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A canonical process for estimation of convex functions:

the “invelope” of integrated Brownian motion + t4

By Piet Groeneboom, Geurt Jongbloed, and Jon A. Wellner2

Delft University of Technology and Vrije Universiteit, Vrije Universiteit,

and University of Washington

A process associated with integrated Brownian motion is introduced

that characterizes the limit behavior of nonparametric least squares and

maximum likelihood estimators of convex functions and convex densities,

respectively. We call this process “the invelope” and show that it is an

almost surely uniquely defined function of integrated Brownian motion.

Its role is comparable to the role of the greatest convex minorant of Brow-

nian motion + a parabolic drift in the problem of estimating monotone

functions. An iterative cubic spline algorithm is introduced that solves the

constrained least squares problem in the limit situation and some results,

obtained by applying this algorithm, are shown to illustrate the theory.

1. Introduction. Consider the following nonparametric estimation problem:

X1, . . . , Xn is a sample of observations, generated by a density f with the prop-

erty that f (k) is monotone on the support of the distribution of the Xi, where k
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is fixed and ≥ 0. (Here and in the following, for a real valued function g defined

on some subset of the real line, g(k) denotes the kth derivative of g. We also use

the usual prime notation g′ = g(1) for the first derivative, g′′ = g(2) for the second

derivative, and g(0) is simply the function g itself.) A well-known example of this

situation is when k = 0: then f is a decreasing density on [0,∞). In that case there

is a well-known nonparametric maximum likelihood estimator: the Grenander es-

timator, that is defined as the left-continuous slope of the least concave majorant

of the empirical distribution function of the Xi’s. The asymptotic behavior of the

Grenander estimator, the (nonparametric) maximum likelihood estimator of f , is

well studied, and it is known (for example) that, if f̂n denotes the Grenander esti-

mator, and if f has a strictly negative derivative f ′(t0) at t0 ∈ (0,∞), that

n1/3
{

f̂n(t0)− f(t0)
}

{

1
2f(t0)|f ′(t0)|

}1/3

D
−→ 2Z,(1.1)

where
D
−→ denotes convergence in distribution, and 2Z is the slope of the (greatest)

convex minorant of {W (t) + t2 : t ∈ IR} at zero, where W is two-sided Brownian

motion, originating from zero; see, e.g., Prakasa Rao (1969). An alternative in-

terpretation of the limit distribution is that Z is the location of the minimum of

{W (t) + t2 : t ∈ IR}, where W is again two-sided Brownian motion, originating

from zero; see Groeneboom (1985), and, for computation of the distribution of Z,

see Groeneboom (1988) and Groeneboom and Wellner (2000).

But now consider, for example, the estimation problem in the situation where we

assume that f ′ is increasing (k = 1), and f is decreasing on [0,∞), so f is a convex

decreasing density on [0,∞). In this case, a result of type (1.1) is not known, and

there are only partial results, telling us, for example, that for fixed t0 ∈ (0,∞),

n2/5
{

f̂n(t0)− f(t0)
}

= Op(1),(1.2)
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see, e.g., Jongbloed (1995).

Similarly, let Yi, i = 1, . . . , n be observations in a regression setting:

Yi = θ (tn,i) + ei, i = 1, . . . , n, tn,i = i/n,

where the ei are i.i.d. random variables with expectation zero and finite variance

σ2 > 0. In this situation one can consider the problem of estimating the regression

function θ under the restriction that θ(k) is monotone for some k ≥ 0. For this

situation Theorem 5.2 in Brunk (1970) tells us that, if θ is monotone (k = 0), the

isotonic least squares estimator θ̂n of the function θ has the property

n1/3
{

θ̂n(t0)− θ(t0)
}

{

1
2θ′(t0)σ

}1/3

D
−→ Z,(1.3)

at a fixed point t0 ∈ (0, 1), where Z is the slope of the (greatest) convex minorant of

{W (t)+ t2 : t ∈ IR} at zero and where it is assumed that θ has a continuous deriva-

tive θ′(u) 6= 0 in a neighborhood of t0. Here W is, as before, two-sided Brownian

motion, originating from zero.

We now can again consider the estimation problem in the situation where we

assume that θ′ is increasing (k = 1), so θ is a convex regression function on [0, 1].

In this case, a result of type (1.3) is not known, and there are again only partial

results, telling us for example that

n2/5
{

θ̂n(t0)− θ(t0)
}

= Op(1),(1.4)

where θ̂n is the least-squares estimator of θ; see, e.g., Mammen (1991).

In Wang (1994) it is stated that in this situation we have, at a point t0 ∈ (0, 1),

under the additional conditions that E exp(ue2
i ) < ∞, for some u > 0 and that

θ′′(t0) exists and is strictly positive,

n2/5

{

6

θ′′(t0)σ4

}1/5
(

θ̂n(t0)− θ(t0)
) D
−→ F,(1.5)
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where F is the limiting distribution of fc(0), as c → ∞, and where fc is the mini-

mizer of

∫ c

−c

f(t)2 dt− 2

∫ c

−c

f(t) d
(

W (t) + t3
)

(1.6)

over the class of convex functions on (−c, c), under a boundary restriction on the

values of f(−c) and f(c). Actually, in Wang (1994) concave instead of convex

functions are considered, but this is essentially the same problem, and we only

changed some signs to change the statement into a statement on the estimation of

convex functions.

The following heuristic argument makes this statement “easy to believe”. Assume

for simplicity (and in fact, without loss of generality) that θ(t0) = 0 and θ′(t0) = 0.

Let θ̂n be the least squares estimator of the convex function θ. It then follows from

Mammen (1991) that θ̂n is a piecewise linear function with changes of slope at a

distance of order n−1/5 in a neighborhood of t0 and that, on an interval Jn =

[t0 − cn−1/5, t0 + cn−1/5], with c > 0, we have the relation

∑

tn,i∈Jn

θ̂n(tn,i)
2 = n

∑

tn,i∈Jn

θ̂n(tn,i)
2 {tn,i − tn,i−1}

∼ n

∫ t0+cn−1/5

t0−cn−1/5

θ̂n(t)2 dt =

∫ c

−c

n4/5θ̂n(t0 + n−1/5t)2 dt =

∫ c

−c

f̂n(t)2dt,

where f̂n is the obvious rescaling of the convex function θ̂n:

f̂n(t) = n2/5θ̂n

(

t0 + n−1/5t
)

= n2/5
{

θ̂n

(

t0 + n−1/5t
)

− θ(t0)
}

, t ∈ [−c, c].

Using the same rescaling, we can write

∑

tn,i∈Jn

θ̂n(tn,i)Yi ∼
∑

tn,i∈Jn

θ̂n(tn,i)

{

Yi − θ(tn,i) +
1

2
θ′′(t0)(tn,i − t0)

2

}

=
∑

tn,i∈Jn

θ̂n(tn,i)

{

ei +
1

2
θ′′(t0)(tn,i − t0)

2

}

∼

∫ c

−c

f̂n(t) d

{

σW (t) +
1

6
θ′′(t0)t

3

}

,
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where
∑

tn,i∈Jn
θ̂n(tn,i)ei =

∑

tn,i∈Jn
f̂n

(

n1/5(tn,i − t0)
)

n−2/5ei and W is standard

two-sided Brownian motion, originating from zero. Hence,

∑

tn,i∈Jn

{(θ̂n(tn,i)− Yi)
2 − Y 2

i } ∼

∫ c

−c

f̂n(t)2 dt− 2

∫ c

−c

f̂n(t) d

{

σW (t) +
1

6
θ′′(t0)t

3

}

,

where θ̂n minimizes

∑

tn,i∈J′n

{θn(tn,i)− Yi}
2 and therefore also

∑

tn,i∈J′n

{

(θn(tn,i)− Yi)
2 − Y 2

i

}

for convex functions θn on intervals J ′n ⊃ Jn, having as endpoints locations of

changes of slope of θ̂n. This makes it plausible that the linearly to IR extended

function f̂n converges in distribution, in the topology of uniform convergence on

compacta, to the limit of the functions fc as c →∞, minimizing

∫ c

−c

f(t)2 dt− 2

∫ c

−c

f(t) d

{

σW (t) +
1

6
θ′′(t0)t

3

}

,

over convex functions f on [−c, c], under certain boundary conditions at −c and c

(the influence of which will die out in bounded intervals, as c →∞), provided such a

limit exists. By Brownian scaling arguments (see section 5) this would be equivalent

to saying that the rescaled functions τ 7→ af̂n(ta2σ2) with a = (6/θ′′(t0)σ
4)1/5

converge in distribution to the limit of the functions f̃c, as c → ∞, minimizing

(1.6). This would in particular mean that (1.5) holds, provided limc→∞ f̃c(0) exists.

However, the proof of this “easy to believe” statement in Wang (1994) contained

several flaws. For example, in proving that the value of f̂n(0) stabilizes, as n →∞,

it was assumed that the changes of slope of f̂n in a finite interval [−c, c] are all bigger

than θ′′(t0)/2, for large n, by mistakenly assuming that the constrained regression

problem can be solved by considering, at a finite number of points, separately regres-

sion on the deterministic function θ and regression on the noise variables ei. Then,

since the (constrained) regression on the (“true”) deterministic function would lead

to a piecewise linear function, having changes of slope bigger than θ′′(t0) + op(1),
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and the (constrained) regression on the errors ei would lead to an almost constant

function, one would get that the changes of slope of f̂n in a finite interval [−c, c]

are all bigger than θ′′(t0)/2 for large n. But one clearly cannot split the constrained

regression problem in this way.

