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Abstract: In carcinogenicity experiments with animals where the tumor is not palpable it is common
to observe only the time of death of the animal, the cause of death (the tumor or another independent
cause, as sacrifice) and whether the tumor was present at the time of death. These last two indicator
variables are evaluated after an autopsy. Defining the non-negative variables T1 (time of tumor on-
set), T2 (time of death from the tumor) and C (time of death from an unrelated cause), we observe
(Y,∆1,∆2), where Y = min {T2, C}, ∆1 = 1{T1≤C}, and ∆2 = 1{T2≤C}. The random variables T1
and T2 are independent of C and have a joint distribution such that P (T1 ≤ T2) = 1. Some authors
call this model a “survival-sacrifice model”.

[20] (generally to be denoted by LJP (1997)) proposed a Weighted Least Squares estimator for
F1 (the marginal distribution function of T1), using the Kaplan-Meier estimator of F2 (the marginal
distribution function of T2). The authors claimed that their estimator is more efficient than the MLE
(maximum likelihood estimator) of F1 and that the Kaplan-Meier estimator is more efficient than the
MLE of F2. However, we show that the MLE of F1 was not computed correctly, and that the (claimed)
MLE estimate of F1 is even undefined in the case of active constraints.

In our simulation study we used a primal-dual interior point algorithm to obtain the true MLE
of F1. The results showed a better performance of the MLE of F1 over the weighted least squares
estimator in LJP (1997) for points where F1 is close to F2. Moreover, application to the model, used
in the simulation study of LJP (1997), showed smaller variances of the MLE estimators of the first
and second moments for both F1 and F2, and sample sizes from 100 up to 5000, in comparison to
the estimates, based on the weighted least squares estimator for F1, proposed in LJP (1997), and the
Kaplan-Meier estimator for F2. R scripts are provided for computing the estimates either with the
primal-dual interior point method or by the EM algorithm.

In spite of the long history of the model in the biometrics literature (since about 1982), basic
properties of the real maximum likelihood estimator (MLE) were still unknown. We give necessary
and sufficient conditions for the MLE (Theorem 3.1), as an element of a cone, where the number
of generators of the cone increases quadratically with sample size. From this and a self -consistency
equation, turned into a Volterra integral equation, we derive the consistency of the MLE (Theorem
4.1). We conjecture that (under some natural conditions) one can extend the methods, used to prove
consistency, to proving that the MLE is

√
n consistent for F2 and cube root n convergent for F1, but

this has presently not yet been proved.

AMS 2000 subject classifications: Primary 62G09, 62N01.
Keywords and phrases: MLE, survival sacrifice model, self-consistency equation, Volterra integral
equation, primal-dual interior point algorithm, EM algorithm, smooth functionals.

1. Introduction

Suppose that (T1, T2) is a pair of nonnegative random variables with joint distribution F concentrated on
{(t1, t2) : 0 ≤ t1 ≤ t2 <∞}. Here we think of T1 as the “time of disease onset”, and T2 as the “time of death
from the disease”, and let F1 and F2 denote their respective (marginal) distribution functions. Suppose that
C is a nonnegative random variable with distribution function G which is independent of (T1, T2). We think
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of C as the “time of death from an unrelated cause”. Furthermore, we can only observe the triple

X ≡ (C ∧ T2, 1[T1≤C], 1[T2≤C]) ≡ (Y,∆1,∆2) . (1.1)

If G has density g with respect to Lebesgue measure, and the marginal distribution function F2 of T2 has
density f2 with respect to Lebesgue measure, then it is easily seen that the joint density of X with respect
to the product of Lebesgue measure on R+ and counting measure on D ≡ {(0, 0), (1, 0), (1, 1)} is given by

p(y, δ1, δ2) =

 (1− F1(y))g(y), if (δ1, δ2) = (0, 0) ,
(F1(y)− F2(y))g(y), if (δ1, δ2) = (1, 0) ,
(1−G(y))f2(y), if (δ1, δ2) = (1, 1) .

(1.2)

Let P = PF,G denote the corresponding probability measure on R+ ×D. Note that the marginal density of
(Y,∆2) is given by

p2(y, δ2) =

{
(1− F2(y))g(y), if δ2 = 0 ,
(1−G(y))f2(y), if δ2 = 1 ,

which is exactly that of random right censoring of T2 ∼ F2 by C ∼ G. On the other hand, the marginal
density of (Y,∆1) is

p1(y, δ1) =

{
(1− F1(y))g(y) , if δ1 = 0 ,
(F1(y)− F2(y))g(y) + (1−G(y))f2(y) , if δ1 = 1 ,

which is not the same as “current status data” for T1 ∼ F1 with observation time C ∼ G since the δ1 = 1
component of this density only reduces to F1(y)g(y) if F2 puts all its mass at +∞ (corresponding to a non-
lethal disease). While the resulting “survival-sacrifice model” is very much related to right-censored data
via its marginal distribution P2, and to current status data via its marginal distribution P1, the model as
a whole is more complicated than either of these simpler models, especially so because of the restriction
F1 ≤s F2 which results from T1 ≤ T2 a.s. F .

Our goal is to construct nonparametric estimators of F1 and F2 based on observation of X1, . . . , Xn i.i.d.
as X ≡ (C ∧ T2,∆1,∆2). This model has been proposed for experiments involving the study of onset and
mortality from undetectable irreversible diseases (e.g. occult tumors). The model is reasonable when the
disease is moderately lethal but incurable and when the cause of death is known. It has a long history in the
biometrics literature: see e.g. [4],[14],[19] and, more recently, [20].

The parameter space can be taken to be

Θ = {(F1, F2) : F1 and F2 are d.f.’s with F1 <s F2} ,

where F1 <s F2 means that F1(x) ≥ F2(x) for every x ∈ R and F1(x) > F2(x) for some x ∈ R. The Maximum
Likehood Estimation method for this problem is based on maximization of the log-likelihood function

n∑
i=1

{(1−∆1,i)(1−∆2,i) log (1− F1(Yi))

+ ∆1,i(1−∆2,i) log (F1(Yi)− F2(Yi))

+ (∆1,i∆2,i) log f2(Yi)}+K(g,G)

where f2(x) ≡ F2(x)− F2(x−) and K(g,G) is a term involving only the distribution G of C.
[14] studied nonparametric estimation of S1 = 1−F1 and S2 = 1−F2, but their work is restricted to the

case where R(t) = S1(t)/S2(t) is non-increasing, an assumption that may not be reasonable, for example,
for progressive diseases whose incidence is concentrated in the early or middle part of the life span.

[19] proposed an EM algorithm for the joint estimation of F1 and F2 which converges very slowly to the
MLE of (F1, F2) (provided the support of the initial estimator contains the support of the MLE). We discuss
an implementation of this method in Section 5.2, and give an R script for this implementation in [10].

A more efficient way of computing the full MLEs is given by the primal-dual interior point algorithm,
as, for example, also discussed in [15]. The latter authors first transform their model before applying the
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algorithm, but such a transformation is not needed in our present approach for the model considered here.
Our implementation is discussed in Section 5.1 and an R script for the implementation is also given in [10].

