem and other related problems
is given in [4]. The relevance of the pigeonhole principle for the behavior of longest increasing
subsequences is that one can immediately conclude from it that

ELm¿ 1
2 (n + 1) if m= n2 + 1; (2.1)

As noted in [6], it is probable that Ulam, because of a long and enduring friendship with ErdQos,
got interested in determining the asymptotic value of ELn and for this reason started (around 1961)
a simulation study for n in the range 16 n6 10 (n= 10 being very large at the time, quoting [6]),
from which he found

ELn ∼ 1:7
√
n;

leading him to the conjecture that

lim
n→∞

ELn√
n

= c (2.2)

exists. This is the Jrst part of “Ulam’s problem”, the second part being the determination of c.
Relation (2.1) then shows:

c¿ 1
2 ;

if we can deal with the Jrst part of Ulam’s problem (existence of the limit (2.2)).
The Jrst part of Ulam’s problem is in fact solved in [10]. It is Theorem 2.2 below (Theorem 4

on p. 352 of [10]):

Theorem 2.2. Let X = (X1; X2; : : :) be an i.i.d. sequence of real-valued continuously distributed ran-
dom variables; and let; respectively; Ln and L∗n be the lengths of a longest increasing and a longest
decreasing subsequence of (X1; : : : ; Xn). Then we have

Ln=
√
n

p→ c and L∗n=
√
n

p→ c

for some positive constant c; where
p→ denotes convergence in probability. We also have conver-

gence in the pth absolute mean of Ln=
√
n and L∗n=

√
n; for 0¡p¡∞.

Note that, for a sample of n continuously distributed random variables, the vector of ranks
(R1; : : : ; Rn) of the random variables X1; : : : ; Xn (for example ordered according to increasing mag-
nitudes) has a uniform distribution over all permutations of (1; : : : ; n). Because of the continuous
distribution we may disregard the possibility of equal observations (“ties”), since this occurs with
probability zero. So the random variable Ln, as deJned in Theorem 2.2, indeed has exactly the
same distribution as the length of a longest increasing subsequence of a random permutation of the
numbers 1; : : : ; n, for the uniform distribution on the set of permutations.

The key idea in [10] is to introduce a Poisson process of intensity 1 in the Jrst quadrant of
the plane and to consider longest North–East paths through points of the Poisson point process in
squares [r; s]2, where 06 r ¡ s¡∞. A North–East path in the square [r; s]2 is a sequence of points
(X1; Y1); : : : ; (Xk; Yk)∈ [r; s]2 of the Poisson process such that X1 ¡ · · ·¡Xk and Y1 ¡ · · ·¡Yk . We
call k the length of the path.
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Note that we can disregard the probability that Xi =Xj or Yi =Yj for i �= j, since this happens with
probability zero. A longest North–East path is a North–East path for which k is largest. Conditional
on the number of points of the Poisson process in [r; s]2, say n, the length of the longest North–East
path has the same distribution as the longest increasing subsequence of a random permutation of
1; : : : ; n. This follows from the fact that, if (U1; V1); : : : ; (Un; Vn) are the points of the Poisson process
belonging to [r; s]2, where we condition on the event that the number of points of the Poisson process
in [r; s]2 is equal to n, and if V(1) ¡ · · ·¡V(n) are the order statistics of the second coordinates,
then the corresponding Jrst coordinates Uk1 ; : : : ; Ukn behave as a sample from a Uniform distribution
on [r; s]. A longest increasing North–East path will either consist of just one point (provided that
the rectangle contains a point of the Poisson process, otherwise the length will be zero) or be a
sequence of the form

((Uki ; V(i)); : : : ; (Ukj ; V(j));

where i¡ j and Uki ¡ · · ·¡Ukj . So the length of a longest North–East path in [r; s]2, conditionally
on the number of points in [r; s]2 being n, is distributed as the longest increasing subsequence of the
sequence random variables (U1; : : : ; Un), and hence, by the remarks following Theorem 2.2 above,
distributed as the length of a longest increasing subsequence of a permutation of the numbers 1; : : : ; n.
If n= 0, the length is zero and everything is trivial of course.

Following [10], we denote the length of a longest North–East path in the square [r; s]2 by Wr;s,
and for the collection of random variables {Wr;s: 06 r ¡ s¡∞} we obviously have the so-called
superadditivity property:

Wr;t¿Wr;s + Ws;t ; 06 r ¡ s¡ t¡∞;

meaning that −Wr;t has the subadditivity property:

−Wr;t6−Wr;s −Ws;t ; 06 r ¡ s¡ t¡∞:

Furthermore, we clearly have, for each r ¿ 0, that {Wnr; (n+1)r; n= 1; 2; : : :} is an i.i.d. sequence of
random variables, since Wnr; (n+1)r is a function of the Poisson point process restricted to the square
[nr; (n+1)r]2, and since the restrictions of the Poisson point process to the squares [nr; (n+1)r]2 are
i.i.d. For the same type of reason, the distribution of Wr;r+k does not depend on r ∈ (0;∞). Finally
max{0;−W0; n}= 0 for each n, and it will be shown below (see (2.11)) that

E(−W0; n)¿− K · n for each n; (2.3)

for a Jnite constant K ¿ 0. So we are in a position to apply Liggett’s version of Kingman’s subad-
ditive ergodic theorem,

W0; r

r
a:s:→ c = sup

r¿0

EW0; r

r
; r → ∞;

and also

E
(
W0; r

r

)
→ c = sup

r¿0

EW0; r

r
; r → ∞:

Hammersley next deJnes t(n) as the smallest real number such that [0; t(n)]2 contains exactly n
points of the Poisson process. Then it is clear from the properties of the Poisson point process in
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R2
+ that

t(n)√
n

a:s:→1; n → ∞;

and hence that

W0; t(n)√
n

a:s:→ c; n → ∞; (2.4)

and

E
(
W0; t(n)√

n

)
→ c; n → ∞; (2.5)

where the constant c is the same in (2.4) and (2.5). But since W0; t(n) has the same distribution as
Ln, we obtain from (2.4)

Ln√
n

p→ c; n → ∞; (2.6)

where
p→ denotes convergence in probability, and from (2.5),

E
(

Ln√
n

)
→ c; n → ∞: (2.7)

Remark. Note that we went from the almost sure relation (2.4) to the convergence in probability
(2.6) for the original longest increasing subsequence, based on a random permutation of the numbers
1; : : : ; n. It is possible, however, also to deduce the almost sure convergence of Ln=

√
n from (2.4),

using an extra tool, as was noticed by H. Kesten in his discussion of Kingman [12] (see p. 903 of
[12]). I want to thank a referee for giving the latter reference, setting “the record straight” for this
issue that was still bothering Hammersley in [10].