There is no a priori reason to assume that the changes of slope of f̂n in a finite

interval [−c, c] are all bigger than θ′′(t0)/2 for large n, and we think that this

assumption is false, both for the finite sample solution f̂n and for the functions

fc, used in the limit situation. Moreover, in comparing two solutions fc and f̃c

with different boundary conditions at −c and c, with the aim of showing that the

influence of the boundary conditions “dies out” as c → ∞, only functions with

the same locations of changes of slope were compared in Wang (1994) (in the

finite sample situation), whereas different boundary conditions will generally lead

to different locations of changes of slope of the functions fc and f̃c (see section 3). In

this sense the situation is strikingly different from the situation for the estimation

of monotone functions, where the set of locations of jumps of a constrained solution

on an interval [−c, c] will be a subset of the set of locations of change of slope of

the greatest convex minorant of {W (t) + t2 : t ∈ IR}!

In fact, up till now, it has not even been proved that a function fc, minimizing

(1.6), under, say, the boundary conditions f(c) = f(−c) = 3c2, has isolated points of

change of slope. If all changes of slope were bigger than a fixed constant, as assumed

in Wang (1994), this would be automatically fulfilled. But since we cannot make

that assumption, we can also not assume that the points of change of slope are

isolated.

We have described the difficulties of the approach in Wang (1994) in some detail

in an attempt to explain why the problem of characterizing the limit distribution
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has been open for so many years and also to give an idea of the difficulties involved

here. But we are of course indebted to Wang (1994) for putting us on the track of

proving that the limit distribution is given by the limit of the function fc, defined

in (1.6), which we want to gratefully acknowledge here.

The problems with the arguments in Wang (1994) led us to to try a whole new

“geometrical” approach to this problem. In the estimation problem for monotone

functions, the limit behavior is described by a “canonical” function of the process

{W (t) + t2 : t ∈ IR}: its greatest convex minorant. Let X be the process {X(t) :

t ∈ IR} = {W (t) + t2 : t ∈ IR} and let C be its greatest convex minorant. Then it

is not hard to show that the slope of the greatest convex minorant C of X at a 0 is

the limit of fc(0), where c →∞, and fc minimizes

∫ c

−c

f(t)2 dt− 2

∫ c

−c

f(t) d
(

W (t) + t2
)

(1.7)

over all nondecreasing functions f : [−c, c] → IR, under the boundary constraints

f(−c) = −2c, f(c) = 2c. In this case the proofs are relatively easy, since we know,

for example from the jump process characterization in Groeneboom (1988), that

the points of jump of the slope of the greatest convex minorant are indeed isolated

(although the size of a jump can be arbitrarily small!) and since the constrained

minimization problem also has a solution in terms of a greatest convex minorant

function. But all these arguments really rely on the explicit characterization in

terms of the greatest convex minorant and we do not have something similar for

the estimation problem in the case of convex functions. So this motivates the search

for a “canonical” process that, for the estimation of convex functions, plays a role

similar to the role of the greatest convex minorant in the estimation of monotone

functions.
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We found such a canonical process for the estimation problem of convex functions

and we coined the term “invelope” for it (motivated by the terminology “convex

envelope” in the estimation problem of monotone functions). It is a twice contin-

uously differentiable function H with a convex second derivative and the property

that H ≥ Y (so the graph of H lies inside the graph of Y ), where Y is the process

{Y (t) : Y (t) = V (t) + t4, t ∈ IR},

and where V is integrated Brownian motion, originating from zero.

The full characterization of the “invelope” is given in Theorem 1 in section 2.

This is an almost surely uniquely defined function of integrated Brownian motion

and its properties can be used to show that indeed fc(0), where fc is the minimizer

of (1.6) under the boundary conditions f(−c) = k1(c) and f(c) = k2(c), where

k1(−c) − 3c2 and k2(c) − 3c2 are uniformly bounded as functions of c, converges

almost surely to a finite limit, as c → ∞. For convenience we changed W (t) + t3

to W (t) + 4t3, since the really important object is V (t) + t4, where V is integrated

Brownian motion, and therefore our boundary condition is that k1(−c)− 12c2 and

k2(c)− 12c2 are uniformly bounded, but this makes no difference for the argument.

In fact fc(0) converges almost surely to the second derivative of the “invelope” H

at zero, as c →∞, see Corollary 4 in section 2. Corollary 4 also shows that indeed

the influence of the boundary conditions dies out on fixed intervals, as c →∞, see

the remark following this corollary.

However, proving that an object like our “invelope” indeed exists and is an

(almost surely) uniquely defined function of integrated Brownian motion was the

real bottleneck in getting any asymptotic distribution theory for the estimators in

the convex estimation problem going. We believe that we have taken that hurdle in

the present manuscript. The asymptotic distribution theory for the convex density
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and regression problems is treated in the companion paper to the present paper,

Groeneboom, Jongbloed and Wellner (2001a).

We also hope that our treatment of the convex case opens the way for the treat-

ment of the general estimation problem of a function f , under the restriction that

f (k) is monotone, for some k ≥ 0 (where one will have to study k times integrated

Brownian motion).

2. The Gaussian problem: characterization of the solution Let X(t) =

W (t)+4t3 where W (t) is standard two-sided Brownian motion starting from 0, and

define

Y (t) =











∫ t

0
W (s)ds + t4, t ≥ 0

∫ 0

t W (s)ds + t4, t ≤ 0 .

(2.1)

Our main goal in this section is to prove the following theorem.

Theorem 1. There exists an almost surely uniquely defined random continuous

function H satisfying the following conditions:

(i) The function H is everywhere above Y :

H(t) ≥ Y (t), for each t ∈ IR .(2.2)

(ii) H has a convex second derivative.

(iii) H satisfies

∫

IR

{H(t)− Y (t)} dH(3)(t) = 0.(2.3)

Note that condition (iii), in the presence of (i), means that the (increasing)

function H(3) cannot change (i.e. increase) in a region where (i) is satisfied with

strict inequality. The analogue in the monotone situation is that the slope of the
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convex minorant of the drifting Brownian motion cannot change at points where

this minorant is strictly smaller than the drifting Brownian motion.

In particular, the probability that the convex function H (2) will have a change

of slope at zero is equal to zero, meaning that the third derivative H (3) is almost

surely well-defined at zero, see Corollary 1.

To prove Theorem 1, we first consider convex functions fc, defined on intervals

[−c, c], that are approximations to the second derivative of our “invelope” on these

intervals. Let the functional φc(g) be defined by

φc(g) = 1
2

∫ c

−c

g2(t) dt−

∫ c

−c

g(t) dX(t),(2.4)

for convex functions g : [−c, c] 7→ IR. Consider the problem of minimizing φc(g)

under the side constraints

g(−c) = k1, g(c) = k2,(2.5)

and let the (allowed) set of convex functions g be defined by

G(c, k1, k2) ≡ {g : [−c, c] → IR, g is convex, g(−c) = k1, g(c) = k2}.(2.6)

Then we have the following lemma.

Lemma 1. For each fixed c > 0 and k1, k2 ∈ IR, the problem of minimizing

φc(g) over G(c, k1, k2) has a unique solution f ≡ fc,k1,k2
.

Proof: It is easily seen that a minimizer of (2.4) subject to (2.5) must be in a

compact subset

G(c, M, k1, k2) ≡ {g ∈ G(c, k1, k2) : g(t) ≥ −M for all t ∈ [−c, c]}

for some 0 < M < ∞. To see this, note that if there is some t0 ∈ (−c, c) such that

g(t0) < −M , |g(t)| > M/2 on an interval of strictly positive length (nonvanishing
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as M →∞). This means that the first term in φc(g) is of order M2 and the second

of order M as M → ∞. Comparing this to the value of φc attained at the linear

function g0 which joins (−c, k1) to (c, k2), the claim follows.

Then existence follows from compactness of G(c, M, k1, k2) in e.g. the uni-

form topology together with continuity of φc on this set. Uniqueness follows

from the strict convexity of φc and convexity of G(c, k1, k2): for λ ∈ (0, 1) and

f, g ∈ G(c, k1, k2) we have

φc(λf + (1− λ)g)− λφc(f)− (1− λ)φc(g) = −
λ(1− λ)

2

∫ c

−c

{f(t)− g(t)}2 dt < 0

if
∫ c

−c
{f(t)− g(t)}2 dt > 0, and thus φc is strictly convex. 2

For a fixed point t, the probability that Y will have a one-sided parabolic tan-

gent at t, in the sense that there exists a second degree polynomial P such that

P (t) = Y (t), P ′(t) = Y ′(t) = X(t) and P (u) ≥ Y (u) (or P (u) ≤ Y (u)) for u

in a neighborhood of t, is zero since Brownian motion is of infinite variation. For

this reason we will assume in the following that −c and c are points where such a

one-sided derivative of Y does not exist.

The following characterization of the solution fc,k1,k2
of the minimization prob-

lem, considered in Lemma 1, will play a crucial role in our further development.

Lemma 2. (Characterization of the solution on a finite interval) Suppose that

f is a convex function on [−c, c] with second integral H, satisfying H(−c) = Y (−c)

and H(c) = Y (c), i.e. H ′′ = f and H is determined by its two values at −c and c.