Another possible way of estimating F1 is plugging in the Kaplan-Meier estimator of F2 and calculating
the pseudo MLE of F1. The part of the log-likelihood involving F1 is

n∑
i=1

(
1−∆2,(i)

) [
∆1,(i) log(xi − F̂2,KM (Y(i))) +

(
1−∆1,(i)

)
log (1− xi)

]
(1.3)

where xi = F1(Y(i)), Y(i) is the ith order statistic of (Y1, . . . , Yn), ∆1,(i), and ∆2,(i) are the values of ∆1,i and
∆2,i observed at Y(i) respectively. Since (1.3) can be written as

n∑
i=1

{
Φ(f(Y(i))) +

[
g(Y(i))− f(Y(i))

]
φ(f(Y(i)))

}
w(Y(i))

with f = F1, φ = dΦ/df , g = 1 − (1 − F̂2,KM )(1 − ∆1), w = (1 − ∆2)/(1 − F̂2,KM ) and Φ(y) =
(y − F2) log(y − F2) + (1 − y) log(1 − y), [4] concluded that the values of F1(Y(i)), i = 1, . . . , n, maximizing
the log-likelihood (1.3) could be obtained applying theorem 1.10 in [2], i.e., the pseudo MLE of F1 would be
given by the isotonic regression g∗ of g(Y(i)) with weights w(Y(i)), i = 1, . . . , n.

However, theorem 1.10 in [2] is applicable to a real convex function Φ defined on R while in the application
above the function Φ is in fact defined on R2 since the value of F2 is not supposed to be constant. It should
be mentioned here that, although the Kaplan-Meier estimator F̂2,KM is uniquely defined, except possibly

at times exceeding the largest observation, the pseudo MLE F̂1,n is uniquely defined only over certain data-

determined intervals. Specifically, F̂1,n is always uniquely defined at the observed Ci’s, i.e., the observations
for which ∆2,i = 0.

[6] established uniform consistency of the pseudo - likelihood estimator F̂ pseudo1,n obtained by maximizing
(1.3) over the polyhedron {x : 0 ≤ x1 ≤ · · · ≤ xn ≤ 1} under the assumption that F1 and F2 are continuous
distribution functions and that PF1

≺ PG. Recently [17] established a global rate of convergence result for
the pseudo-likelihood estimator of F1 for a slightly different model under reasonable assumptions concerning
a preliminary estimator F̃2,n of F2.

For the Weighted Least Squares estimator proposed by [20], [7] established uniform consistency under the
same assumptions used to study the pseudo-likelihood estimator in [6]. [7] also established an asymptotic
minimax lower bound for estimation of F1(t0) under the following assumptions:
(i) 0 < F2(t0) < F1(t0) < 1.
(ii) F1 and G are continuously differentiable at t0 with derivatives f1(t0) > 0 and g(t0) > 0.
Specifically, [7] used Lemma 4.1 of Groeneboom (1996) (see also Theorem 6.1 of [11]) to show that

n1/3 inf
F̂1,n

max
{
En,p0 |F̂1,n(t0)− F1(t0)|, En,pn |F̂1,n(t0)− F1,n(t0)|

}
≥ 1

4
n1/3|F1,n(t0)− F1(t0)|{1−H2(pn, p0)}2n

→ 1

4
f1(t0)t exp

(
− 2S2(t0)g(t0)f2

1 (t0)t3

S1(t0)[S2(t0)− S1(t0)]

)
(1.4)

and the maximum value of this last expression (with respect to t > 0) is

k

{
f1(t0)S1(t0)[S2(t0)− S1(t0)]

S2(t0)g(t0)

}1/3

≡ kC(S1, S2, f1, g, t0) (1.5)

where k = (1/4)(3e/2)−1/3 does not depend on F1, F2, f1, or g. Here p0(y, δ1, δ2;F1, F2, G) is given by (1.2)
and pn is given by pn(y, δ1, δ2;F1,n, F2, G) where F1,n(x) = F1(x) if x ∈ [t0 − n−1/3t, t0 + n−1/3t)c and

F1,n(x) =

{
F1(t0 − n−1/3t) if x ∈ [t0 − n−1/3t, t0),
F1(t0 + n−1/3t) if x ∈ [t0, t0 + n−1/3t).
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Note that the dependence on n in pn is just through F1 = F1,n and not via F2 or G.
[7] also showed that the WLS estimator achieves this bound in the sense that (under slightly stronger

conditions than those imposed in the minimax lower bound),

n1/3(ŜWLS
1,n (t0)− S1(t0))→d 2−1/3C(S1, S2, f1, g)2Z

where Z = argmax{B(t)− t2} where B is two-sided Brownian motion starting at 0.
Thus we see that virtually all of the progress to date concerning estimation of F1 and F2 in the model

given by (1.2) concerns either the pseudo MLE of F1 or the Weighted Least Squares estimator F̂1,n.
The current challenge is to understand the behavior of the (real, joint) MLE. Here we establish consistency

of the sequence of MLEs {(F̂n,1, F̂n,2) : n ≥ 1}. We also give some new lower bounds for smooth functionals
of the distribution functions, which partially explain why we expect that the full MLE performs better than
the pseudo MLE or the WLS estimators for the distribution function F1 and also better than the Kaplan-
Meier estimator of the distribution function F2, based on the marginal likelihood, with the advantage of the
real MLE appearing mostly when the distribution functions F1 and F2 are nearly equal.

The plan of the paper is as follows. In Section 2 we explain the difficulties in the approach of [20] (LJP
1997). In Section 3 we give the characterization of the (real) MLE as the solution of a maximization on a cone
and derive from this a self-consistency equation in Corollary 3.3 which is used to prove consistency in Section
4. In Section 5 we describe the primal-dual interior point method and the EM algorithm for computing the
MLE. We also give in subsection 5.3 a comparison of the behavior of primal-dual interior point method
and the EM algorithm. These results can be reproduced by running the R scripts for the algorithms in [10].
Results and examples for the estimation of smooth functionals are given in Section 6. Quantile estimation is
considered in Section 7 and we end by some concluding remarks in Section 8.

2. A Weighted Least Squares Estimator

The main point of the present section is that the MLE is not the reweighted least squares estimator as
introduced by [20] (LJP 1997), because that estimator is not well-defined. Their (not iteratively defined)
weighted least squares estimator, claimed to be superior to the MLE, can actually coincide with the MLE.
One might perhaps hope that maximizing the likelihood, ignoring the constraint F1 ≥ F2 (if it is not explicitly
forced by the likelihood), and “resetting” values F1(t) and F2(t) if a violation F1(t) < F2(t) is encountered,
will produce the maximum likelihood estimator in the end. But it is well-known that this method will in
fact not work and lead to a procedure that may “hang” somewhere far from the maximizing value, since an
algorithm of this type tries to move the estimators to values they cannot move to and resets the estimators
to the same (non-maximizing) values each time the active constraints would be violated. In fact, it is quite
easy to give numerical examples of this behavior for such a method in the present model, where we get a
stationary point that will not correspond to the MLE, even if we start the procedure with positive masses
at each point, as recommended in [20]. Use of Lagrange multipliers or methods using Section 3 below is the
only way out here.