From (2.1) we now immediately obtain

c¿ 1
2 (2.8)

(see also the remark below (2.2)), but we still have to prove (2.3). This problem is dealt with by
Theorem 2.3 below (Theorem 6 on p. 355 of [10]):

Theorem 2.3. Let; for x∈R; �x� be the smallest integer ¿ x; and let; for a =xed t¿ 0 and each
positive integer N; n= �e√N + t�. Moreover; let PN denote the uniform distribution on the set of
permutations of the sequence (1; : : : ; N ) with corresponding expectation EN ; let ‘∗N be the length
of a longest monotone (decreasing or increasing) subsequence of a permutation of the numbers
1; : : : ; N; and let mn;N the number of monotone subsequences of length n under the probability
measure PN . Then we have

PN{‘∗N ¿ n}6ENmn;N =
2
n!

(
N
n

)
6

e−2t

�
√
N

: (2.9)
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Proof. This is proved by an application of Stirling’s formula (for details of this computation which
is not diOcult, see [10, pp. 355–356]).

Elementary calculations show that Theorem 2.3 implies:

EN

(
‘∗N√
N

)
6 e + O

(
N−1=2) ; N → ∞:

Since ‘N 6 ‘∗N = max{‘N ; ‘′N}, we obtain

E‘N 6K
√
N (2.10)

for a constant K ¿ 0. Returning to the situation of longest increasing North–East paths in the plane,
we obtain from (2.10)

EW0; n6
∞∑
i=1

(E‘i)
e−n2

n2i

i!
6K

∞∑
i=1

e−n2
n2i

√
i

i!
=O(n); n → ∞; (2.11)

which proves (2.3). Moreover, we have

lim sup
n→∞

EW0; n

n
= lim sup

n→∞

∞∑
i=1

(E‘i)
e−n2

n2i

i!
6 e;

using Theorem 2.3.
Combining this result with (2.6) and (2.7), we obtain

c6 e;

and, in particular, it is proved that c∈ (0;∞), since also c¿ 1
2 , by (2.8).

So the Jrst part of Ulam’s problem is now solved, and we know that the constant c in the limit
(2.2) is a number between 1=2 and e. As noted above, Hammersley improved the lower bound to
�=2 and in [12] the bounds were tightened further to

1:59¡c¡ 2:49:

However, Hammersley was in fact quite convinced that c = 2 (see p. 372 of [10], where he says:
“However, I should be very surprised if (12:12) is false”, (12:12) being the statement c = 2 in his
paper). Hammersley [10] contains three “attacks on c” of which we will discuss the third attack,
since the ideas of the third attack sparked other research, like the development in [2]. Somewhat
amusingly, his second attack yielded c ≈ 1:961, but apparently he did not believe too much in that
attack, in view of the remark (“I should be very surprised”) quoted above.

“Hammersley’s process” is introduced in Section 9 of [10]. In this section on Monte Carlo methods
he introduces a kind of interacting particle process in discrete time. The particles of this process all
live on the interval [0; 1] and are at “time n” a subset of a Uniform(0,1) sample X1; : : : ; Xn. We now
give a description of this process.

Let X1; X2; : : : be an i.i.d. sequence of Uniform(0,1) random variables, and let, for each n, Xn be
deJned by

Xn = (X1; : : : ; Xn):

Moreover let, for x∈ (0; 1), Xx
n be deJned as the subsequence of Xn obtained by omitting all Xi ¿x.

As before, ‘(Xn) is the length of the longest increasing subsequence of Xn. In a similar way, ‘(Xx
n)
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is the length of the longest increasing subsequence of Xx
n. Hammersley now notes that ‘(Xx

n) is an
integer-valued step function of x, satisfying the recurrence relation

‘(Xx
n+1) =

{
‘(Xx

n); 06 x¡Xn+1;

max{‘(Xx
n); 1 + ‘(XXn+1

n )}; Xn+16 x¡ 1;
(2.12)

and that, for a simulation study, one only needs to keep the values of the Xi’s, where the function
x �→ ‘(Xx

n); x∈ (0; 1); makes a jump. The recurrence relation starts from

‘(Xx
1) =

{
0; 06 x¡X1;

1; X16 x¡ 1:
(2.13)

Suppose that the jumps of the function x �→ ‘(Xx
n) occur at the points Yi;n; i = 1; : : : ; I(n); where

Y1; n ¡ · · ·¡YI(n); n: (2.14)

Then it is clear from (2.12) that the jumps of the function x �→ ‘(Xx
n+1) occur at the points

Y1; n+1 ¡ · · ·¡YI(n+1); n+1;

which is obtained from points (2.14) by adding YI(n)+1; n+1 =Xn+1 to points (2.14), if xn+1 ¿YI(n); n,
and otherwise by replacing the smallest value yi;n ¿Xn+1 by Xn+1. Note that Y1;1 =X1. DeJning

Yn = (Y1; n; : : : ; YI(n); n); (2.15)

we call the particle process n �→ Yn Hammersley’s discrete time interacting particle process.
In [11] the following simple example is given, clarifying the way in which this process evolves.

Let n= 6 and

Xn = (X1; : : : ; Xn) = (0:23; 0:47; 0:14; 0:22; 0:96; 0:83):

Then the sequence (Y1; : : : ;Y6) is represented by the sequence of states

0:23 → (0:23; 0:47) → (0:14; 0:47) → (0:14; 0:22) → (0:14; 0:22; 0:96) → (0:14; 0:22; 0:83):

So either a new point is added (which happens, e.g., at the second step in the example above), or
the “incoming point” replaces an existing point that is immediately to the right of this incoming
point (this happens, e.g., at the third step in the example above).

We note in passing that the Jrst stage of Viennot’s geometric construction of the
Robinson-Schensted correspondence, given in [23], is in fact Hammersley’s discrete time interacting
particle process on a lattice. A nice exposition of this construction is given in [17].

We can now discuss the “third attack on c” (Section 12 in [10]). The argument at the bottom of
p. 372 and top of p. 373 is close to Eq. (9) of Aldous and Diaconis [2], (as pointed out to me by
Aldous [1]), and is the hydrodynamical argument that inspired the approach in [2]. The argument
(called “treacherous” by Hammersley) runs as follows.