Furthermore, suppose that Y does not have parabolic tangents at −c and c. Then f

minimizes φc(g) over G(c, k1, k2) if and only if the following conditions are satisfied:

H(t) ≥ Y (t), t ∈ [−c, c],(2.7)
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∫

(−c,c)

{H(t)− Y (t)} df ′(t) = 0,(2.8)

and

f(−c) = k1, f(c) = k2.(2.9)

Proof: Fix ω such that the parabolic tangents as described above, do not exist at

±c. Suppose that H, F and f satisfy the conditions of the lemma where F is the

derivative of H and f is the derivative of F . Let f ′ be (a version of) the derivative

of f . Furthermore, let λ1 and λ2 be defined by

λ1 = F (−c)−X(−c), λ2 = X(c)− F (c),(2.10)

and let the extended criterion function φc,λ be defined by

φc,λ(g) = φc(g) + λ1{g(−c)− k1}+ λ2{g(c)− k2},

where λ = (λ1, λ2)
′. Then, since

g2 − f2 = (g − f)2 + 2f(g − f) ≥ 2f(g − f),(2.11)

we get for any convex function g : [−c, c] 7→ IR,

φc,λ(g)− φc,λ(f) ≥

∫ c

−c

f(t){g(t)− f(t)} dt−

∫ c

−c

{g(t)− f(t)} dX(t)

+λ1{g(−c)− f(−c)}+ λ2{g(c)− f(c)}.

Suppose (as we may) that the derivative g′ of g has finite limits at −c and c. Then

integration by parts yields, using (2.10) and (2.8),

∫ c

−c

f(t){g(t)− f(t)} dt−

∫ c

−c

{g(t)− f(t)} dX(t)

+λ1{g(−c)− f(−c)}+ λ2{g(c)− f(c)}

=

∫ c

−c

{X(t)− F (t)} {g′(t)− f ′(t)} dt =

∫ c

−c

{X(t)− F (t)} g′(t) dt

=

∫

(−c,c)

{H(t)− Y (t)} dg′(t).(2.12)
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In the last equality we use that the derivative f ′ of f has finite limits at −c and c.

This follows from the fact that we assume that −c and c are points where Y does not

have a one-sided parabolic tangent, implying that F (−c) = X(−c) or F (c) = X(c)

cannot occur. Since H ≥ Y , this implies F (−c) > X(−c) and F (c) < X(c). For

F (c) > X(c) would imply that H(x) < Y (x) in a left neighborhood of c, since

H(c) = Y (c), and this contradicts H ≥ Y . Similarly, F (−c) < X(−c) cannot

occur.

This, in turn, implies that f ′ has a finite limit at −c and c. For since F (c) < X(c),

there exists a left neighborhood (c−δ, c) of c such that F (t) < X(t), if t ∈ (c−δ, c).

In a similar way there exists a right neighborhood (−c,−c + δ′) of −c such that

F (t) > X(t) for t ∈ (−c,−c + δ′). Using that H(t) > Y (t) for all t in a left

(reduced) neighborhood of c, so that f behaves linearly on this set, we get the

following implication. If f ′(t) →∞, as t ↑ c, then

∫ u

c−δ

f ′(t){X(t)− F (t)} dt →∞, as u ↑ c.(2.13)

Similarly we would get

∫ −c+δ

u

f ′(t){X(t)− F (t)} dt →∞, as u ↓ −c,(2.14)

if f ′(t) → −∞, as t ↓ −c. But since

∫ c

−c

f ′(t) {X(t)− F (t)} dt

= k2{X(c)− F (c)} − k1{X(−c)− F (−c)}+

∫ c

−c

f(t)2 dt−

∫ c

−c

f(t) dX(t)

is finite, neither of these possibilities can occur. Note that (2.14) tends to ∞, if

f ′(t) → −∞, as t ↓ −c, so we are not in a situation where positive infinite growth

at c could be compensated by a piece of the integral tending to −∞ as u ↓ −c.
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Now, if g is a function of the following type:

g(t) = a + bt +
k

∑

i=1

ai(t− ti)+,(2.15)

where −c < t1 < . . . < tk < c, a, b ∈ IR and ai > 0, for each i = 1, . . . , k, we get

∫

(−c,c)

{H(t)− Y (t)} dg′(t) =

k
∑

i=1

ai {H(ti)− Y (ti)} ≥ 0,

using H ≥ Y . Hence it follows that

φc,λ(g) ≥ φc,λ(f)(2.16)

for all g of the form (2.15). Now for an arbitrary convex function g on [−c, c]

there exists a sequence of functions {gk} of the form (2.15) with ‖gk − g‖∞ =

sup|t|≤c |gk(t)− g(t)| → 0 as k →∞ (where ‖ · ‖∞ is the uniform norm). It follows

from the continuity of the criterion function φc,λ with respect to ‖ · ‖∞ that (2.16)

holds for an arbitrary convex function g satisfying the side conditions g(−c) = k1

and g(c) = k2.

Conversely, suppose that f minimizes φc(g) over G(c, k1, k2). Let H be its second

integral on [−c, c], satisfying H(−c) = Y (−c) and H(c) = Y (c), and let let F = H ′.

If

gt,ε(u) = f(u) + ε(u− t)+ − ε(c− t)(u + c)/(2c)

for ε > 0 and t ∈ (−c, c), then gt,ε(−c) = k1, gt,ε(c) = k2, and

H(t)− Y (t) = lim
ε↓0

φc (gt,ε)− φc(f)

ε
≥ 0,

since f minimizes φc(g) over G(c, k1, k2). This yields (2.7). Again by the assumption

that Y does not have one-sided parabolic tangents at −c and c, we get from this

that F (−c) > X(−c) and F (c) < X(c). This implies as before that f ′ has finite

limits at −c and c.
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Next, taking

gε(t) = f(t) + εf(t)− εk1 − ε
(k2 − k1)(t + c)

2c
, t ∈ [−c, c],

we again get gε(−c) = k1, gε(c) = k2, and by integration by parts and the finiteness

of the limits of f ′ at −c and c we obtain:

∫

(−c,c)

{H(t)− Y (t)} df ′(t) = lim
ε↓0

φc (gε)− φc(f)

ε
≥ 0.

and

−

∫

(−c,c)

{H(t)− Y (t)} df ′(t) = lim
ε↑0

φc (f + gε)− φc(f)

(−ε)
≥ 0.

Hence

∫

(−c,c)

{H(t)− Y (t)} df ′(t) = 0,

yielding (2.8). Since (2.9) is also satisfied, we now also have proved the necessity of

the conditions (2.7) to (2.9). 2

An interesting property of the third derivative of the function H , satisfying the

conditions of Lemma 2, is given in the following corollary.

Corollary 1.

(i) Suppose that the function H on [−c, c] satisfies the conditions of Lemma 2.

Then the third (left- or right-continuous) derivative H (3) of H is a bounded

monotone increasing function that only grows on the “set of touch” S, defined

by

S = {t ∈ (−c, c) : H(t) = Y (t), H ′(t) = X(t)}.(2.17)

The set S is closed and has Lebesgue measure zero.

(ii) With probability one, H is three times differentiable at zero.
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Proof: ad (i) Since H ≥ Y and
∫

(−c,c){H(t)− Y (t)} dH(3)(t) = 0, we must have:

∫

{t∈(−c,c):H(t)6=Y (t)}

dH(3)(t) = 0.

Since a differentiable function has derivative zero at a relative minimum (see e.g.

Dieudonné (1969), page 153, problem 3, part (a)), it follows that

{t ∈ (−c, c) : H(t) = Y (t)} = {t ∈ (−c, c) : H(t) = Y (t), H ′(t) = X(t)}.

Since H has a bounded second derivative, there exists a constant a > 0 such that the

function H̃(t) = H(t)− at2 is concave on [−c, c]. Since the least concave majorant

M of the function Ỹ (t) = Y (t) − at2 on [−c, c] is the pointwise minimum of all

concave functions lying above Ỹ , we must have:

H̃(t) ≥ M(t), t ∈ [−c, c],

and so H̃ ≥ M ≥ Ỹ . According to definition 1 and theorem 1 in Sinai (1992), the

derivative of M decreases on a set with Lebesgue measure zero (a Cantor-type set).

A point of touch of H̃ with Ỹ is necessarily a point of touch of M with Ỹ . The set

of locations of points of touch between H and Y is therefore a set with Lebesgue

measure zero. The boundedness of H (3) follows again from the assumption that Y

does not have one-sided parabolic tangents at −c and c, implying F (−c) > X(−c)

and F (c) < X(c), as in the proof of Lemma 2.

Finally, the set S is closed, since the function H − Y is continuous on [−c, c].

ad (ii) A fixed point will with probability zero belong to the Cantor-type set, de-

scribed in (i), so in particular 0 will belong with probability zero to this set. This

means that 0 is with probability zero the location of a point of touch of H and Y ,

and this in turn means that H ′′ has with probability zero a change of slope at 0.

Since H ′′ is convex, it has left and right derivatives at zero, and since H ′′ has with
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probability zero a change of slope at 0, the right derivative cannot be bigger than

the left derivative. 2

The following lemma gives the structure of the function H of Lemma 2 on an

“excursion interval” [τ1, τ2] between two locations of points of touch τ1 and τ2

between H and Y . By “excursion interval” we mean that

H(τ1) = Y (τ1), H(τ2) = Y (τ2) and H(t) > Y (t), t ∈ (τ1, τ2).

Note that such intervals exist by the construction in the proof of Corollary 1, where

it was shown that the set of locations of points of touch between H and Y can be

embedded (after a transformation) in the set of locations of points of touch of the

concave majorant of drifting integrated Brownian motion.