Indeed, a possibility for estimation of F1 is to calculate a weighted least squares estimator as suggested
by [20]. Making S1 = 1−F1 and S2 = 1−F2, in terms of populations, R(c) = S1(c)/S2(c) is the proportion
of subjects in the population alive at time c who are disease free (i.e., 1−R(c) is the prevalence function at
time c), and it can be written as

R(c) =
S1(c)

S2(c)
=

1− F1(c)

1− F2(c)
=
P (T1 > c)

P (T2 > c)

=
P (T1 > c, T2 > c)

P (T2 > c)
= P (T1 > C | C = c, T2 > C)

= E
[
1{T1>C} | C = c, T2 > C

]
= E [1−∆1 | C = c, T2 > C] .

So, it is possible to rewrite

S1(c) = R(c)S2(c) = S2(c)E [1−∆1 | C = c, T2 > C]

= E [S2(C) (1−∆1) | C = c, T2 > C] .
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Estimating S1 can be viewed, then, as a regression of S2(C) (1−∆1) on the observed Ci’s under the constraint
of monotonicity. If we substitute S2 by its Kaplan-Meier estimator Ŝ2,n = Ŝ2,KM we automatically have an
estimator for S1 minimizing

1

n

n∑
i=1

[(
1−∆1(i)

)
Ŝ2,KM (Y(i))− S1(Y(i))

]2 (
1−∆2(i)

)
under the constraint that S1 is nonincreasing. This minimization problem can be solved by using results
from the theory of isotonic regression (see [2]) and is given by

Ŝ1(Y(m)) = min
l≤m

max
k≥m

∑k
j=l Ŝ2,KM (Y(j))

(
1−∆1(j)

)∑k
j=l

(
1−∆2(j)

) , m = 1, . . . , n .

However,
Var [S2(C) (1−∆1) | C = c, T2 > C] = S2

2(c)R(c) (1−R(c))

is not constant. We may, then, use a weighted least squares estimator with weights wi, i = 1, . . . , n, inversely
proportional to the variance S2

2(c)R(c) (1−R(c)). This expression for the variance involves the unknown
value S1(Ci) that we want to estimate, suggesting the use of an iterative procedure. In each step, the
estimate would be given by

Ŝ1(Y(m)) = min
l≤m

max
k≥m

∑k
j=l Ŝ2,KM (Y(j))

[
1−∆1(j)

]( 1−∆2(j)

Ŝ2
2,KM (Y(j))Rn(Y(j))[1−Rn(Y(j))]

)
∑k
j=l

(
1−∆2(j)

Ŝ2
2,KM (Y(j))Rn(Y(j))[1−Rn(Y(j))]

) (2.1)

for m = 1, . . . , n, where Rn(Y(j)) = S1n(Y(j))/S2,KM (Y(j)) is also iteratively updated.

If we use wj = (1−∆2(j))/Ŝ
2
2,KM (Y(j)) instead, we have an estimator with a closed form that can be calcu-

lated as the left derivative of the least concave majorant of the cumulative sum diagram (0, 0), (W1, G1), . . . , (Wn, Gn),

where Wi =
∑i
j=1 wj and

Gi =

i∑
j=1

wj(1−∆1(j))Ŝ2,KM (Y(j)) =

i∑
j=1

(1−∆1(j))(1−∆2(j))

Ŝ2,KM (Y(j))
=

i∑
j=1

(1−∆1(j))

Ŝ2,KM (Y(j))
.

Ŝ1(t) is the slope of the Least Concave Majorant at Wi for t ∈
(
Y(i−1), Y(i)

]
. [20] claim that the estimator

above is more efficient than the MLE of F1 which would be calculated, according to them, as follows. Let
S0

1n and S0
2n be initial estimators of S1 and S2. Let k = 0. For a given estimator Sk1n, use the EM-algorithm

to compute the estimator Sk+1
2n solving the equation

F2n(t) =

∑n
i=1

∫ t
Ci
dF2n

(S2n−S1n)(Ci)
1{δi=(1,0)} + 1T2,i≤t1{δi=(1,1)}∑n

i=1 1{δi=(1,1)} + S2n(Ci)
(S2n−S1n)(Ci)

1{δi=(1,0)}
, (2.2)

adjusting the estimate so that Sk+1
2n ≥ Sk1n in case this restriction is violated. For a given Sk+1

2n , use the
weighted least squares estimator proposed by [20] to obtain a new estimator Sk+1

1n , which is adjusted so that
Sk+1

1n ≤ Sk+1
2n if this restriction is violated. By repeating this joint algorithm, the authors claim that the

actual MLE of S1 and S2 is obtained. One would indeed expect this to be true in situations like this, but the
weighted least squares estimator that they introduced and claim to represent the MLE is in fact undefined
at crucial points.

The trouble with this approach is that the Lagrangian terms in deriving the “score equations” on page
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544 of their paper is completely neglected:

1

n

n∑
i=1

{
{∆1,i = 0,∆2,i = 0, Ci ∈ (tj , tj+1]}

S1n(Ci)

− {∆1,i = 0,∆2,i = 0, Ci ∈ (tj , tj+1]}
S2n(Ci)− S1n(Ci)

}
= 0, (2.3)

where ( tj , tj+1] is an interval on which F1n is constant and where tj and tj+1 are points of jump of F1n.
From this they derive the following formula for the survival function S1n = 1− F1n:

S1n(t)

=
1

n

n∑
i=1

{∆1,i = 0, ∆2,i = 0, Ci ∈ (tj , tj+1]}
S2n(Ci)Rn(Ci)(1−Rn(Ci))

/ n∑
i=1

{∆2,i = 0, Ci ∈ (tj , tj+1]}
S2

2n(Ci)Rn(Ci)(1−Rn(Ci))
, (2.4)

for t ∈ ( tj , tj+1] (in fact they say that S1n(tj) = S1n(Ci), for Ci ∈ ( tj , tj+1] , but the point tj does
not belong to the interval ( tj , tj+1] , so there is also some definition problem here). However, at points t
where the constraint F1n(t) ≥ F2n(t) is active (these are precisely the points where we will get a Lagrange
multiplier λi > 0 in the primal-dual interior point algorithm, described in section 5.1), the expression above
is not defined, since we get zeros in the denominators!

As an example, in one of our simulations studies we found the following values for the MLE of the pair
(F1, F2) between points tj = 1.141807 and tj+1 = 1.567906:

F1n(t) = 0.632059, t ∈ ( tj , tj+1] ,

and for part F2n of the MLE we found the successive values

0.526933, 0.561975, 0.597017, and 0.632059

on the same interval. So F2n becomes equal to F1n at the upper part of this interval. Exactly at the point
where this happens, the constraint F1n ≥ F2n becomes active, and this means that the equation (2.3) is not
satisfied. In fact, the sum on the left-hand side of (2.3) was precisely the value of the Lagrange multiplier
divided by n, missing in (2.3)! And, as noted above, the expression on the right-hand side of (2.4) is undefined
in this situation, because of the fact that the denominators become zero if the constraint is active.