Let X1; X2; : : : be i.i.d. Uniform(0,1) random variables, and let Y1; n ¡ · · ·¡YI(n); n be the points
of Hammersley’s discrete time interacting particle process at time n, associated with the sample
X1; : : : ; Xn, as described above. Moreover, let ‘(Xn) be the length of a longest increasing subsequence
of X1; : : : ; Xn. Then we have

E‘(Xn+1) − E‘(Xn) =E(1 − YI(n); n); (2.16)
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since ‘(Xn+1) − ‘(Xn) = 1, if Xn+1 ∈ (YI(n); n; 1), and otherwise ‘(Xn+1) − ‘(Xn) = 0. Since E‘(Xn)
∼c

√
n, as n → ∞, we have (quoting [10, bottom of p. 372]) that “the left side of (2.16) is the

result of diEerencing c
√
n + o(

√
n) with respect to n, and ought to be about 1

2c=
√
n if the error

term is smooth”. Continuing quoting [10] (top of p. 373) we get that “the right side of (2.16) is
the displacement in x near x = 1, just suOcient to ensure unit increase in ‘(Xx

n), and should be
the reciprocal of (@=@x)‘(Xx

n) at x = 1, namely 2=(c
√
n)”. The last statement is referring to relation

(12:1) on p. 370 of [10], which is

‘(Xx
n) = c

√
nx + o(

√
n): (2.17)

There is of course some diOculty in interpreting the equality sign in (2.17), does it mean “in
probability”, “almost surely” or is an asymptotic relation for expectations meant? Let us give (2.17)
the latter interpretation. Then we would get from (2.16), following Hammersley’s line of argument:

E‘(Xn+1) − E‘(Xn) ∼ c
2
√
n
∼ 1

(@=@x)E‘(Xx
n)|x=1

∼ 2
c
√
n
: (2.18)

This would yield c = 2. Following Hammersley’s daring practice (in Section 12 of [10]) of diEer-
entiating w.r.t. a discrete parameter (in this case n), we can rewrite (2.18) in the form

@
@n

E‘(Xn) ∼ c
2
√
n
∼ 1

(@=@x)E‘(Xx
n)|x=1

∼ 2
c
√
n

(2.19)

or

@
@n

E‘(Xn) · @
@x

E‘(Xx
n)
∣∣∣∣
x=1

→ 1; n → ∞: (2.20)

We shall return to Eq. (2.20) in the next sections, where it will be seen that it can be given diEerent
interpretations, corresponding to the diEerent approaches in [2] (and perhaps more implicitly in [18]).

3. The Hammersley--Aldous--Diaconis interacting particle process

As I see it, one major step forward, made in [2], is to turn Hammersley’s discrete time interacting
particle process, as described in Section 2, into a continuous time process. One of the diOculties in
interpreting relation (2.20) is the diEerentiation w.r.t. the discrete time parameter n, and this diOculty
would be removed if we can diEerentiate with respect to a continuous time parameter (but other
diOculties remain!).

The following gives an intuitive description of the extension of Hammersley’s process on R+ to
a continuous time process, developing according to the rules speciJed in [2]. Start with a Poisson
point process of intensity 1 on R2

+. Now shift the positive x-axis vertically through (a realization of)
this point process, and, each time a point is caught, shift to this point the previously caught point
that is immediately to the right.

Alternatively, imagine, for each x¿ 0, an interval [0; x], moving vertically through the Poisson
point process. If this interval catches a point that is to the right of the points caught before, a new
extra point is created in [0; x], otherwise we have a shift to this point of the previously caught point
that is immediately to the right and belongs to [0; x] (note that this mechanism is exactly the same
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Fig. 1. Space–time curves of the Hammersley–Aldous–Diaconis process, contained in [0; x] × [0; y].

as the mechanism by which the points Yi;n of Hammersley’s discrete time process are created in
Section 2). The number of points, resulting from this “catch and shift” procedure at time y on the
interval [0; x], is denoted in [2] by

N+(x; y); x; y¿ 0:

So the process evolves in time according to “Rule 1” in [2], which is repeated here for ease of
reference:

Rule 1. At times of a Poisson (rate x) process in time; a point U is chosen uniformly on [0; x],
independent of the past; and the particle nearest to the right of U is moved to U; with a new
particle created at U if no such particle exists in [0; x].

We shall call this process the Hammersley–Aldous–Diaconis interacting particle process. For a
picture of the space–time curves of this process, see Fig. 1; an “$-point” is an added point and
a “%-point” is a deleted point for this continuous time process (time is running along the vertical
axis).

In Hammersley’s “third attack on c”, one of the crucial assumptions he was not able to prove
was the assumption that the distribution of the points Yi;n was locally homogeneous, so, actually,
is locally behaving as a homogeneous Poisson process; he calls this “assumption $” (p. 371 of
[10]). This key assumption is in fact what is proved in [2] for the Hammersley–Aldous–Diaconis
interacting particle process in Theorem 5 on p. 204 (which is the central result of their paper):
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Theorem 3.1. (a) c = 2.
(b) For each =xed a¿ 0; the random particle con=guration with counting process

{N+(at + y; t) − N+(at; t): y∈ (−∞;∞)};
converges in distribution; as t → ∞; to a homogeneous Poisson process with intensity a−1.

After stating this theorem, they give the following heuristic argument. Suppose the spatial process
around position x at time t approximates a Poisson process of some rate &(x; t). Then clearly

@
@t

EN+(x; t) =EDx; t ;

where Dx; t is the distance from x to the nearest particle to the left of x. For a Poisson process, EDx; t

would be 1=(spatial rate), so

EDx; t ≈ 1
&(x; t)

≈ 1
(@=@x)EN+(x; t)

:

In other words, w(x; t) =EN+(x; t) satisJes approximately the partial diEerential equation
@w
@x

@w
@t

= 1; w(x; 0) =w(0; t) = 0; x; t¿ 0; (3.1)

whose solution is w(x; t) =w(t; x) = 2
√
tx. Note that (3.1) is very close to (2.20) above, but that we

got rid of the diEerentiation w.r.t. a discrete time parameter!
Appealing as the above argument may seem, a closer examination of [2] learns that their proof not

really proceeds along the lines of this heuristic argument. In fact, they prove separately that c6 2
and that c¿ 2, by arguments that do not seem to use the diEerential equation (3:1). The proofs of
c6 2 and ¿ 2 are based on coupling arguments, where the Hammersley–Aldous–Diaconis process
is coupled to a stationary version of this process, starting with a non-empty conJguration, and living
on R instead of R+. This process evolves according to the following rule (p. 205 of [2]).

Rule 2. The restriction of the process to the interval [x1; x2] satis=es:

(i) There is some arbitrary set of times at which the leftmost point (if any) in the interval is
removed.