Lemma 3. Suppose that the function H on [−c, c] satisfies the conditions of

Lemma 2 and that [τ1, τ2] is an excursion interval for H w.r.t. Y , where −c < τ1 <

τ2 < c. Let

τ = {τ1 + τ2}/2, X = {X(τ1) + X(τ2)}/2, Y = {Y (τ1) + Y (τ2)}/2,

and

∆X = X(τ2)−X(τ1), ∆Y = Y (τ2)− Y (τ1) and ∆τ = τ2 − τ1.

Then the restriction of H to [τ1, τ2] is given by

H(t) =
Y (τ2)(t− τ1) + Y (τ1)(τ2 − t)

∆τ

− 1
2

{

∆X

∆τ
+

4(X̄∆τ −∆Y )(t− τ )

(∆τ)3

}

(t− τ1)(τ2 − t), t ∈ [τ1, τ2].(2.18)

The values of H, F at τ̄ are given by

H(τ ) = Y − 1
8∆X∆τ, F (τ ) = H ′(τ ) =

3∆Y −X∆τ

2∆τ
,(2.19)
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and the values of f and f ′ at τ̄ by

f(τ ) = H ′′(τ ) =
∆X

∆τ
, f ′(τ ) = H(3)(τ ) =

12(X∆τ −∆Y )

(∆τ)3
.(2.20)

Proof: Since the measure df ′ is zero on (τ1, τ2), the function f is linear on the

interval [τ1, τ2]. This means that H behaves as a cubic polynomial on [τ1, τ2] that

is completely determined by the values of H and H ′ at the boundary points. By

Corollary 1 we have:

H(τ1) = Y (τ1), H(τ2) = Y (τ2), H ′(τ1) = X(τ1), and H ′(τ2) = X(τ2).(2.21)

But it is easily checked that the cubic polynomial, defined by (2.18), satisfies the

boundary conditions (2.21). The relations (2.19) and (2.20) follow from this repre-

sentation. 2

In the following we are going to use properties of ordinary Brownian motion and

integrated Brownian motion. Ordinary two-sided Brownian motion (without drift),

originating from zero, will be denoted by W and its integral by V , where V is

“pinned down” at zero: V (0) = 0. We then will use certain stationarity properties

of the point process of points of touch between Y and the function H of Lemma 2,

as c →∞. As a preparation to this, we reformulate the result of Lemma 3 in terms

of the non-drifting processes V and W .

Corollary 2. Suppose that the function H on [−c, c] satisfies the conditions

of Lemma 2 and that [τ1, τ2] is an excursion interval for H w.r.t. Y , where −c <

τ1 < τ2 < c. Let

τ = {τ1 + τ2}/2, W = {W (τ1) + W (τ2)}/2, V = {V (τ1) + V (τ2)}/2,

and

∆W = W (τ2)−W (τ1), ∆V = V (τ2)− V (τ1) and ∆τ = τ2 − τ1.
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Finally, let the function G be defined by

G(t) = H(t)− t4, t ∈ [−c, c],(2.22)

and let f0 be defined by

f0(t) = 12t2, t ∈ IR.(2.23)

Then the value of f − f0 at τ̄ is given by

f(τ)− f0(τ ) = G′′(τ ) =
∆W

∆τ
+ (∆τ)2,(2.24)

and f ′ − f ′0 at τ̄ by

f ′(τ )− f ′0(τ ) = G(3)(τ ) =
12(W∆τ −∆V )

(∆τ)3
.(2.25)

The function f − f0 has the following representation on [τ1, τ2]:

f(t)− f0(t) = (∆τ)2 +
∆W

∆τ
+

12(t− τ )
∫ τ2

τ1
(u− τ ) dW (u)

(∆τ)3
− 12(t− τ)2.(2.26)

Proof: This follows easily from Lemma 3. 2

We will need the following two lemmas for the existence of a process, satisfying the

conditions (i) to (iii) at the beginning of this section.

Lemma 4. Let, for each c > 0, Hc be the function, satisfying the conditions of

Lemma 2, with k1 = k2 = 12c2 and let t be a fixed point in (−c, c). Furthermore, let

τ1 ≤ t be the location of the last point of touch between Hc and Y on [−c, t] (note

that, with probability one, τ1 6= t) and let τ2 > t be the location of the first point of

touch between Hc and Y on (t, c]. Then, for every ε > 0, there is an M = Mε so

that

lim sup
c→∞

P {τ1 < t−M, τ2 > t + M} ≤ ε.
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Proof: We first consider the special case t = 0. The cubic polynomial Pc such that

Pc(−c) = Y (−c), Pc(c) = Y (c), and P ′′
c (−c) = P ′′

c (c) = 12c2, is given by

Pc(t) =
1

2
(Y (−c) + Y (c)) − 6c4 +

1

2
(Y (c)− Y (−c))

t

c
+ 6c2t2

Hence,

P{Pc(0) ≥ 0} = P{Y (−c)+Y (c) ≥ 12c4} = P{V (−c)+V (c) ≥ 10c4} → 0 as c →∞

since V (±c) = OP (c3/2).

This means that the probability that the function Hc will at least have one point

of touch with Y , apart from −c and c, tends to 1, as c → ∞, since we must have

Hc(0) ≥ Y (0) = 0 (note, as in the proof of Lemma 3, that Corollary 1 implies that

fc = H ′′
c is linear on regions where Hc and Y do not touch, so Hc behaves as a

cubic polynomial on such regions).

For similar reasons the probability that there will be both a point of touch in

the interval (−c, 0) and a point of touch in the interval (0, c) will tend to one, as

c →∞. So we may assume that τ1 ∈ (−c, 0) and τ2 ∈ (0, c). This implies by (2.19)

and the property H ≥ Y ,

Y (τ ) ≤ Hc(τ ) = Y − 1
8∆X∆τ,

which can be rewritten as

V (τ ) + τ4 ≤ 1
2 {V (τ1) + V (τ2)}+ 1

2

{

τ4
1 + τ4

2

}

− 1
8

{

W (τ2)−W (τ1) + 4τ3
2 − 4τ3

1

}

∆τ

= 1
2 {V (τ1) + V (τ2)} −

1
8 {W (τ2)−W (τ1)}∆τ + 1

2τ1τ2

{

τ2
1 + τ2

2

}

.

Hence

P{τ1 < −M, τ2 > M}

= P{Y (τ ) ≤ Hc(τ ), τ1 < −M, τ2 > M}
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= P
{

V (τ )− V + 1
8∆W∆τ ≤ 1

2τ1τ2(τ
2
1 + τ2

2 )− τ 4, τ1 < −M, τ2 > M
}

≤ P
{

V (s)− 1
2 (V (s1) + V (s2)) + 1

8 (W (s2)−W (s1))∆s ≤ 1
2s1s2(s

2
1 + s2

2)− s4

for some s1 < −M, s2 > M
}

= P

{

V (s)− 1
2 (V (s1) + V (s2)) + 1

8 (W (s2)−W (s1))∆s ≤ −
1

16
(s2 − s1)

4

for some s1 < −M, s2 > M
}

,(2.27)

where V = {V (τ1) + V (τ2)}/2, s = {s1 + s2}/2, and ∆s = s2 − s1. Now we rewrite

the process appearing in the last display:

V (s)− 1
2 (V (s1) + V (s2)) + 1

8 (W (s2)−W (s1))∆s

= − 1
2

{

V (s2)− V (s)− (s2 − s)W (s)− 1
2 (W (s2)−W (s))(s2 − s)

}

− 1
2

{

V (s1)− V (s)− (s1 − s)W (s)− 1
2 (W (s1)−W (s))(s1 − s)

}

≡ − 1
2 {θ2(s, s2) + θ1(s, s1)}

with θ1, θ2 defined by the last equality. Note that the process {Z(t),Ft}t≥0 ≡

{V (t)− tW (t),Ft}t≥0, with Ft = σ{W (s) : 0 ≤ s ≤ t}, is a zero-mean martingale.

Moreover, Z(t) = −
∫ t

0 sdW (s) and hence E{Z(t)2} = t3/3. Similarly, {V (−t) +

tW (−t),Gt}t≥0, with Gt = σ{W (−s) : 0 ≤ s ≤ t}, is a martingale. Hence, using

a symmetry argument for θ1(s, s1) and θ2(s, s2), it is seen that the probability in

(2.27) is bounded by

4P
{

V (t)− 1
2 tW (t) ≥ t4 for some t > M

}

≤ 4P
{

|V (t)− tW (t)| ≥ 1
2 t4 for some t > M

}

+ 4P
{

| 12 tW (t)| ≥ 1
2 t4 for some t > M

}

≤ 4

∞
∑

j=[M ]

(j + 1)3

(j4/2)2
+ 4

∞
∑

j=[M ]

(j + 1)

(j3)2

≤ C
∞
∑

j=[M ]

j−5 → 0 as M →∞,
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for some absolute constant C.

The statement for general t is proved along similar lines, conditioning on the

value of the processes X and Y at the point t. 2

Lemma 5. For each c > 0, let Hc be the function satisfying the conditions of

Lemma 2, with k1 = k2 = 12c2. Let fc be the second derivative of Hc on [−c, c].

Then, for t ∈ IR fixed, the collections {fc(t) − f0(t)}c>|t|, {f
−
c (t) − f ′0(t)}c>|t|, and

{f+
c (t) − f ′0(t)}c>|t| are tight; here f+

c and f−c denote the right and left derivatives

of the convex function fc.