We close this section by showing the Kaplan-Meier estimator and the (non-iterative) weighted least squares
estimator introduced in [20] for a real data set studied by [4] and [19] representing the ages at death (in
days) of 109 female RFM mice (table 1). The disease of interest is reticulum cell sarcoma (RCS). These mice
formed the control group in a survival experiment to study the effects of prepubertal ovariectomy in mice
given 300 R of X-rays. The smoother picture for the estimate of F2 in figure 1 is a consequence of the fact
that the estimators of F1 have a n−1/3 rate of convergence.
The value of the log-likelihood for these data set at the estimates obtained through the algorithm proposed
by [20] above is smaller than that obtained at the true MLE of F1 and F2 obtained through the Primal-Dual
Interior Point algorithm (-262.7964 and -262.5468, respectively).

3. Characterization of the MLE

In this section we derive the so-called Fenchel duality conditions for the (real) MLE. Our problem is to
maximize the function

L(x,y) =

n∑
i=1

{
(1− δ1,(i))(1− δ2,(i)) log(1− xi) + δ1,(i)(1− δ2,(i)) log(xi − yi)

+ δ1,(i)δ2,(i) log(yi − yi−1)
}
, (3.1)

where δ1,(i) and δ2,(i) correspond to the ith order statistics of the observations, and where the vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn) have to satisfy 0 ≤ x1 ≤ . . . ≤ xn ≤ 1, 0 ≤ y1 ≤ . . . ≤ yn ≤ 1, and
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Fig 1: Weighted Least Square estimate of F1 and Kaplan-Meier estimate of F2.

xi ≥ yi, for i = 1, . . . , n, i.e., vector x contains the values of F1 and vector y contains the values of F2 as
their components. This corresponds to the “full” maximum likelihood estimators of the lifetime and disease
onset distributions for the model, considered in [4] and LJP (1997).

To allow for ties in the observations, we set z = (x1, . . . , xm, y1, . . . , ym), where m is the number of distinct
points, and we define φ(z) by:

φ(z) = −
m∑
i=1

{fi1 log (1− xi) + fi2 log (xi − yi) + fi3 log (yi − yi−1)} , (3.2)

where
∑m
i=1

∑3
j=1 fij = n, and where fi1 is the frequency of the observations where both delta’s are zero,

fi2 the frequency of observations where the first delta equals 1 and the second zero, and fi3 the frequency
of observations where both delta’s are equal to 1. Note that (3.2) is the same as (3.1), but with a changed
sign, so we have minimization problem instead of a maximization problem.

We are going to reduce the minimization problem to the problem of minimizing on a cone C.

Definition 3.1. The cone C is the set of vectors z = (x,y) such that 0 ≤ x1 ≤ · · · ≤ xm, 0 ≤ y1 ≤ · · · ≤ ym
and xi ≥ yi, i = 1, . . . ,m. This is a polyhedral convex cone, with generators (

∑m
i=1 ei,0), (

∑m
i=2 ei,0),

. . . , (em,0) and (
∑m
j=i ej ,

∑m
j=k ej) for 1 ≤ i ≤ k ≤ m, where the ei and 0 are the unit vectors and the

vector of zeros in Rm, respectively. Note that the size of the set of generators grows quadratically with m.

Before being able to reduce the problem to a problem of minimizing on the cone C, we have to remove
the restriction xm ≤ 1. We do this by introducing Lagrange terms to the criterion.

Definition 3.2. The modified criterion for the minimization problem is:

φλ(z) = −
m∑
i=1

{fi1 log (1− xi) + fi2 log (xi − yi) + fi3 log (yi − yi−1)}

+ λ1(xm − 1) + λ2(ym − 1), (3.3)

where λ = (λ1, λ2), and where the Lagrange multipliers λ1 and λ2 are nonnegative. If the constraints at the
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right end are not active, the Lagrange multipliers are equal to zero. We have at the solution:

λ1 = −
∑
i:xi=1

∂

∂xi
φ(z), λ2 = −

∑
i:yi=1

∂

∂yi
φ(z),

where φ is defined by (3.2). Note that the Lagrange multipliers, as just defined, are zero if the constraints
are not active. Furthermore,

(i) If fi1 > 0, fi2 = fi3 = 0, for i = 1, . . . , k − 1, while fk2 > 0 or fk3 > 0, we set xi = yi = 0, i < k, and
define

∂φλ(z)

∂xi
=
∂φλ(z)

∂yi
= 0, i < k. (3.4)

(ii) If (i) occurs and fk2 > 0, we set yk = 0.

We disregard the observations with index i for i < k in condition (i) from the minimization problem. Note
that (i) and (ii) make the criterion as small as possible without influencing the remaining minimization
problem.

We define x0 = y0 = 0, and, apart from the definitions in Definition 3.2, we define

∂φλ(z)

∂xi
=


fi1

1− xi
− fi2
xi − yi

+ λ1 , i = m

fi1
1− xi

− fi2
xi − yi

, i < m,

and

∂φλ(z)

∂yi
=


fi2

xi − yi
− fi3
yi − yi−1

+ λ2 , i = m

fi2
xi − yi

− fi3
yi − yi−1

+
fi+1,3

yi+1 − yi
, i < m,

where the nonnegative Lagrange multipliers λ1 and λ2 are defined in Definition 3.2. The following lemma
from [8] will be used.

Lemma 3.1 (Fenchel duality Lemma 2.1, section 2.3.1 of [8]). Let φ : Rm → R ∪ {∞} be a continuous
concave function. Let C ⊂ Rm be a convex cone, and let C0 = C ∩ φ−1(R). Suppose that C0 is nonempty and
that φ is differentiable on C0. Then ẑ ∈ C0 satisfies

φ(ẑ) = min
z∈C

φ(z),

if and only if

〈z,∇φ(ẑ)〉 ≥ 0, for all z ∈ C, (3.5)

and

〈ẑ,∇φ(ẑ)〉 = 0. (3.6)

A solution of the minimization problem for φ is now characterized in the following theorem.

Theorem 3.1. Let the function φ be defined by (3.2) and the function φλ by (3.3). Then the vector ẑ = (x̂, ŷ)
minimizes φ(z) over the set of vectors (x1, . . . , xm, y1, . . . , ym) : 0 ≤ yi ≤ xi ≤ 1} iff the following conditions
are satisfied:
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(i)

m∑
j=i

∂φ(ẑ)

∂x̂j
+ λ̂1 ≥ 0, i = 1, . . . ,m, (3.7)

and

m∑
j=i

∂φλ̂(ẑ)

∂x̂j
+

m∑
j=k

∂φλ̂(ẑ)

∂ŷj
≥ 0, for i = 1, . . . ,m, k = i, . . . ,m. (3.8)

Equality holds in (3.8) if x̂i, and ŷk are points of increase of x̂ and ŷ, respectively, and if x̂i > ŷk.
(ii)

m∑
i=1

{
x̂i
∂φλ̂(ẑ)

∂x̂i
+ ŷi

∂φλ̂(ẑ)

∂ŷi

}
= 0,

where λ̂ is defined as in Definition 3.2 for the solution ẑ.

Proof. By Definition 3.2 we reduced the minimization problem to the minimization problem on the cone
C of Definition 3.1. We now apply Lemma 3.1. Since the inequalities (3.5) only have to be checked on the
generators of the cone C, we can use the generators of Definition 3.1. This gives the inequality conditions of
part (i). The equality condition (ii) is (3.6) in another notation.