(ii) At times of a rate x2 − x1 Poisson process in time, a point U is chosen uniformly on [x1; x2];
independent of the past, and the particle nearest to the right of U is moved to U; with a new
particle created at U if no such particle exists in [x1; x2].

To avoid a possible misunderstanding, rule 2 above is not the same a “rule 2” in [2]. The existence
of such a process is ensured by the following lemma (Lemma 6 in [2]).

Lemma 3.1. Suppose an initial con=guration N (·; 0) of particles in R satis=es

lim inf
x→−∞

N (x; 0)
x

¿ 0; a:s: (3.2)

Let P be a Poisson point process of intensity 1 in the plane; and let L↗((z; 0); (x; t)) be
the maximal number of Poisson points on a North–East path from (z; 0) to (x; t); in the
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sense that it is piecewise linear with vertices (z; 0); (xi; yi); 16 i6 k and (x; t) such that
z6 x1 ¡ · · ·¡xk 6 x; 06y1 ¡ · · ·¡yk 6 t; for points (xi; yi) belonging a realization of P; and
such that k is largest. Then the process; de=ned by

N (x; t) = sup
−∞¡z6x

{N (z; 0) + L↗((z; 0); (x; t))}; x∈R; t¿ 0; (3.3)

evolves according to Rule 2.

A process of this type is called “Hammersley’s process on R” in [2], but we will call this
the Hammersley–Aldous–Diaconis process on R. As an example of such a process, consider an
initial conJguration, corresponding to a Poisson point process P& of intensity &¿ 0. The initial
conJguration will be invariant for the process; that is: N (·; t) will have the same distribution as P&,
for each t ¿ 0. The following key lemma (Lemma 7 in [2]) characterizes the invariant distributions
in the process on R.

Lemma 3.2. A =nite intensity distribution is invariant and translation-invariant for the
Hammersley–Aldous–Diaconis process on R if and only if it is a mixture of Poisson point processes
P&.

Other key properties are given in the next lemma (part (i) is Lemma 8, part (ii) and (iii) are
Lemma 3, and part (iv) is Lemma 11 in [2]).

Lemma 3.3. (i) Let N be a Hammersley–Aldous–Diaconis process on R; with the invariant distri-
bution P&; run for time t ∈R. Let; for x¿ 0 and t ∈R; Ñ (x; t) be de=ned by

Ñ (x; t) = number of particles of {N (s; ·): s∈ (t;∞)} which exit during the time interval [0; x]:

Then x → Ñ (x; ·); x¿ 0; is also a Hammersley–Aldous–Diaconis process on R; with invariant
distribution P1=&.

(ii) (Space–time interchange property) Let

L̃
↗

((x1; y1); (x2; y2)) =L↗((x1; y1); (y2; x2)); max{x1; y1}¡min{x2; y2}:
Then

L̃
↗

((x1; y1); (x2; y2)) d=L↗((x1; y1); (x2; y2)):

(iii) (Scaling property) For all x; y; k ¿ 0;

L↗((0; 0); (x; y)) d=L↗((0; 0); (kx; y=k)):

(iv) For =xed x; y∈R we have.
lim
t→∞{EN+(t + x; t + y) − EN+(t; t)}= 1

2c(x + y):

Parts (ii) and (iii) are immediately clear from the fact that the distribution of L↗((x1; y1); (x2; y2))
only depends on the area of the rectangle [x1; y1] × [x2; y2], since the expected number of points
of the Poisson point process only depends on the area of the rectangle, and since the shape of the
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rectangle has no inUuence on the distribution of L↗((x1; y1); (x2; y2)). The proofs of (i) and (iv)
rely on somewhat involved coupling arguments, and we refer for that to [2].

The argument for c¿ 2 now runs as follows. The processes

t �→ N+(t + ·; t) and t �→ N+(t; t + ·)
have subsequential limits, which have to be translation-invariant and invariant for the Hammersley–
Aldous–Diaconis process. By part (ii) of Lemma 3.3 (the space–time interchange property) these
limit processes must have the same distribution. By Lemma 3.2 and the invariance properties the limit
process must have, these processes must be mixtures of Poisson processes. Suppose the subsequential
limit of the process t �→ N (t + ·; t) is such a mixture of Poisson processes with random intensity
/. Then, according to part (i) of Lemma 3.3, the subsequential limit of the process t �→ N (t; t + ·)
must be a mixture of Poisson processes with random intensity /−1. We have

E//−1 = 1;

and, by Jensen’s inequality, E/−1¿ 1=E/, implying

E/E/−1¿ 1:

But, since the limit processes must have the same distribution, we also have E/=E/−1, and hence

(E/)2 =E/E/−1¿ 1;

implying E/¿ 1. Using this fact, in combination with Fatou’s lemma and part (iv) of Lemma 3.3,
we get

26 2E&6 lim inf
n→∞ E{N+(tn + 2; tn) − N+(tn; tn)}= c;

if (tn) is the sequence for which we have the subsequential limit. Hence c¿ 2.
Proving c6 2 is easier; it is proved by a rather straightforward coupling argument in [2] and

it also follows from the result in Section 4 below (see the last paragraph of Section 4). So the

conclusion is that c = 2. Moreover, since / d=/−1 and since the covariance of / and /−1 is equal
to zero, we can only have: /= 1 almost surely. This proves part (b) of Theorem 3.1 for the case
a= 1, and the case a �= 1 then follows from part (iii) of Lemma 3.3.

4. A nonasymptotic result for longest North–East paths in the unit square

The purpose of the present section is to give a proof of the following result.

Theorem 4.1. Let P1 be a Poisson process of intensity &1 on the lower edge of the unit square
[0; 1]2; P2 a Poisson process of intensity &2 on the left edge of the unit square, and P a Poisson
process of intensity &1&2 in the interior of the unit square. Then the expected length of a longest
North–East path from (0; 0) to (1; 1); where horizontal or vertical parts are allowed at the start
of the path; is equal to &1 + &2.

Here, as before, the length of the path is deJned as the number of points of the point process,
“picked up” along the path. However, in the present situation it is allowed to pick up points from the
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boundary, and, moreover, there are Poisson point processes on both the left and the lower boundary.
The exact result about the expectation of the length of the longest North–East path (for the case
&1 = &2) is announced in [15], which refers to a manuscript in preparation of PrQahofer and Spohn
(which I have not seen).