Proof: We prove the statement for the case t = 0, since the general statement

for arbitrary t is proved in an entirely similar way, but involves more cumbersome

notation. Let ε > 0 and let Fc = H ′
c. By Lemma 4, there exists for c large at least

one point of touch, τ2 say, in the interval [−M, M ], with probability at least 1− ε,

if M < c is sufficiently large. Without loss of generality, suppose that 0 ≤ τ2 ≤ M .

By repeating the argument in Lemma 4 we can find another point of touch, τ1 say,

between −3M and −M , perhaps at the cost of increasing M . Then by the mean

value theorem it follows that for some ξ1 ∈ [τ1, τ2] ⊂ [−3M, M ]

fc(ξ1) =
Fc(τ2)− Fc(τ1)

τ2 − τ1
=

X(τ2)−X(τ1)

τ2 − τ1

which is tight by virtue of Lemma 4, the construction of τ1, τ2, and by the definition

of X(t) = W (t) + 4t3.

Suppose that ξ1 < 0. By repeating the above argument we can find another point

of touch τ3 ∈ (2M, 4M ] and another point ξ2 ∈ [τ2, τ3] ⊂ [0, 4M ] with

fc(ξ2) =
Fc(τ3)− Fc(τ2)

τ3 − τ2
=

X(τ3)−X(τ2)

τ3 − τ2
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which is again tight. Since fc is convex it follows that

fc(0) = fc(λξ1 + (1− λ)ξ2) ≤ λfc(ξ1) + (1− λ)fc(ξ2)

with λ = ξ2/(ξ2 − ξ1) ∈ [0, 1]. Since the right side is tight, this completes the proof

of tightness of {fc(0)} assuming that ξ1 < 0, since we can the use the argument of

the first paragraph of the proof of Lemma 1 again for the lower bound of fc(0).

If ξ1 ≥ 0, we repeat the above argument to the left of zero again to find another

ξ2 < 0 with fc(ξ2) tight again, and again conclude that {fc(0)} is tight.

Now suppose that we have produced points ξ1 and ξ2 with −c < ξ1 < −M <

0 < M < ξ2 < c and {fc(ξi)} tight, i = 1, 2. Then, since all lines of slope s ∈

[f−c (0), f+
c (0)] lie below fc, it follows that

fc(ξ2) ≥ sξ2 + fc(0) ≥ sM + fc(0)

for any s ∈ [0, f+
c (0) ∨ 0]. Thus it follows that

f+
c (0) ≤ 0 ∨

fc(ξ2)− fc(0)

M
(2.28)

where the right side is tight. Similarly, using the point ξ1 < −M , we find that

f−c (0) ≥ 0 ∧ −
fc(ξ1)− fc(0)

M
(2.29)

where the right side is tight. Combining (2.28) and (2.29) yields the conclusion for

{f−c (0)} and {f+
c (0)}. 2

We now define the collection of convex functions fn on [−n, n] as the second

derivatives of the functions Hn, satisfying the conditions of Lemma 2, with k1 =

k2 = 12n2, and extend these functions to IR by linearly extending them from−n and

n, respectively. On a set with probability one the possibility of such an extension

exists, since we may assume that Y has no parabolic tangents at −n and n, and

hence that fn has finite derivatives at −n and n. The functions Hn and Fn = H ′
n
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are also continuously extended to functions on IR, by taking Fn and Hn as the first

and second integral of fn, respectively, uniquely determined by their values at the

points −n and n, where we start the extension.

Moreover, we define, for each M > 0, the seminorms

‖H‖M = sup
t∈[−M,M ]

{|H(t)|+ |H ′(t)|+ |H ′′(t)|}(2.30)

on the set of twice continuously differentiable functions H : IR → IR. We now have

the following result.

Corollary 3. Let X(t) = W (t)+4t3 where W (t) is standard two-sided Brow-

nian motion starting from 0, and let Y be the integral of X, satisfying Y (0) = 0.

Then almost surely there exists a continuous stochastic process H (the “invelope”),

satisfying the conditions (i) to (iii) at the beginning of this section.

Proof. We show that the sequence (Hn), where Hn is defined as in Lemma 5,

with c replaced by n, and continuously extended to functions on IR as second

integrals of the linearly extended functions fn (as indicated above), has a convergent

subsequence in the topology induced by the semi-norms (2.30).

Fix m > 0 in N. Let τ+
n be the location of the first point of touch ≥ m between

Hn and Y and let τ−n be the location of the last point of touch ≤ −m between

Hn and Y . Since the set of the locations of points of touch is closed according to

Corollary 1 and with probability one not empty by Lemma 4, such points exist, for

sufficiently large n > m. Moreover, by Lemma 4, the sequences (τ−n ) and (τ+
n ) are

almost surely bounded, so they have convergent subsequences (τ−nk
) and (τ+

nk
) such

that, almost surely,

lim
k→∞

τ−nk
= τ− and lim

k→∞
τ+
nk

= τ+,
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say, where τ−, τ+ ∈ IR. Since Hn(τ−n ) = Y (τ−n ), and Hn(τ+
n ) = Y (τ+

n ), and Y is

continuous, this means:

Hnk

(

τ−nk

)

→ Y (τ−) and Hnk

(

τ+
nk

)

→ Y (τ+),

as k →∞. Similarly, since also X is continuous,

H ′
nk

(

τ−nk

)

→ X(τ−) and H ′
nk

(

τ+
nk

)

→ X(τ+), .

as k →∞.

Suppose M > 0 satisfies

−M < τ− < τ+ < M.

and let fn = H ′′
n . By Lemma 5, the collections {fn(t) − f0(t)}n>M , {f+

n (t) −

f ′0(t)}n>M and {f−n (t)− f ′0(t)}n>M are tight, for t = 0 and t = ±M , so we may as-

sume that these sequences are bounded. This means, by the monotonicity of f+
n and

f−n , that the functions fn have uniformly bounded derivatives on [−M, M ]. So, by

the Arzelà-Ascoli theorem, the sequence of functions (fnk
), restricted to [−M, M ],

has a subsequence (fn`
), converging in the supremum metric on continuous func-

tions on [−M, M ] to a bounded convex function f : [−M, M ] → IR. Since the

functions (fn`
|[−M, M ]) are uniformly bounded, we can now also apply the Arzelà-

Ascoli theorem to the uniformly bounded sequence (Fn`
|[−m, m]), where Fn = H ′

n,

to conclude that this sequence has a convergent sequence in the supremum metric

of continuous functions on [−m, m]. Finally, repeating the argument for Hn itself,

we find that there is a further subsequence (nj) such that (Hnj |[−m, m]) converges

in the supremum metric of continuous functions on [−m, m].

Thus, starting with the sequence (Hn) we can find a subsequence (Hnj ) so that

(Hnj |[−m, m]) converges in the topology induced by the metric ‖H‖m to a limit
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function H(m) with convex second derivative f (m) on [−m, m]. By a diagonal ar-

gument we now get that the sequence (Hn) has a subsequence (Hnk
) converging in

the topology induced by the semi-norms ‖H‖m, m = 1, 2, . . . to a function H with

convex second derivative f . It is clear that this limit H satisfies the conditions (i)

to (iii) of Theorem 1. 2

We still have to show that if two functions G and H both satisfy conditions (i)

to (iii) of Theorem 1, they must be equal with probability 1. To this end we first

prove that if G and H have two different common points of touch a < b with Y ,

they must be equal on the interval [a, b].

Lemma 6. Suppose that G and H both satisfy conditions (i) to (iii) of Theorem

1. If G and H have two common points of touch with Y at a and b, where a < b,

then G ≡ H on [a, b].

Proof. Let g = G′′ and h = H ′′, and let, for a convex function f on [a, b], φa,b(f)

be defined by

φa,b(f) = 1
2

∫ b

a

f(t)2 dt−

∫ b

a

f(t) dX(t).(2.31)

Then we get:

φa,b(g)− φa,b(h) = 1
2

∫ b

a

{h(t)− g(t)}
2

dt +

∫ b

a

{H(t)− Y (t)} dg′(t).(2.32)

This is seen as follows. Using (2.11) it follows that

φa,b(g)− φa,b(h) = 1
2

∫ b

a

{g(t)− h(t)}
2

dt +

∫ b

a

{g(t)− h(t)}h(t) dt

−

∫ b

a

{g(t)− h(t)} dX(t)

= 1
2

∫ b

a

{g(t)− h(t)}
2

dt−

∫ b

a

{g′(t)− h′(t)} {H ′(t)−X(t)} dt



THE “INVELOPE” OF INTEGRATED BROWNIAN MOTION + t4 27

= 1
2

∫ b

a

{g(t)− h(t)}
2

dt +

∫ b

a

{H(t)− Y (t)} d{g′ − h′}(t)

= 1
2

∫ b

a

{g(t)− h(t)}2 dt +

∫ b

a

{H(t)− Y (t)} dg′(t),

using H(a) = Y (a), H ′(a) = X(a) and similar equalities at the point b (a and b

are points of touch for H and Y and H ′ must also be equal to X at these points,

because H ≥ Y and 2.3). Similarly, we get

φa,b(h)− φa,b(g) = 1
2

∫ b

a

{g(t)− h(t)}
2

dt +

∫ b

a

{G(t)− Y (t)} dh′(t).(2.33)

Since the right-hand sides of (2.32) and (2.33) are nonnegative, we must have

φa,b(g) = φa,b(h) and hence g ≡ h on [a, b]. Moreover, since a and b are points

of touch of G and Y and of H and Y , we have:

G(a) = H(a) = Y (a), G′(a) = H ′(a) = X(a),

and

G(b) = H(b) = Y (b), G′(b) = H ′(b) = X(b).

Hence also G ≡ H on [a, b]. 2

We will also need the following lemma.