Corollary 3.1. Let conditions (i) and (ii) of Definition 3.2 be satisfied and let the points where xi = yi = 0
be excluded from the minimization problem. Let the function φ be defined by (3.3). Furthermore, let the

nonnegative Lagrange multipliers λ̂1 and λ̂2 be defined as in Definition 3.2 for the solution ẑ. Then the
vector ẑ = (x̂, ŷ) minimizes φ(z) iff the following conditions are satisfied:

(a)

m∑
j=i

{
fj1

1− x̂j
− fj2
x̂j − ŷj

}
+ λ̂1 ≥ 0, i = 1, . . . ,m, (3.9)

and, for 1 ≤ i ≤ k ≤ m,

m∑
j=i

{
fj1

1− x̂j
− fj2
x̂j − ŷj

}
+

m∑
j=k

{
fj2

x̂j − ŷj
− fi3
ŷj − ŷj−1

+ 1{j<m}
fj+1,3

ŷj+1 − ŷj

}
+ λ̂1 + λ̂2 ≥ 0. (3.10)

Moreover, equality holds in (3.10) if (i, k) corresponds to an x̂i and an ŷk such that x̂i and ŷk are
points of increase of x̂ and ŷ, respectively, and if x̂i > ŷk.

(b)

m∑
i=1

x̂i

{
fi1

1− x̂i
− fi2
x̂i − ŷi

}
+

m∑
i=1

ŷi

{
fi2

x̂i − ŷi
− fi3
ŷi − ŷi−1

+ 1{i<m}
fi+1,3

ŷi+1 − ŷi

}
+ λ̂1 + λ̂2 = 0. (3.11)

(c)

m∑
i=1

{
fi1

1− x̂i
− fi2
x̂i − ŷi

}
+

m∑
i=1

{
fi2

x̂i − ŷi
− fi3
ŷi − ŷi−1

+ 1{i<m}
fi+1,3

ŷi+1 − ŷi

}
+ λ̂1 + λ̂2 = n. (3.12)
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Proof. Parts (a) and (b) are straightforward consequences of Theorem 3.1. As to part (c), the expression on
the left of (3.12) is equal to:

m∑
i=1

fi1
1− x̂i

+ λ̂1 + λ̂2.

We can write:

m∑
i=1

fi1
1− x̂i

=

m∑
i=1

fi1{1− x̂i}
1− x̂i

+

m∑
i=1

x̂ifi1
1− x̂i

=

m∑
i=1

fi1 +

m∑
i=1

x̂ifi1
1− x̂i

.

So we get:

m∑
i=1

fi1
1− x̂i

=

m∑
i=1

fi1 +

m∑
i=1

x̂ifi1
1− x̂i

=

m∑
i=1

fi1 +

m∑
i=1

fi2 +

m∑
i=1

x̂i

{
fi1

1− x̂i
− fi2
x̂i − ŷi

}
+

m∑
i=1

ŷifi2
x̂i − ŷi

=

m∑
i=1

fi1 +

m∑
i=1

fi2 +

m∑
i=1

fi3 +

m∑
i=1

x̂i

{
fi1

1− x̂i
− fi2
x̂i − ŷi

}

+

m∑
i=1

ŷi

{
fi2

x̂i − ŷi
− fi3
ŷi − ŷi−1

+ 1{i<m}
fi+1,3

ŷi+1 − ŷi

}
,

using

m∑
i=1

ŷi

{
fi3

ŷi − ŷi−1
− 1{i<m}

fi+1,3

ŷi+1 − ŷi

}
=

m∑
i=1

fi3.

Since

m∑
i=1

fi1 +

m∑
i=1

fi2 +

m∑
i=1

fi3 = n,

the result now follows from part (b).

The convergence criterion of Corollary 3.1 was used to check the convergence of the EM algorithm. Since
the EM algorithm has such slow convergence, differences between successive iterations are not the right
criterion for checking convergence. The primal-dual interior point algorithm uses another criterion, directly
based on the gradient with Lagrange multipliers (see Section 5.1), but it was independently checked that it
indeed satisfies the conditions of Corollary 3.1 with high accuracy (10−10).

We also have:

Corollary 3.2. Let conditions of Corollary 3.1 be satisfied and let the nonnegative Lagrange multipliers λ̂1

and λ̂2 also be defined as in Corollary 3.1. Let ẑ = (x̂, ŷ) minimize φ(z). Then:

(a) ∑
1≤j<i

x̂j

{
fj1

1− x̂j
− fj2
x̂j − ŷj

}
+
∑

1≤j<k

fj2 ŷj
x̂j − ŷj

−
∑

1≤j<k

fj3 +
fk3 ŷk−1

ŷk − ŷk−1
= 0, (3.13)

if (i, k), i ≤ k, corresponds to an x̂i and an ŷk such that x̂i and ŷk are points of increase of x̂ and ŷ,
respectively, and if x̂i > ŷk, that is: we are in the interior of the cone.
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(b) ∑
1≤j<i

fj1
1− x̂j

+
∑
i≤j<k

fj2
x̂j − ŷj

+
fk,3

ŷk − ŷk−1
= n, (3.14)

for indices (i, k) as in part (a).

Proof. The equality relations in (3.10), together with part (b) of Corollary 3.1 imply:∑
1≤j<i

x̂j

{
fj1

1− x̂j
− fj2
x̂j − ŷj

}
+
∑

1≤j<k

ŷj

{
fj2

x̂j − ŷj
− fi3
ŷj − ŷj−1

+
fj+1,3

ŷj+1 − ŷj

}
= 0,

if (i, k) corresponds to an x̂i and an ŷk such that x̂i and ŷk are points of increase of x̂ and ŷ, respectively,
and if x̂i > ŷk. The second sum can be written:∑

1≤j<k

ŷj

{
fj2

x̂j − ŷj
− fj3
ŷj − ŷj−1

+
fj+1,3

ŷj+1 − ŷj

}

=
∑

1≤j<k

fj2 ŷj
x̂j − ŷj

−
∑

1≤j<k

{
ŷj − ŷj−1

} ∑
j≤l<k

{
fl3

ŷl − ŷl−1
− fl+1,3

ŷl+1 − ŷl

}
=
∑

1≤j<k

fj2 ŷj
x̂j − ŷj

−
∑

1≤j<k

fj3 +
fk3 ŷk−1

ŷk − ŷk−1
.

The equality relations in (3.10), together with part (c) of Corollary 3.1 imply:∑
1≤j<i

{
fj1

1− x̂j
− fj2
x̂j − ŷj

}
+
∑

1≤j<k

{
fj2

x̂j − ŷj
− fi3
ŷj − ŷj−1

+
fj+1,3

ŷj+1 − ŷj

}
= n,

if (i, k) corresponds to an x̂i and an ŷk such that x̂i and ŷk are points of increase of x̂ and ŷ, respectively,
and if x̂i > ŷk, which in turn implies, by telescoping sums:∑

1≤j<i

fj1
1− x̂j

+
∑
i≤j<k

fj2
x̂j − ŷj

+
fk,3

ŷk − ŷk−1
= n,

for such points.