The idea of the proof is to show that if we start with the (possibly empty) conJguration of points
on the lower edge, and let the point process develop according to the rules of the Hammersley–
Aldous–Diaconis process, where we let the leftmost point “escape” at time t, if the left edge of
the unit square contains a point of the Poisson process of intensity &2 at (0; t), the process will be
stationary. This means that the expected number of points of the process will be equal to &1 at each
time t, so in particular at time t = 1. Since the expected number of points on the left edge is &2,
the expected number of space–time curves of the Hammersley–Aldous–Diaconis process (with “left
escapes”) will be &1 + &2. This implies the result, since the length of a longest North–East path is
equal to the number of space–time curves (note that such a longest North–East path “picks up” one
point from each space–time curve).

A proof of Theorem 4.1 in the spirit of the methods used in [2,18] would run as follows. Start
with a Poisson process 00 of intensity &1 on R and a Poisson process of intensity &1&2 in the upper
half plane. Now let the Poisson process 00 develop according to the rules of the Hammersley–
Aldous–Diaconis process on the whole real line, and let 0t denote the process at time t. Then the
process {0t: t¿ 0} will be invariant in the sense that it will be distributed as a Poisson process of
intensity &1 at any positive time. The restriction of 0t to the interval [0; 1] will be a Poisson process
of intensity &1 on this interval. Since (by the “bus stop paradox”) the distribution of the distance of
the rightmost point in the interval (−∞; 0) to 0 will have an exponential distribution with (scale)
parameter 1=&1, the leftmost points in the interval [0; 1] will escape at rate &2, because an escape
will happen if a new point is “caught” in the interval between the rightmost point of the process
in (−∞; 0) and 0, and because the intensity of the Poisson process in the upper half plane is &1&2.
So the point process on [0; 1], induced by the stationary process {0t: t¿ 0} on R, develops exactly
along the rules of the Hammersley–Aldous–Diaconis process “with left escapes”, described above,
and the desired stationarity property follows.

The proof of Theorem 4.1 below uses an “inJnitesimal generator” approach. It is meant to draw
attention to yet another method that could be used in this context and this is the justiJcation of
presenting it here, in spite of the fact that it is much longer than the proof we just gave (but most
of the work is setting up the right notation and introducing the right spaces). Also, conversely, the
proof below can be used to prove the property that a Poisson process on R is invariant for the
Hammersley–Aldous–Diaconis process; this property is a key to the proofs in [2].

Let 0 denote a point process on [0; 1]. That is, 0 is a random (Radon) measure on [0; 1], with
realizations of the form

0(f)def=
∫ 1

0
f(x) d0(x) =

N∑
i=1

f(2i); (4.1)

where 21; : : : ; 2N are the points of the point process 0 and f is a bounded measurable function
f : (0; 1) → R+. If N = 0, we deJne the right side of (4.1) to be zero.

We can consider the random measure 0 as a random sum of Dirac measures:

0= 321 + · · · + 32N ; (4.2)
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and hence

0(B) =
N∑
i=1

32i(B) =
N∑
i=1

1B(2i);

for Borel sets B ⊂ (0; 1). So 0(B) is just the number of points of the point process 0, contained
in B, where the sum is deJned to be zero if N = 0. The realizations of a point process, applied on
Borel subsets of [0; 1], take values in Z+ and belong to a strict subset of the Radon measures on
[0; 1]. We will denote this subset, corresponding to the point processes, by N, and endow it with
the vague topology of measures on [0; 1], see, e.g., [11, p. 32]. For this topology, N is a (separable)
Polish space and a closed subset of the set of Radon measures on [0; 1], see Propositions 15:7:7 and
15:7:4, pp. 169–170 of [11]. Note that, by the compactness of the interval [0; 1], the vague topology
coincides with the weak topology, since all continuous functions f : [0; 1] → R have compact support,
contained in the compact interval [0; 1]. For this reason we will denote the topology on N by the
weak topology instead of the vague topology in the sequel. Note that the space N is in fact locally
compact for the weak topology.

In our case we have point processes 0t , for each time t¿ 0, of the form

0t = 321 + · · · + 32Nt
;

where Nt denotes the number of points at time t, and where 06 216 · · ·6 2Nt ¡ 1; 0t is deJned
to be the zero measure on [0; 1], if Nt = 0. Note that, if we start with a Poisson process of intensity
&1 ¿ 0, the initial conJguration 00 will with probability one be either the zero measure or be of the
form

n∑
i=1

32i ; 0¡21 ¡ · · ·¡2n ¡ 1 (4.3)

for some n¿ 0, but since we want to consider the space of bounded continuous functions on N,
it is advantageous to allow conJgurations where some 2i’s will be equal. We also allow the 2i’s to
take values at 0 or 1. If we have a “stack” of 2i’s at the same location in (0; 1], we move one point
(“the point on top”) from the stack to the left, if a point immediately to the left of the location of
the stack appears, leaving the other points at the original location. Likewise, if a stack of 2i’s is
located at 0, we remove the point on top of the stack at time t if the Poisson point process on the
left lower boundary has a point at (0; t).

Now let Fc be the Banach space of continuous bounded functions 5 :N → R with the supremum
norm. For 5∈N and t ¿ 0 we deJne the function Pt5 :N → R by

[Pt5](0) =E{5(0t) | 00 = 0}:
We want to show that the operator Pt is a mapping from Fc into itself.

Boundedness of Pt5 is clear if 5 :N → R is bounded and continuous, so we only must prove
the continuity of Pt5, if 5 is a bounded continuous function 5 :N → R. If 0 is the zero measure
and (0n) is a sequence of measures in N, converging weakly to 0, we must have

lim
n→∞ 0n([0; 1]) = 0;

and hence 0n([0; 1]) = 0, for all large n. This implies that

E{5(0t) | 00 = 0}=E{5(0t) | 00 = 0n}
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for all large n. If 0=
∑m

i=1 32i , with m¿ 0, and (0n) is a sequence of measures in N, converging
weakly to 0, we must have 0n([0; 1]) =m= 0([0; 1]) for all large n, so 0n is of the form

0n =
m∑
i=1

32n; i

for all large n. Moreover, the ordered 2n; i’s have to converge to the ordered 2i’s in the Euclidean
topology. Since the x-coordinates of a realization of the Poisson process of intensity &1&2 in (0; 1)×
(0; t] will with probability one be diEerent from the 2i’s, sample paths of the processes {0t: t¿ 0},
either starting from 0 or from 0n, will develop in the same way, if n is suOciently large, for such
a realization of the Poisson process in (0; 1) × (0; t]. Hence

lim
n→∞E{5(0t) | 00 = 0n}=E{5(0t) | 00 = 0}:

So we have

lim
n→∞ [Pt5](0n) = [Pt5](0)

if the sequence (0n) converges weakly to 0, implying the continuity of Pt5.
Since {0t: t¿ 0} is a Markov process with respect to the natural Jltration {Ft: t¿ 0}, generated

by this process, we have the semi-group property

Ps+t5= [Pt ◦ Ps]5

for bounded continuous functions 5 :N → R. Moreover, we can deJne the generator G of the
process (0t), working on the bounded continuous functions 5 :N → R by

[G5](0) = &1&2

∫ 1

0
{5(3x) − 1} dx; (4.4)

if 0 is the zero measure on (0; 1), and by

[G5](0) = &1&2

n+1∑
i=1

∫ 2i

2i−1

{5(0x) − 5(0)} dx + &2

{
5

(
n∑

i=2

32i

)
− 5(0)

}
(4.5)

if 0=
∑n

i=1 32i , where 20 = 0; 2n+1 = 1, and where 0x is deJned by

0x =




3x +
∑n

i=2
32i if 0¡x¡21;∑j−1

i=1
32i + 3x +

∑n

i=j+1
32i if 2j−1 ¡x¡2j; 1¡j¡n;∑n

i=1
32i + 3x if 2n ¡x¡ 1:

(4.6)

The Jrst term on the right hand side of (4.5) corresponds to the insertion of a new point in one of
the intervals (2i−1; 2i) and the shift of 2i to this new point if the new point is not in the rightmost
interval, and the second term on the right of (4.5) corresponds to an “escape on the left”. Note that
G5(0) is computed by evaluating

lim
h↓0

[
[Ph5](0) − 5(0)

h

]
:



98 P. Groeneboom / Journal of Computational and Applied Mathematics 142 (2002) 83–105

The deJnition of G can be continuously extended to cover the conJgurations
n∑

i=1

32i ; 06 216 · · ·6 2n6 1; (4.7)

working with the extended deJnition of Pt , described above.
So we have a semigroup of operators Pt , working on the Banach space of bounded continuous

functions 5 :N → R, with generator G. It now follows from Theorem 13:35 in Rudin (1991) that
we have the following lemma.

Lemma 4.1. Let N be endowed with the weak topology and let 5 :N → R be a bounded contin-
uous function. Then we have; for each t ¿ 0;

d
dt

[Pt5] = [GPt5] = [PtG5]:

Proof. It is clear that conditions (a)–(c) of DeJnition 13:34 in Rudin [16] are satisJed, and the
statement then immediately follows.

We will also need the following lemma (this is the real “heart” of the proof).

Lemma 4.2. Let for a continuous function f : [0; 1] → R+; the function Lf :N → R+ be de=ned
by

Lf(0) = exp{−0(f)}: (4.8)

Then:

E[GLf](00) = 0; for all continuous f : [0; 1] → R+: (4.9)

Proof. We Jrst consider the value of GLf(00) for the case where 00 is the zero measure, i.e., the
interval [0; 1] contains no points of the point process 00. By (4.4) we then have

GLf(00) = &1&2

∫ 1

0
{e−f(x) − 1} dx: (4.10)

If 00 = 3x, for some x∈ (0; 1), we get

GLf(00) = &2{1 − e−f(x)} + &1&2

∫ x

0
{e−f(u) − e−f(x)} du + &1&2

∫ 1

x
{e−f(x)−f(u) − e−f(x)} du:

Hence

EGLf(00)1{00([0;1])61}

= &1&2e−&1

∫ 1

0
{e−f(x) − 1} dx + &1&2e−&1

∫ 1

0
{1 − e−f(x)} dx

−&2
1&2e−&1

∫ 1

0
ue−f(u) du + &2

1&2e−&1

∫ ∫
0¡x¡u¡1

e−f(x)−f(u) dx du

= − &2
1&2e−&1

∫ 1

0
ue−f(u) du + &2

1&2e−&1

∫ ∫
0¡x¡u¡1

e−f(x)−f(u) dx du:
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Now generally suppose that, for n¿ 1,

EGLf(00)1{00([0;1])6n−1}

= − &n
1&2e−&1

∫
0¡x1¡···¡xn−1¡1

x1 exp

{
−

n−1∑
i=1

f(xi)

}
dx1 : : : dxn−1 (4.11)

+ &n
1&2e−&1

∫
0¡x1¡···¡xn¡1

exp

{
−

n∑
i=1

f(xi)

}
dx1 · · · dxn: (4.12)

Then, by a completely similar computation, it follows that

EGLf(00)1{00([0;1])6n} =EGLf(00)1{00([0;1])6n−1} + EGLf(00)1{00([0;1])=n}

= − &n+1
1 &2e−&1

∫
0¡x1¡···¡xn¡1

x1 exp

{
−

n∑
i=1

f(xi)

}
dx1 : : : dxn

+ &n+1
1 &2e−&1

∫
0¡x1¡···¡xn+1¡1

exp

{
−

n+1∑
i=1

f(xi)

}
dx1 : : : dxn+1:

So we get

EGLf(00) = lim
n→∞EGLf(00)1{00([0;1])6n} = 0;

since ∫
0¡x1¡···¡xn¡1

x1 exp

{
−

n∑
i=1

f(xi)

}
dx1 : : : dxn ¡

1
n!

;

and similarly∫
0¡x1¡···¡xn+1¡1

exp

{
−

n+1∑
i=1

f(xi)

}
dx1 : : : dxn+16

1
(n + 1)!

:

We now have the following corollary.

Corollary 4.1. Let 5 :N → R be a continuous function with compact support in N. Then:

E[G5](00) = 0: (4.13)

Proof. Let C be the compact support of 5 in N. The functions Lf, where f is a continuous
function f : [0; 1] → R+, are closed under multiplication and hence linear combinations of these
functions, restricted to C, form an algebra. Since the constant functions also belong to this algebra
and the functions Lf separate points of C, the Stone–Weierstrass theorem implies that 5 can be
uniformly approximated by functions from this algebra, see, e.g., [8, (7:3:1), p. 137]. The result now
follows from Lemma 4.2, since G is clearly a bounded continuous operator on the Banach space of
continuous functions  :C → R.
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Now let 5 :N → R be a continuous function with compact support in N. Then Pt ◦ 5 is also a
continuous function with compact support in N, for each t ¿ 0. By Corollary 4.1 we have

E[GPt5](00) = 0:

Hence, by Lemma 4.1,

E[Pt5](00) − E5(00) =
∫ t

0
E[GPs5](00) ds= 0; t ¿ 0;

implying

E5(0t) =E[Pt5](00) =E5(00);

for each continuous function 5 :N → R with compact support in N. But since N is a Polish
space, every probability measure on N is “tight”, and hence 0t has the same distribution as 00

for every t ¿ 0 (here we could also use the fact that N is in fact locally compact for the weak
topology). Theorem 4.1 now follows as before.