Lemma 7. Suppose H is a function, satisfying conditions (i) to (iii) of Theorem

1, with second derivative h. Let t ∈ IR and ε > 0, and let τ− be the location of the

last point of touch ≤ t of H and Y and let τ+ be the location of the first point of

touch > t of H and Y . Furthermore, let f0 : IR 7→ IR be defined by f0(t) = 12t2.

Then we have the following properties:

(i) There exists an M = M(ε) > 0, independent of t, such that

P {(t− τ−) ∨ (τ+ − t) > M} < ε.(2.34)
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(ii) There exists an M = M(ε) > 0, independent of t, such that

P {|h(t)− f0(t)| > M} < ε,(2.35)

P
{
∣

∣h+(t)− f ′0(t)
∣

∣ > M
}

< ε,(2.36)

and

P
{
∣

∣h−(t)− f ′0(t)
∣

∣ > M
}

< ε,(2.37)

where h+ and h− denote the right and left derivatives of h, respectively.

Proof: The proof follows the same pattern as the proof of Lemma’s 4 and 5, and

uses the stationarity of the increments of W and the integrated Brownian motion

process (without drift) V . For example, if [τ−, τ+] is an “excursion interval for H”,

we have the representation

h(t)− f0(t) = (∆τ)2 +
∆W

∆τ
+

12(t− τ)
∫ τ+

τ−
(u− τ) dW (u)

(∆τ)3
− 12(t− τ )2.(2.38)

on [τ−, τ+], just as (2.26) in Corollary 2, where τ̄ = (τ− + τ+)/2, ∆W = W (τ+)−

W (τ−), and ∆τ = τ+ − τ−.

Part (i) follows from the inequality

P {τ− < t−M, τ+ > t + M}

≤ 4P
{

V (u)− V (t)− 1
2 (u− t){W (u)−W (t)} ≥ 1

2 (u− t)4, for some u > t + M
}

≤ C

∞
∑

j=[M ]

j−5,

for some absolute constant C > 0, similarly to (2.27). The stationarity of the

increments of W and V implies that the upper bound is independent of t.

Part (ii) is proved along the lines of the proof of Lemma 5. 2

We are now ready to prove Theorem 1.
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Proof of Theorem 1: Existence of a function H satisfying (i) to (iii) of Theorem

1 follows from Corollary 3. So the only remaining task is to prove uniqueness of this

function H . So suppose that G and H , with second derivatives g and h, satisfy (i)

to (iii) of Theorem 1, and that G 6= H .

Lemma 6 implies that, if G 6= H on an interval [a, b], there cannot be points

a′ < a and b′ > b such that G and H have common points of touch with Y at a′

and b′, since in that case G ≡ H on [a′, b′] and hence also G ≡ H on [a, b], since

[a, b] ⊂ [a′, b′]. This means that, if G 6= H on an interval [a, b], either all points

of touch between G and Y at points b′ > b are different from all points of touch

between H and Y at locations to the right of b or all points of touch between G

and Y at points a′ < a are different from all points of touch between H and Y at

locations to the left of a (or both).

First suppose that G 6= H on an interval [a, b] and that all points of touch

between G and Y at points b′ > b are different from all points of touch between H

and Y at locations to the right of b and all points of touch between G and Y at

points a′ < a are different from all points of touch between H and Y at locations

to the left of a (we will look at the “one-sided situation” at the end of the proof).

Let, for each n, aG
n be the location of the first point of touch between G and Y

to the left of −n, and bG
n be the location of the first point of touch between G and

Y to the right of n. Furthermore, let, for each n, aH
n be the location of the first

point of touch between H and Y to the left of aG
n , and bH

n be the location of the

first point of touch between H and Y to the right of bG
n . By assumption, aG

n 6= aH
n

and bG
n 6= bH

n for sufficiently large n. Note that such “first points” exist, since, by

Corollary 1 and Lemma 7 (i), the set of locations of points of touch is closed and

non-empty with probability one.
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Finally, let, for a convex function f on [a, b], φa,b(f) be defined as in (2.31):

φa,b(f) = 1
2

∫ b

a

f(t)2 dt−

∫ b

a

f(t) dX(t).(2.39)

Then we have:

φaH
n ,bH

n
(g)− φaH

n ,bH
n

(h)

= 1
2

∫ bH
n

aH
n

{h(t)− g(t)}
2

dt +

∫ bH
n

aH
n

{H(t)− Y (t)} dg′(t) ,(2.40)

and similarly:

φaG
n ,bG

n
(h)− φaG

n ,bG
n
(g)

= 1
2

∫ bG
n

aG
n

{g(t)− h(t)}
2

dt +

∫ bG
n

aG
n

{G(t)− Y (t)} dh′(t),(2.41)

see (2.32) and (2.33). Addition of (2.40) and (2.41) yields:

φaH
n ,bH

n
(g)− φaH

n ,bH
n

(h) + φaG
n ,bG

n
(h)− φaG

n ,bG
n
(g)

= 1
2

∫ bG
n

aG
n

{g(t)− h(t)}
2

dt + 1
2

∫ bH
n

aH
n

{h(t)− g(t)}
2

dt

+

∫ bH
n

aH
n

{H(t)− Y (t)} dg′(t) +

∫ bG
n

aG
n

{G(t)− Y (t)} dh′(t)

= 1
2

∫

Jn∪Kn

{

g2(t)− h2(t)
}

dt−

∫

Jn∪Kn

{g(t)− h(t)} dX(t)

= 1
2

∫

Jn∪Kn

{g(t)− h(t)}{g(t)− f0(t)} dt + 1
2

∫

Jn∪Kn

{g(t)− h(t)}{h(t)− f0(t)} dt

−

∫

Jn∪Kn

{g(t)− h(t)} dW (t)

≥

∫ n

−n

{g(t)− h(t)}2 dt(2.42)

for all large n where Jn =
[

aH
n , aG

n

]

, Kn =
[

bG
n , bH

n

]

, and f0(t) = 12t2.

Now first suppose:

lim
n→∞

∫ n

−n

{g(t)− h(t)}
2

dt < ∞.
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Then

lim
t→−∞

{g(t)− h(t)} = 0 and lim
t→∞

{g(t)− h(t)} = 0.

This implies that

lim inf
n→∞

∫

Jn∪Kn

{g(t)− h(t)} dW (t) = 0,

almost surely, since, by Lemma 7(i), the lengths of Jn and Kn are Op(1), uniformly

in n, and since g, h are continuous, implying that for each ε > 0:

P

{

lim inf
n→∞

∫

Jn∪Kn

{g(t)− h(t)} dW (t) > ε, lim
|t|→∞

{g(t)− h(t)} = 0

}

= lim
n→∞

P

{

inf
i≥n

∫

Ji∪Ki

{g(t)− h(t)} dW (t) > ε, lim
|t|→∞

{g(t)− h(t)} = 0

}

≤ lim
n→∞

P

{
∫

Jn∪Kn

{g(t)− h(t)} dW (t) > ε, lim
|t|→∞

{g(t)− h(t)} = 0

}

= 0.

This follows from the fact that, for example on the interval Kn, at least one of the

two functions g and h has to be linear, implying that g and h can have at most

two crossings on this interval, and possibly a region where they coincide, by the

convexity of g and h. But this means that g−h is a function of uniformly bounded

variation on the interval Kn, with a supremum distance on this interval that tends

to zero, as n →∞. A similar statement holds for the interval Jn. Since the length

of the interval Jn, resp. Kn, is Op(1), it follows that the limit in the last line in the

above display has to be zero.

We similarly get, using the Cauchy-Schwarz inequality and Lemma 7(ii), that

for each ε > 0 there exists a δ > 0 such that

P

{

lim inf
n→∞

{
∫

Jn∪Kn

{g(t)− h(t)}{g(t)− f0(t)} dt

}2

> ε, lim
|t|→∞

{g(t)− h(t)} = 0

}

≤ P

{

lim inf
n→∞

∫

Jn∪Kn

{g(t)− h(t)}2 dt

∫

Jn∪Kn

{g(t)− f0(t)}
2 dt > ε, lim

|t|→∞
{g(t)− h(t)} = 0

}

= lim
n→∞

P

{

inf
i≥n

∫

Ji∪Ki

{g(t)− h(t)}2 dt

∫

Ji∪Ki

{g(t)− f0(t)}
2 dt > ε, lim

|t|→∞
{g(t)− h(t)} = 0

}
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≤ lim sup
n→∞

P

{

δ

∫

Jn∪Kn

{g(t)− f0(t)}
2 dt > ε

}

< ε .

A similar relation holds for

{
∫

Jn∪Kn

{g(t)− h(t)}{h(t)− f0(t)} dt

}2

.

Thus

P

{

lim inf
n→∞

∫

Jn∪Kn

{g(t)− h(t)}{g(t)− f0(t)} dt > 0, lim
|t|→∞

{g(t)− h(t)} = 0

}

= 0 ,

and similarly

P

{

lim inf
n→∞

∫

Jn∪Kn

{g(t)− h(t)}{h(t)− f0(t)} dt > 0, lim
|t|→∞

{g(t)− h(t)} = 0

}

= 0.

But then (2.42) cannot hold for all large n, since

∫ n

−n

{g(t)− h(t)}
2

dt

tends to a strictly positive limit, as n →∞, if h 6= g.