Example 3.1. Consider the following very simple example of a sample, generated by the model used in the
simulations in Section 5.3:

(0.76, 1, 1), (0.86, 0, 0), (1.34, 1, 0), (1.67, 1, 1), (2.32, 1, 0).

Here n = m (no ties) and the MLE is given by

F̂n1(x) =

{
1/5, x < 1.34
1, otherwise,

and

F̂n2(x) =

{
1/5, x < 1.67
3/5, otherwise,

The pair (t, u) = (1.34, 1.67) gives a pair of points, as described in Corollary 3.2, and it can be verified that
F̂n1(t) = 1 > F̂n2(u) = 3/5, and that (3.14) is satisfied, since for (i, k) = (3, 4):∑

1≤j<i

fj1
1− x̂j

+
∑
i≤j<k

fj2
x̂j − ŷj

+
fk,3

ŷk − ŷk−1
=

5

4
+

5

4
+

5

2
= 5 = n.
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In the present case:

λ̂1 =
15

4
, λ̂2 = 0.

To verify part (c) of Corollary 3.1 we compute:

n∑
i=1

fi1
1− x̂i

+ λ̂1 + λ̂2 =
5

4
+

15

4
+ 0 = 5.

In empirical process notation, (3.13) means:∫
v<t

(1− δ1)(1− δ2)

1− F̂n1(v)
F̂n1(v) dPn(v, δ1, δ2)−

∫
v<t

δ1(1− δ2)

F̂n1(v)− F̂n2(v)
F̂n1(v) dPn(v, δ1, δ2)

+

∫
v<u

δ1(1− δ2)

F̂n1(v)− F̂n2(v)
F̂n2(v) dPn(v, δ1, δ2)−

∫
v<u

δ1δ2 dPn(v, δ1, d2)

+
fu3 F̂n2(u−)

n{F̂n2(u)− F̂n2(u−)}
= 0,

where t ≤ u and fu3 is the number of observations such that δ1 = δ2 = 1 at u, and where t and u are points
of increase of F̂n1 and F̂n2, respectively, satisfying F̂n1(t) > F̂n2(u). Relation (3.14) says:

fu3

n{F̂n2(u)− F̂n2(u−)}

= 1−
∫
v<t

(1− δ1)(1− δ2)

1− F̂n1(v)
dPn(v, δ1, δ2)−

∫
t≤v<u

δ1(1− δ2)

F̂n1(v)− F̂n2(v)
dPn(v, δ1, δ2). (3.15)

Using this, we get the equation{
1−

∫
v<t

(1− δ1)(1− δ2)

1− F̂n1(v)
dPn(v, δ1, δ2)

−
∫
t≤v<u

δ1(1− δ2)

F̂n1(v)− F̂n2(v)
dPn(v, δ1, δ2)

}
F̂n2(u−)

= −
∫
v<t

(1− δ1)(1− δ2)

1− F̂n1(v)
F̂n1(v) dPn(v, δ1, δ2)

+

∫
v<t

δ1(1− δ2)

F̂n1(v)− F̂n2(v)
F̂n1(v) dPn(v, δ1, δ2)

−
∫
v<u

δ1(1− δ2)

F̂n1(v)− F̂n2(v)
F̂n2(v) dPn(v, δ1, δ2) +

∫
v<u

δ1δ2 dPn(v, δ1, δ2), (3.16)

where t and u are as described above.
We define the following random measures:

dP (1)
n = (1− δ1)(1− δ2) dPn, dP (2)

n = δ1(1− δ2) dPn, dP (3)
n = δ1δ2 dPn.

and similarly the non-random measures

dP (1) = {1− F01(v)} dG(v), dP (2) = {F01(v)− F02(v)} dG(v),

dP (3) = {1−G(v)} dF02(v).
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We can now write (3.16) in the form{
1−

∫
v<t

1

1− F̂n1(v)
dP (1)

n −
∫
t≤v<u

1

F̂n1(v)− F̂n2(v)
dP (2)

n

}
F̂n2(u−)

= −
∫
v<t

F̂n1(v)

1− F̂n1(v)
dP (1)

n +

∫
v<t

F̂n1(v)

F̂n1(v)− F̂n2(v)
dP (2)

n

−
∫
v<u

F̂n2(v)

F̂n1(v)− F̂n2(v)
dP (2)

n +

∫
v<u

dP (3)
n

= −
∫
v<t

1

1− F̂n1(v)
dP (1)

n +

∫
v<t

dP (1)
n +

∫
v<t

dP (2)
n

−
∫
t≤v<u

F̂n2(v)

F̂n1(v)− F̂n2(v)
dP (2)

n +

∫
v<u

dP (3)
n . (3.17)

So we get the following self-consistency property.

Corollary 3.3. Let t and u be points of increase of F̂n1 and F̂n2, respectively, so that t ≤ u and F̂n1(t) >
F̂n2(u). Then:

F̂n2(u−)

= −
∫
v<t

1− F̂n2(u−)

1− F̂n1(v)
dP (1)

n +

∫
v<t

d
(
P (1)
n + P (2)

n

)
+

∫
t≤v<u

F̂n2(u−)− F̂n2(v)

F̂n1(v)− F̂n2(v)
dP (2)

n +

∫
v<u

dP (3)
n . (3.18)

4. Consistency of the MLE

In this section we derive consistency of the (real) MLE from the Fenchel duality conditions in Section 3. For
clarity, we use the notation F01 and F02 instead of F1 and F2, respectively, for the underlying distribution
functions and use F1 and F2 for limits of sequences of F̂n1 and F̂n2.

Assuming that that F̂n1 and F̂n2 tend along subsequences to limits F1 and F2, we get from (3.16) in the
limit: {

1−
∫
v<t

1− F01(v)

1− F1(v)
dG(v)−

∫
t≤v<u

F01(v)− F02(v)

F1(v)− F2(v)
dG(v)

}
F2(u)

= −
∫
v<t

{
1− F01(v)

1− F1(v)
F1(v)− F01(v)− F02(v)

F1(v)− F2(v)
F1(v)

}
dG(v)

−
∫
v<u

F2(v)
F01(v)− F02(v)

F1(v)− F2(v)
dG(v) +

∫
v<u

{1−G(v)} dF02(v),

where t ≤ u and F1(t) ≥ F2(u).
For proving consistency, we now will use the following lemma.

Lemma 4.1 (Uniqueness lemma). Let F01, F02 and G be distribution functions on [0,∞), with continuous
derivatives f01, f02 and g, respectively, and let F01 and F02 have the same support, contained in the support
of g. Moreover, let the set S0 be defined by:

S0 = {(t, u) : t ≤ u, F01(t) ≥ F02(u)}. (4.1)

Assume that for all t in the interior of the support of F01 there is a nondegenerate interval of points u such
that (t, u) ∈ S0 and F01(t) > F02(u). Moreover, assume:

P {∆1 = 1|T1 = t} > 0 and P {(∆1,∆2) = (1, 1)|T2 = u} > 0,
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for all (t, u) in the interior of the set S0. Finally, let the following relation for the nondecreasing right-
continuous functions F1 and F2 be satisfied for (t, u) in the interior of the set S0:{

1−
∫
v<t

1− F01(v)

1− F1(v)
dG(v)−

∫
t≤v<u

F01(v)− F02(v)

F1(v)− F2(v)
dG(v)

}
F2(u)

= −
∫
v<t

{
1− F01(v)

1− F1(v)
F1(v)− F01(v)− F02(v)

F1(v)− F2(v)
F1(v)

}
dG(v)

−
∫
v<u

F2(v)
F01(v)− F02(v)

F1(v)− F2(v)
dG(v) +

∫
v<u

{1−G(v)} dF02(v), (4.2)

where we define 0/0 = 0. Then we must have: F1 ≡ F01 and F2 ≡ F02 on the support of g.