Remark. For a general result on stationarity of interacting particle processes (but with another state
space!), using an equation of type (4.13), see, e.g., [13, Proposition 6:10, p. 52].

The argument shows more generally that, if we start with a Poisson point process of intensity
&1 ¿ 0 on R+ and a Poisson point process of intensity &1&2 ¿ 0 in R2

+, the starting distribution on
R+ is invariant for the Hammersley–Aldous–Diaconis process, if we let points escape at zero at
rate &2.

It is also clear that the inequality c6 2 follows, since the length of a longest North–East path
from (0; 0) to a point (t; t), with t ¿ 0, will, in the construction above, be always at least as big
as the length of a longest North–East path from (0; 0) to a point (t; t), if we start with the empty
conJguration on the x- and y-axis: we simply have more opportunities for forming a North–East
path, if we allow them to pick up points from the x- or y-axis. Since, starting with a Poisson process
of intensity 1 in the Jrst quadrant, and (independently) Poisson processes of intensity 1 on the x-
and y-axis, the expected length of a longest North–East path to (t; t) will be exactly equal to 2t,
according to what we proved above, we obtain from this c6 2.

5. Sepp-al-ainen’s stick process

The result c = 2 is proved by hydrodynamical arguments in Sections 8 and 9 of [18]. I will
summarize the approach below.

First of all, a counting process on R instead of (0;∞) is used, and for this process a number
of starting conJgurations are considered. Note that we cannot start with the empty conJguration on
R, since points would immediately be pulled to −∞, as noted in [2]. For the purposes of proving
c = 2, the most important starting conJgurations are:
(i) a Poisson process of intensity 1 on (−∞; 0] and the empty conJguration on (0;∞).

(ii) a Poisson process of intensity 1 on R.
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Let (zk)k∈Z be an initial conJguration on R. SeppQalQainen’s stick process is deJned as a process of
functions ut :Z→ R, associated with this particle process, by

ut(k) = zk(t) − zk−1(t); t¿ 0; k ∈Z:
Instead of zk(0) we write zk .

We now deJne

N (x; 0) = sup{k: zk 6 x};
and

N (x; y) = sup
−∞¡z6x

{N (z; 0) + L↗((z; 0); (x; y))}; (5.1)

where L↗((z; 0); (x; y)) is the maximum number of points on a North–East path in (z; x]× (0; y], as
in Lemma 3.1 of Section 3.

DeJne again

L↗((x1; y1); (x2; y2)) (5.2)

as the maximum number of points on a North–East path in (x1; x2] × (y1; y2], where x2 ¿x1 and
y2 ¿y1. The key to the approach in [18] is to work with a kind of inverse of (5.2), deJned by

9((x1; y1); (y2; k)) = inf{u¿ 0: L↗((x1; y1); (x1 + u; y2))¿ k}; (5.3)

in words: 9((x1; y1); y2; k)) is the minimum horizontal distance needed for building a North–East
path of k points, starting at (x1; y1), in the “time interval” (y1; y2]. This can be seen as another way
of expanding relation (2.16), which, in fact, is also a relation between the discrete time Hammersley
process and its inverse.

Now, given the initial conJguration (zk)k∈Z, the position of the particle zk at time y¿ 0 is given
by

zk(y) = inf
i6k

{zi + 9((zi; 0); y; k − i)}: (5.4)

Note that for each point zk(y) at time y, originating from zk in the original conJguration, there will
always be a point zj of the original conJguration, with j6 k, such that

inf
i6k

{zi + 9((zi; 0); y; k − i)}= zj + 9((zj; 0); y; k − j):

For example, if zk−1 ¡zk(y)¡zk we get a path of length 1 from zk−1 to zk(y), and

inf
i6k

{zi + 9((zi; 0); y; k − i)}= zk−1 + 9((zk−1; 0); y; 1) = zk(y):

Similarly, if zk(y)¡zk−1, we can always construct a path from a point zj, with j¡k to zk(y)
through points of the Poisson point process, “picked up” by the preceding paths (“seen from zk(y)”,
these are descending corners in the preceding paths).

These points need not be uniquely determined. Proposition 4:4 in [18] clariJes the situation. It
asserts that almost surely (that is: for almost every realization of the point processes) we have that
for all y¿ 0 and each k ∈Z there exist integers i−(k; y) and i+(k; y) such that i−(k; y)6 i+(k; y)
and

zk(y) = zj + 9((zj; 0); y; k − j)
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holds for j = i−(k; y) and j = i+(k; y), but fails for j �∈ [i−(k; y); i+(k; y)]. The proof of this Propo-
sition 4:4 in [18] is in fact fairly subtle!

We now Jrst consider (proceeding a little bit diEerently than in [18] the evolution of the initial
conJguration on (−∞; 0] in the case that we have a Poisson process of intensity 1 on (−∞; 0] and
the empty conJguration on (0;∞), using the same method as used in Section 4. Let F be the set of
continuous functions f : (−∞; 0] → R+ with support [a; b] ⊂ (−∞; 0). We denote the point process
of the starting conJguration by 00 and the conJguration at time t ¿ 0 by 0t , where we let it develop
according to the rules of the Hammersley–Aldous–Diaconis process. Then, just as before, we can
prove

lim
h↓0

h−1E{exp{−0h(f)} − exp{−00(f)} | 00}= 0; (5.5)

for f∈F. So, in the case that we have a Poisson process of intensity 1 on (−∞; 0], the empty
conJguration on (0;∞), and a Poisson process of intensity 1 in the upper half plane, the distribution
of the initial conJguration is invariant for the Hammersley–Aldous–Diaconis process.