Next, if

lim
n→∞

∫ n

−n

{g(t)− h(t)}2 dt = ∞ ,

we also get a contradiction, using Lemma 7(ii), since

lim inf
n→∞

∫

Jn∪Kn

{g(t)− h(t)} dW (t)

= lim inf
n→∞

∫

Jn∪Kn

{g(t)− f0(t)− (h(t) − f0(t))} dW (t) < ∞,

almost surely, and also, by the Cauchy-Schwarz inequality,

lim inf
n→∞

{
∫

Jn∪Kn

{g(t)− h(t)}{g(t)− f0(t)} dt

}2

≤ lim inf
n→∞

∫

Jn∪Kn

{g(t)− h(t)}2 dt

∫

Jn∪Kn

{g(t)− f0(t)}
2 dt < ∞,

almost surely where the finiteness holds by Lemma 7(i), with a similar relation for

{
∫

Jn∪Kn

{g(t)− h(t)}{h(t)− f0(t)} dt

}2

.



THE “INVELOPE” OF INTEGRATED BROWNIAN MOTION + t4 33

So again (2.42) cannot hold for all large n, if h 6= g.

Finally, if, for example, there would be infinitely many common points of touch

an for a sequence (an) such that an → −∞, we consider φa,bG
n
(g) − φa,bG

n
(h) and

φa,bH
n

(g) − φa,bH
n

(h), where a = aH = aG is such a common point of touch (to the

left of such a point the functions have to be equal!), and then we get a contradiction

in the same way, if we assume G 6= H . 2

Corollary 4. Let fc minimize φc defined in (2.4) over the set G(c, k1(c), k2(c))

defined in (2.6), where

|k1(c)− 12c2| ∨ |k2(c)− 12c2| ≤ M, for some fixed M > 0,

and let fc be linearly extended to a function on IR on the intervals (−∞,−c] and

[c,∞). Then fc converges almost surely to the second derivative of the invelope H

of Y , in the topology of uniform convergence on compacta. In particular:

lim
c→∞

fc(0) = H ′′(0),

almost surely.

Proof: The proof of Corollary 3 showed that, taking cn = n, there exists a subse-

quence (nk) such that the functions Hnk
, defined as in Lemma 5, and continuously

extended to functions on IR as second integrals of the linearly extended functions

fnk
, converge to an invelope H of Y , in the topology induced by the semi-norms

(2.30). It is also clear from the proof that if we take the boundary conditions

f(n) = k1(−n), f(n) = k2(n),

where |k1(n) − 12n2| ∨ |k2(n) − 12n2| ≤ M , instead of the boundary condition

f(−n) = f(n) = 12n2, we also get that there exists a subsequence (nk) such that

the functions Hnk
, continuously extended to a function on IR as second integrals of
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the linearly extended functions fnk
, converge to an invelope H of Y , in the topology

induced by the semi-norms (2.30).

But since the invelope H is almost surely uniquely defined, and since the ar-

gument can be repeated for any subsequence, we get that the original sequence

(Hn), continuously extended to functions on IR as second integrals of the linearly

extended functions fn, also converges to the invelope H , in the topology induced by

the semi-norms (2.30). Since the choice of cn = n is also irrelevant for the argument,

we get that for any sequence (cn) such that cn → ∞, the continuously extended

functions Hcn converge to H , again in the topology induced by the semi-norms

(2.30).

This means that the continuously extended function Hc converges to H , as c →

∞, in the topology induced by the semi-norms (2.30). By the definition of the semi-

norms (2.30), this means that fc = H ′′
c converges to f = H ′′ in the topology of

uniform convergence on compacta. 2

Remark. Note that Corollary 4 shows that indeed the influence of the boundary

conditions at −c and c on the value of the function fc in a fixed interval dies out,

as c →∞, at least if we keep f(−c)− f0(−c) and f(c)− f0(c) bounded. But we got

this result by using the unicity of the invelope H and not by directly comparing two

solutions fc and f̃c satisfying different boundary conditions at−c and c, respectively.

As noted in the introduction, comparing these solutions directly is difficult, since

we cannot assume that the functions have changes of slope at the same points.

3. The iterative cubic spline algorithm The characterization of the solu-

tion of the minimization problem on a finite interval [−c, c], given in Lemma 2,

inspires an iterative cubic spline algorithm for finding the solution to the minimiza-

tion problem of minimizing φc(g) over the set G(c, k1, k2) (for the notation, see (2.4)
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and (2.6)). For a full description of this algorithm in the finite sample problem, in-

cluding a convergence proof for a general class of algorithms to which the iterative

cubic spline algorithm belongs, we refer to Groeneboom, Jongbloed, and Wellner

(2001b).

The key idea behind the iterative cubic spline algorithm is the following. The

minimizer of φc over the class of piecewise linear functions ` on [−c, c] with set of

knots S = {−c, t1, t2, . . . , tm, c} satisfying `(−c) = k1 and `(c) = k2, is given by the

second derivative of the cubic spline P that satisfies

P (t) = Y (t) for t ∈ S, P ′′(−c) = k1, P ′′(c) = k2.(3.1)

This can e.g. be seen by the arguments used in the proof of Lemma 2, or by direct

differentiation.

Note that P ′′ satisfies a relation of the following type:

tj − tj−1

6
P ′′(tj−1) +

tj+1 − tj−1

3
P ′′(tj) +

tj+1 − tj
6

P ′′(tj+1)

=
Y (tj+1)− Y (tj)

tj+1 − tj
−

Y (tj)− Y (tj−1)

tj − tj−1
,(3.2)

for successive points tj−1, tj and tj+1, see, e.g., (3.3.7) on p. 115 of Press et al.

(1992).

The iterative cubic spline algorithm consists of two basic steps. The starting

point at each iteration is a set of knots S together with a piecewise linear convex

function f having set of knots S, that minimizes φc over the set of piecewise linear

functions having the same set of knots. This means that the second integral H of

f equals Y at points in S. If H(t) ≥ Y (t) for all t ∈ [−c, c], the characterizaton of

Lemma 2 shows that f is the solution of the minimization problem. If not, determine

t∗ = argmint∈[−c,c]H(t)− Y (t)

and add this point to the present set of knots: S := S ∪ {t∗}.
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In the second step, the aim is to get a set of knots S∗ ⊂ S together with a convex

piecewise linear function f having this set of knots such that f minimizes φc over

the subset of G(c, k1, k2) consisting of functions with set of knots S∗. This is done

by repeated computation of cubic splines as follows: The first cubic spline is the one

defined by (3.1) with the extended set of knots S (including t∗). If P ′′ is convex,

this iteration step is completed since P ′′ minimizes φc over the class G(c, k1, k2)

consisting of functions with set of knots S. If P ′′ is not convex, we determine the

maximal value of λ ∈ (0, 1) for which f + λ(P ′′ − f) is convex. Since λ < 1, this

means that some knot in S actually vanishes. Removing this particular knot from

S, we can again compute a cubic spline from (3.1) and check whether P ′′ is convex

etc. Repeating this procedure, we get after finitely many (usually one or two) steps

a set of knots S∗ with corresponding P satisfying (3.1) such that P ′′ is convex.

Then we turn to the first step of the next iteration again.

In Groeneboom, Jongbloed, and Wellner (2001b) it is shown that the itera-

tion steps are well defined. Moreover, it is shown that the sequence of iterates fn

generated by the algorithm converges to the solution of the minimization problem.

The iterative cubic spline algorithm is directly motivated by the characteriza-

tion of the solution of the minimization problem on a finite interval [−c, c], given

in Lemma 2. In that sense the algorithm is comparable to the convex minorant al-

gorithm in the problem of estimation of a monotone function, which is also directly

motivated by a geometric characterization of the solution of a minimization prob-

lem. The hinge algorithm introduced in Meyer (1997), can also be used to solve

the minimization problem. The advantage of the iterative cubic spline algorithm

compared to the hinge algorithm is that, in the computation of the splines, only a

tridiagonal matrix has to be inverted (which can be seen from (3.2)), whereas the
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solution of the least squares problems in the hinge algorithm involves inversion of

matrices that need not be tridiagonal.

A C program, implementing the iterative cubic spline algorithm was developed,

and below we show some pictures of the “invelope” and its derivatives for solutions

on the intervals [−1, 1] (c = 1) and [−4, 4] (c = 4), respectively. An approximation

to Brownian motion on [0, 1] was generated with the Haar functions construction,

see e.g., Rogers and Williams (1994), section 1.6. In the notation used there, we

used the orthonormal functions

gk,n, k ≤ 2n, k odd,

up to n = 12. The approximation to Brownian motion on [−4, 4] was generated

by taking independent copies on the intervals [i − 1, i], i = −3, . . . , 4 and pasting

these together at the borders of the intervals. Furthermore we took a grid of 8001

equidistant points on [−4, 4] and computed (an approximation to) the Brownian

motion on these points.

In Figures 1 to 4 we compare the solution on [−1, 1] and [−4, 4], respectively,

under the boundary conditions f(−c) = f(c) = 12c2. The functions with index

1 correspond to the solution for c = 1 and the functions with index 2 to the

solution for c = 4. Figure 5 shows a comparison of the invelopes of two solutions for

c = 1, under the boundary conditions f(−1) = f(1) = 12 and f(−1) = f(1) = 6,

respectively. Again the function with index 1 correspond to the solution for c = 1

and f(−1) = f(1) = 12 and the function with index 2 to the other solution.

The iterative cubic spline algorithm required (on a Macintosh powerbook 3400C)

11 iterations and less than 1 second for the solution for c = 1 and f(−1) =

f(1) = 12, and 5 iterations and less than 1 second for the solution for c = 1

and f(−1) = f(1) = 6. The solution for c = 4 took 45 iterations and 3 seconds.
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This performance is pretty good in comparison with other algorithms we have tried

(like the interior point method with logarithmic barrier function; see e.g. Wright

(1997)), in particular since for c = 4 a solution on a grid of 8001 points is needed.