Remark 4.1. Note that our conditions are somewhat similar to those of [12] for the model of doubly
censored data. In fact, in their approach also a self-consistency equation is used to derive the results.

Proof of lemma 4.1. Replacing F0i and Fi, i = 1, 2 in (4.2) we get an identity. So we can subtract this
identity from (4.2), and defining H1 = F01 − F1 and H2 = F02 − F2 we then get, for (t, u) in the interior of
S0: {∫

v<t

H1(v)

1− F1(v)
dG(v)−

∫
t≤v<u

H1(v)−H2(v)

F1(v)− F2(v)
dG(v)

}
F2(u)

=

∫
v<t

{
H1(v)

1− F1(v)
F1(v) +

H1(v)−H2(v)

F1(v)− F2(v)
F1(v)

}
dG(v)

−
∫
v<u

F2(v)
H1(v)−H2(v)

F1(v)− F2(v)
dG(v) +

∫
v<u

{1−G(v)} dH2(v).

Differentiating w.r.t. t we get:{
H1(t)

1− F1(t)
+
H1(t)−H2(t)

F1(t)− F2(t)

}
F2(u) g(t) =

{
H1(t)

1− F1(t)
+
H1(t)−H2(t)

F1(t)− F2(t)

}
F1(t) g(t).

If F1(t) > F2(u) and g(t) > 0, this can only be true if

H1(t)

1− F1(t)
+
H1(t)−H2(t)

F1(t)− F2(t)
= 0,

implying

H1(t)−H2(t)

F1(t)− F2(t)
= − H1(t)

1− F1(t)
= − H2(t)

1− F2(t)
. (4.3)

Since we can differentiate (4.2) on the right-hand side, and since also the factor of F2(u) can be differ-
entiated w.r.t. u on the left-hand side, we can differentiate F2(u) and define its derivative by f2(u). We
get: {∫

v<t

H1(v)

1− F1(v)
dG(v)−

∫
t≤v<u

H1(v)−H2(v)

F1(v)− F2(v)
dG(v)

}
f2(u)

− H1(u)−H2(u)

F1(u)− F2(u)
g(u)F2(u)

= −F2(u)
H1(u)−H2(u)

F1(u)− F2(u)
g(u) + {1−G(u)}h2(u).

Using (4.3), with t replaced by u, yields:{∫
v<t

H2(v)

1− F2(v)
dG(v) +

∫
t≤v<u

H2(v)

1− F2(v)
dG(v)

}
f2(u) +

H2(u)

1− F2(u)
g(u)F2(u)

= F2(u)
H2(u)

1− F2(u)
g(u) + {1−G(u)h2(u).
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So we end up with the equation

h2(u) = {1−G(u)}−1

{∫
v<u

H2(v)

1− F2(v)
dG(v)

}
f2(u).

Integrating on both sides yields:

H2(u) =

∫
v<u

{∫
v<w<u

1

1−G(w)
dF2(w)

}
H2(v)

1− F2(v)
dG(v).

This is a homogeneous Volterra equation which can only have the solution H2 ≡ 0. Hence also H1 ≡ 0 (see
(4.3)).

The uniqueness lemma gives the consistency of the MLE.

Theorem 4.1. Let the conditions of Lemma 4.1 be satisfied. Then the MLE (F̂n1, F̂n2) of (F01, F02) satisfies:

sup
t∈[0,∞)

{∣∣∣F̂n1(t)− F01(t)
∣∣∣+
∣∣∣F̂n2(t)− F02(t)

∣∣∣} a.s.−→ 0, n→∞. (4.4)

Proof. By the self-consistency equation (3.16), all limit points of subsequences of (F̂n1, F̂n2) must satisfy
(4.2) for (t, u) in the interior of the set S0, defined in Lemma 4.1. The result now follows from the uniqueness
of the solution of this equation.

5. The primal-dual interior point algorithm and the EM algorithm for the real MLE

In this section we explain the primal-dual interior point method and the EM algorithm, as for example used in
[19], for computing the real maximum likelihood estimate of the pair (F1, F2) and compare their behavior. The
EM algorithm is vastly inferior to the primal-dual interior point method and leads to prohibitive computing
times for bigger samples. One of the reasons for its inferiority is that it needs many iteration steps, but
the other more fundamental reason is that it needs a number of parameters that increases quadratically
with sample size, whereas the primal-dual interior point method only needs a number of parameters which
increases linearly with sample size.

5.1. Primal-Dual Interior Point Algorithm

Instead of using the notation z = (x1, . . . , xm, y1, . . . , ym) as in (3.2), it is more convenient in this section to
define the vector z by z = (y1, x1, . . . , ym, xm); the relations for the xi and yi remain the same. We define
the vector g(z) = (g1(z), . . . , g3m(z))′ by

g1(z) = −z1,

gi(z) = z2i−3 − z2i−1, i = 2, . . . ,m,

gm+i(z) = z2i − z2i+2, i = 1, . . . ,m− 1

g2m(z) = z2m − 1,

g2m+i(z) = z2i−1 − z2i, i = 1, . . . ,m ,

and the matrix G by

G =

(
∂gi(z)

∂zj

)
i=1,...,3m; j=1,...,2m

.

Note that the matrixG does not depend on z. The original maximization problem now becomes a problem
of minimizing φ(z) over R2m (adopting the convention of making φ(z) = ∞ if we encounter the logarithm
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of an argument less or equal to 0), under the restriction that all components of the vector g(z) are less or
equal to 0. The latter restriction will be denoted by

g(z) ≤ 0, z ∈ R2m . (5.1)

Theorem 1: Let ẑ = (x̂1, ŷ1, . . . , x̂m, ŷm)
′

be a vector in R2m such that φ(ẑ) < ∞. Then ẑ minimizes
φ(ẑ) over the set of vectors z, satisfying (5.1), if and only if the following conditions are satisfied:

∇φ(ẑ) +G′λ = 0 (5.2)

g(ẑ) + w = 0 (5.3)

〈λ,w〉 = 0, (5.4)

for vectors λ and w in R3m
+ .

Remark: The vector λ is the vector of Lagrange multipliers and w is called a vector of “slack variables”
for the constraints; see, e.g., [22], page 164. Defining the function φλ by

φλ(z) = φ(z) + 〈λ, g(z)〉,

we can write condition (5.2) in the form
∇φλ(ẑ) = 0.

Note that g(ẑ) + w = 0, for w ∈ R3n
+ , implies g(ẑ) ≤ 0, and that λi > 0 implies wi = 0, by (5.4), and hence

gi(ẑ) = 0, by (5.3). Thus:
〈λ, g(ẑ)〉 = 0.