Let P0 be the probability measure, associated with the initial conJguration (i) in the beginning of
this section, and let, for i6 − 1, ;i = zi − zi−1 (the length of the “stick” at location i), where we
let z−1 be the biggest point of the initial conJguration in (−∞; 0). Moreover, let the measure m0

on the Borel sets of R be deJned by

m0([a; b]) = b ∧ 0 − a ∧ 0; −∞¡a¡b¡∞;

and let ;i = 0, for i¿ 0 (in this way ;i is deJned for all i∈Z). Then we have, for each <¿ 0, and
each interval [a; b] ⊂ R:

lim
n→∞P0



∣∣∣∣∣∣n−1

[nb]∑
i=[na]

;i − m0([a; b])

∣∣∣∣∣∣¿<


= 0;

which corresponds to condition (1:10) in [18]. This condition plays a similar role as condition (3.2)
in Section 3 above. Here [x] denotes the largest integer 6 x, for x∈R. It is then proved that, if
x¿c2y=4 + 2,

t−1
[tx]∑
i=0

;i(ty)
p→
∫ x

0
u(v; y) dv=

1
4
c2y; (5.6)

where u is a (weak) solution of the partial diEerential equation
@
@y

u(x; y) +
1
4
c2 @

@x
u(x; y)2 = 0; (5.7)

under the initial condition u(x; 0) = 1(−∞;0](x); x∈R. But since we also have

t−1 E
[tx]∑
i=0

;i(ty) =y − 1
2t

∫ ty

0
E;2

[tx](s) ds; (5.8)

if x¿c2y=4 + 2, we get c = 2, if we can prove

lim
t→∞

1
2t

∫ ty

0
E;2

[tx](s) ds= 0:
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This is in fact proved in [18, p. 32]. The Jrst term on the right of (5.8) comes from 1
2E;

2−1 = 1,
and relation (5.8) follows from

t−1E
[tx]∑
i=0

;i(ty) = − 1
2
t−1

[tx]∑
i=0

∫ ty

0
E{;2

i (s) − ;2
i−1(s)} ds;

using

E{;i(y + h) − ;i(y) | ;i(y); ;i−1(y)}= − 1
2h{;2

i (y) − ;2
i−1(y)} + o(h); h ↓ 0:

We return to (5.6). Another interpretation of this relation is

t−1{z[tx](ty) − z−1(ty)} p→U (x; y) − U (0; y); t → ∞; (5.9)

where

z[tx](ty) = inf
j6[tx]

{zj + 9((zj; 0); ty; [tx] − j)};

and

U (x; y) = inf
z6x

{
z ∧ 0 +

(x − z)2

c2y

}
;

using Theorem A1 on p. 38 of [18], with f(x) = 1
4c

2x2; x∈R. This corresponds to relation (8:8) on
p. 29 of [18], which implies that

t−1z[tx](ty)
p→U (x; y); t → ∞:

An easy calculation shows

U (x; y) =
(
x − 1

4
c2y
)
∧ 0; (5.10)

since U (x; y)6 0 (note that z ∧ 0 + (x − z)2=(c2y) = 0 if z = x), and since U (x; y)¡ 0 can only
occur if x − 1

4c
2y¡ 0, in which case the minimizing z is given by z = x − 1

2c
2y. Note that

t−1z[tx](ty)
p→U (x; y) = 0;

if x¿ 1
4c

2y, and that the right side of (5.9) in this case is given by

−U (0; y) = 1
4c

2y:

So the partial diEerential equation (5.7), with initial condition

u0(x) = 1(−∞;0](x); x∈R;
is solved by

u(x; y) = 1{x6c2y=4}(x; y) = 1(−∞; c2y=4](x); x∈R; (5.11)

which, considered as a function of x, is the Radon–Nikodym derivative of the Borel measure my on
R, deJned by

my((x1; x2]) =U (x2; y) − U (x1; y); −∞¡x1 ¡x2 ¡∞:
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Note that u only solves (5.7) in a distributional sense. That is: for any continuously diEerentiable
“test function” 5 : R→ R with compact support and any y¿ 0, we have∫

R
5(x)u(x; y) dx −

∫
R
5(x)u0(x) dx =

1
4
c2
∫ y

0

∫
R
5′(x)u(x; t)2 dx dt; (5.12)

see also (1:6) on p. 5 of [18].
We note that in SeppQalQainen’s interpretation of the particle process, we cannot get new points

to the right of zero in the situation where we start with a Poisson point process of intensity 1 on
(−∞; 0] and the empty conJguration on (0;∞). In this situation we have zi = z−1; i¿ 0, so we
have inJnitely many particles at location z−1. This means that at each time y, where a new point of
the Poisson point process in the plane occurs with x-coordinate just to the left of x−1, and also to
the right of points zi(y), satisfying zi(y)¡z−1, one of the inJnitely many points zi(y) that are still
left at location z−1 shifts to the x-coordinate of this new point. SeppQalQainen’s interpretation with the
“moving to the left” is perhaps most clearly stated in the Jrst paragraph of Section 2 of [18].

In the interpretation of SeppQalQainen’s “stick process”, we would have an inJnite number of sticks
of zero length at sites 0; 1; 2; : : : . Each time an event of the above type occurs, one of the sticks of
length zero gets positive length, and the stick at the preceding site is shortened (corresponding to
the shift to the left of the corresponding particle in the particle process). In this way, mass gradually
shifts to the right in the sense that at each event of this type a new stick with an index higher than
all indices of sticks with positive length gets itself positive length. The corresponding “macroscopic”
picture is that the initial proJle u(·; 0) = 1(−∞;0] shifts to u(·; y) = 1(−∞;y] at time y.

The interpretation of the relation

t−1z[tx](ty)
p→ (x − y) ∧ 0;

taking c = 2 in (5.10), is that z[tx](0) travels roughly over a distance t(y− x) to the left in the time
interval [0; ty], if y¿x¿ 0 (we Jrst need a time interval tx to get to a “stick with index [tx]” and
length zero, then another time interval of length t(y− x) to build a distance left from zero of order
t(y − x)), and that (with high probability) z[tx](0) does not travel at all during this time interval, if
x¿y (a “stick with index [tx]” is not reached during this time interval).

6. Concluding remarks

In the foregoing sections I tried to explain the “hydrodynamical approach” to the theory of longest
increasing subsequences of random permutations, for the uniform distribution on the set of permuta-
tions. This approach probably started with the paper [10] and the heuristics that can be found in that
paper have been expanded in diEerent directions in the papers discussed above. The hydrodynamical
approach has also been used to investigate large deviation properties, see, e.g., [19], and for large
deviations of the upper tail: [7]; they still treat the large deviations of the lower tail by combinatorial
methods, using Young diagrams, but apparently would prefer to have a proof of a more probabilistic
nature, as seems clear from their remark: “The proof based on the random Young tableau corre-
spondence is purely combinatoric and sheds no light on the random mechanism responsible for the
large deviations”.

I conjecture that it is possible to push the hydrodynamical approach further for proving the
asymptotic distribution results in [5], but at present these results still completely rely on an an-
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alytic representation of the probability distribution of longest increasing subsequences using Toeplitz
determinants, see, e.g. [6, p. 636].
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