Figures 1 to 4 below illustrate the following facts.

1. The locations of the points of jump of the derivative of the solution change,

as c increases. Note that the set of locations of points of jump of the

derivative of the solution of the convex regression problem is the same

as the set of locations of points of touch between the “invelope” and Y

in the characterization of the solution in Lemma 2. For c = 1 we got

the set of points {−0.931,−0.544,−0.116, 0.768} and for c = 4 the set

{−0.889,−0.886,−0.115, 0.616, 0.765}.

2. Figure 4 shows there is no evidence whatsoever that the changes of slope are

bigger than a fixed constant (as claimed in Wang (1994)).

3. Figure 4 also shows that the derivative f ′2, corresponding to the solution for

c = 4 behaves better (in the sense that the absolute value of its difference

with f ′0(t) is smaller) at the boundary point −1 of the interval [−1, 1] than

the derivative f ′1(−1) of the solution for c = 1. Phenomena like this are to

be expected, since the solution on the interval [−4, 4] poses more restrictions

on the behavior of the solution on the smaller interval [−1, 1]. In fact, the

tightness argument for f−c (t)− f ′0(t) and f+
c (t) − f ′0(t), as c →∞ of Lemma

4 is partly illustrated here, at the point t = −c.

Further experiments showed that the solution on [−1, 1] hardly changes if we in-

crease c from 4 to, say, 5 or 6, in accordance with Corollary 4. Figure 5 shows that

the locations of points of jump of the derivative of the solution of the convex regres-

sion problem (= the set of locations of points of touch between the “invelope” and
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Y ) change if we change the boundary condition on the value of f at −1 and 1. In

this case we get the set of points {−0.931,−0.544,−0.116, 0.768} for the boundary

conditions f(−1) = f(1) = 12 (see above) and the set {−0.540, 0.179, 0.134} for the

boundary conditions f(−1) = f(1) = 6.

Y

H1

H2

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

1.5

Fig. 1. Solid: Y and H1, dashed: H2. Boundary conditions: f1(±1) = 12, f2(±4) = 192.
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X

F1

F2
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Fig. 2. Solid: X and F1, dashed: F2.
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Fig. 3. Solid: f0 and f1, dashed: f2.
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Fig. 5. Solid: Y and H1, dashed: H2. Boundary conditions: f1(±1) = 12, f2(±1) = 6.
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4. Concluding remarks and open problems In section 2 a function of inte-

grated Brownian motion, determining the limit distribution of nonparametric least

squares estimators and maximum likelihood estimators of a convex regression func-

tion, resp. convex density, was determined. This function was called the “invelope”

and uniquely characterized in Theorem 1. However, several open problems remain

which we list below.

1. In the case of the limit distribution of nonparametric least squares estimators

and maximum likelihood estimators of a monotone regression function, resp.

monotone density, the distribution of the limit function of drifting Brownian

motion was analytically characterized in Groeneboom (1988). In fact, the

infinitesimal generator of the jump process of locations of points of touch be-

tween Brownian motion + a parabola and its convex minorant was determined

analytically using Airy functions. We have no such analytic representation in

the present case, and do not even know if the distribution of H ′′(0) has finite

moments.

2. We conjecture that the locations of points of touch between integrated Brow-

nian motion + t4 and its “invelope” are realizations of a locally finite point

process (“the point are isolated”), but we have no proof. In the “monotone

case” the locations of points of touch between Brownian motion + a parabola

and its convex minorant are indeed realizations of a locally finite point pro-

cess, but we get this from the analytic characterization of the point process

in Groeneboom (1988).

3. Assuming that the locations of points of touch between integrated Brownian

motion + t4 and its “invelope” are realizations of a locally finite point process,

will the locations of changes of slope of the solutions fc of the constrained
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minimization problem of Lemma 2.2 stay fixed in a finite interval, say [−1, 1],

for all values of c ≥ c0, where c0 may depend on the sample path of integrated

Brownian motion, or will they continue to change, as c → ∞? The spline

relation (3.2) in section 3 suggests that they must continue to change, unless

fc does not change at these points either.

4. For the “monotone case” it was shown in Groeneboom (1988) that between

points of touch of Brownian motion + a parabola and its convex minorant,

Brownian motion behaves as “an excursion above a parabola”. We conjecture

that similarly, between points of touch of integrated Brownian motion + t4

and its “invelope”, integrated Brownian motion behaves as an excursion below

a cubic polynomial and has a behavior that can be described with the help of

the theory, developed in Groeneboom, Jongbloed & Wellner (1999). But a

first step in this direction refers us back to the unsolved problem mentioned

in point 2, i.e., proving that the points of touch are indeed isolated.

5. It would be of interest to consider the following “continuous time” or “white

noise” regression problem, Suppose we observe {X(t) : t ∈ [−c, c]} where, for

a two-sided Brownian motion W ,

dX(t) = f(t)dt + σdW (t),

and the “regression function” or “signal” f is assumed to be convex. Then our

“canonical” convex function t 7→ 12t2 is replaced by a more general convex

function f . We conjecture that the theory, developed in section 2, can be

used again, and that, in particular, one gets a similar asymptotic behavior of

the solutions fc on a bounded interval [−1, 1], as c → ∞, if the underlying

regression function is strictly convex, where the limiting behavior is again
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described by an “invelope” of integrated Brownian + the second integral of

the convex function.

6. If, in the finite sample situation, the restriction that f ′ is monotone is re-

placed by the restriction that f (k) is monotone, where k > 1, we think that

the asymptotic behavior of the solution will involve a function of iteratively

integrated Brownian motion, but the theory for this situation still has to be

developed.

5. Appendix: Gaussian scaling relations. Suppose that for a, σ > 0 and

t ∈ IR we define

Ya,σ(t) ≡ at4 + σ

∫ t

0

W (s) ds

where W is standard two-sided Brownian motion. We take Y1,1 ≡ Y to be the

standard (or canonical) version of the family of processes {Ya,σ : a > 0, σ > 0} .

Let Ha,σ be the invelope process corresponding to the process Ya,σ .

Proposition 1. (Scaling of the processes Ya,σ and the invelope processes Ha,σ .)

Ya,σ(t)
D
= σ(σ/a)3/5Y ((a/σ)2/5t)(5.1)

as processes for t ∈ IR, and hence also

Ha,σ(t)
D
= σ(σ/a)3/5H((a/σ)2/5t)(5.2)

as processes for t ∈ IR.

Corollary 5. For the invelope processes at 0 it follows that

(H ′′
a,σ(0), H ′′′

a,σ(0))
D
= (σ4/5a1/5H ′′(0), σ2/5a3/5H ′′′(0)) .(5.3)
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Corollary 6. (Finite interval scaling.)

σ−8/5a3/5Ya,σ((σ/a)2/5t)
D
= Y (t), t ∈ [−c, c] ,(5.4)

and hence observation of {Y (t) : t ∈ [−c, c]} is equivalent to observation of {Ya,σ(t) :

t ∈ [−1, 1]}, if c = (a/σ)2/5.

Remark: Note that this makes some intuitive sense; σ represents the “noise level”

or standard deviation of the noise and the variance of our “estimators” H
(k)
a,σ(0),

k = 2, 3, should converge to zero as σ → 0. Similarly, a = some constant times the

curvature of the function 12at2 at zero; the function gets easier to estimate at this

point as the curvature goes to zero, and the proposition makes this precise. Note

that the scaling in (5.3) is consistent with the finite-sample convergence results of

Groeneboom, Jongbloed and Wellner (2001a) with the identification σ = n−1/2.

Proofs. Starting with the proof of Proposition 5.1, we will find constants k1, k2 so

that

k1Ya,σ(k2t)
D
= Y (t) .(5.5)

Since α−1/2W (αu)
D
= W (u) for each α > 0,

Ya,σ(t)
D
= at4 + σα−1/2

∫ t

0

W (αs)ds

= at4 + σα−3/2

∫ αt

0

W (u)du(5.6)

by changing variables. Now by (5.6)

k1Ya,σ(k2t)
D
= k1a(k2t)

4 + k1σα−3/2

∫ k2αt

0

W (s)ds(5.7)

= t4 +

∫ t

0

W (u)du(5.8)

if we choose k1, k2, α so that

ak1k
4
2 = 1 , αk2 = 1 , and σα−3/2k1 = 1 .(5.9)
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This yields α = 1/k2, and hence (from the last equality in the last display)

σk1k
3/2
2 = 1 .

This in turn implies that

a

σ
k

5/2
2 = 1 or k2 = (σ/a)2/5 .

This yields k1 = (1/σ)(a/σ)3/5. Expressing (5.5) as

Ya,σ(k2t)
D
= k−1

1 Y (t/k2)

with k−1
1 = σ(σ/a)3/5 and 1/k2 = (a/σ)2/5 yields the first claim of the proposition.

The second claim follows from immediately from (5.2) and the definitions of Ha,σ

and H .

Corollary 5 follows from (5.3) and straightforward differentiation.

To prove Corollary 6, note that (5.2) is equivalent to

σ−8/5a3/5Ya,σ(t)
D
= Y (t) .

Hence observation of Y on the interval [−c, c] is equivalent to observation of

σ−8/5a3/5Ya,σ(t) for t ∈ [−1, 1] if c = (a/σ)2/5. 2
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