The proof of Theorem 1 can be found in [16], pp. 249-250.
The primal-dual interior point method for finding the solution to this minimization problem is now

formulated (the method is called “primal-dual” because we solve the primal problem for the vector z and
simultaneously the dual problem for the vectors λ and w).

A peculiar difficulty is that not all variables appear in the object function that we want to maximize (the
log likelihood). For example, if δ1,(i) = δ2,(i) = 0, then only xi figures in the (3.1) and not yi or yi−1 (yi−1

could appear in a preceding term, though). For this reason the log likelihood will never have 2m arguments,
unless only terms log(xi−yi) occur. Nevertheless, it is advantageous to work with the “overparametrized” set
of 2n variables, since (after the inclusion of the constraints) this produces a Hessian which is a “band matrix”
that can easily be inverted (see below). This structure is lost if we first perform a preliminary reduction to
the variables that really appear in the likelihood.

We now start the computation of the MLE with a vector z0 ∈ R2m, strictly satisfying all constraints, i.e.,
g(z0) < 0. An easy choice is:

z2i = i/(m+ 1), z2i−1 = 0.9i/(m+ 1), i = 1, . . . ,m.

For λ and w we take as starting values λ0 = w0 = 0.5 ·1, where 1 denotes the vector in Rm,m = 3n, with all
components equal to 1. For a vector a we denote the diagonal matrix with component ai as its ith diagonal
element by A; for example, Λ is the diagonal matrix with element λi as its ith diagonal element. The first
(Newton) iteration step now solves the system of equations: ∇z0z0φ(z0) G′ 0

G 0 I
0 W0 Λ0

 z− z0

λ− λ0

w −w0

 = −

 ∇φλ0(z0)
g(z0) + w0

(Λ0W0 − σµ0)1

 (5.5)

in (z,w,λ), where µ0 and σ ∈ (0, 1) are tuning parameters, which we take µ0 = σ = 0.5. The notation
∇zzφ(z) will be used to denote the matrix of second derivatives of φλ(z) w.r.t. z, the so-called Hessian of
the function φλ with respect to z. We now define, for fixed β > 0, the set

N (µ) = {(z,λ,w) : ‖ ∇zφ(z) ‖≤ βµ, ‖ g(z) + w ‖≤ βµ,
λ ≥ 0,w ≥ 0, λiwi ≥ µ, 1 ≤ i ≤ m}
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where ‖ · ‖ denotes the Euclidean norm, and we require the first iterate to be in this set. The parameter µ
is called the duality measure, and defined by

µ =
1

m
〈λ,w〉.

By taking λ = w = 0.5 · 1, we have made this parameter equal to 0.25 at the start of the iterations.
We now take a final parameter γ ∈ (0, 1), and take α1 as the first number in the sequence

1, γ, γ2, γ3, . . . ,

such that
(z(α),λ(α),w(α))

def
= (z0,λ0,w0) + α(z− z0,λ− λ0,w −w0) ∈ N (µ0),

where (z,λ,w) solves the system of equations above, and such that

µ(α)
def
=

1

m
〈λ(α),w(α)〉 ≤ (1− 0.01α)µ0.

We then take (z1,λ1,w1) = (z(α),λ(α),w(α)) and µ1 = µ(α), and repeat the procedure for the new
values of the parameters, i.e., we solve the system ∇z1z1φ(z1) G′ 0

G 0 I
0 W1 Λ1

 z− z1

λ− λ1

w −w1

 = −

 ∇φλ1(z1)
g(z1) + w1

(Λ1W1 − σµ1) 1

 (5.6)

and find the new (z(α),λ(α),w(α)), required to lie in N (µ1), for this system, denoted by (z2,λ2,w2), and
the new µ2. This is repeated until the duality measure µk is below a certain criterion, say 10−10 or 10−15.

Generally we start the kth iteration step with the system ∇zzφ(z) G′ 0
G 0 I
0 W Λ

 ∆z
∆λ
∆w

 = −

 ∇φλ(z)
g(z) + w

(ΛW − σµ) 1

 (5.7)

where the vector (∆z,∆λ,∆w), denotes the vector

(z− zk,λ− λk,w −wk),

if (zk,λk,wk) is the value at the start of the kth iteration, and we solve for ∆z, ∆λ and ∆w. We now
transform this system into a system that is better suited for numerical computation. We first solve for ∆w.
This yields:

∆w = −Λ−1(Λ1− σµ1 +W∆λ).

Let D denote the diagonal matrix W−1Λ. Then we can write the remaining part of the system in the form(
∇zzφ(z) G′

G −D−1

)(
∆z
∆λ

)
= −

(
∇φλ(z)

g(z) + σµΛ−11

)
. (5.8)

We then solve the system above for ∆λ. This gives:

∆λ = W−1 {ΛG∆z + λg(z) + σµ · 1} .

Using this result to solve for ∆z, we obtain the system

(∇zzφ(z) +G′DG) ∆z = −∇φλ(z)−G′Dg(z)− σµG′W−11

∆λ = W−1 {ΛG∆z + λg(z) + σµ1} ,
∆w = −Λ−1 (ΛW1− σµ1 +W∆λ)
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which we first solve for ∆z, next for ∆λ, and finally for ∆w. The only matrix for which inversion is not
trivial is the matrix

∇zzφ(z) +G′DG , (5.9)

and this matrix is a symmetric positive definite matrix at each step. The matrices W and Λ are diagonal
matrices, so inversion of these is trivial. In our case, the matrix (5.9) is a “sparse” band matrix (by the
particular parametrization we chose!). This fact can be used for fast and efficient inversion methods, where
we only have to reserve computer memory for the elements that can be non-zero.

Table 1
Ages at death (in days) in unexposed female RFM mice.

∆1 = 1,∆2 = 1 406,461,482,508,553,555,562,564,570,574,585,588,593, 624,
626,629,647,658,666,675,679,688,690,691,692,698,699,701,
702,703,707,717,724,736,748,754,759,770,772,776,776,785,
793,800,809,811,823,829,849,853,866,883,884,888,889

∆1 = 1,∆2 = 0 356,381,545,615,708,750,789,838,841,875
∆1 = 0,∆2 = 0 192,234,243,300,303,330,339,345,351,361,368,419,

430,430,464,488,494,496,517,552,554,555,563,583,
629,638,642,656,668,669,671,694,714,730,731,732,
756,756,782,793,805,821,828,853

The Primal-Dual Interior Point algorithm for the estimation of the MLE of F1 and F2 was applied to the
data set presented in Table 1. Figure 2 shows the estimates. It can be seen that the difference with Figure
1 is rather minor. An R script for computing the estimates is given in [10] which uses the R package Rcpp to
connect to the original C++ code (also given there) for the primal-dual interior point algorithm.
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0.6

0.8

1.0

Fig 2: Joint MLE estimates of F1 and F2, computed by the primal-dual interior point algorithm.
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5.2. EM Algorithm

We discuss here the implementation of the EM algorithm for the survival-sacrifice model in the case of ties.
See also [19]. A 2-dimensional discrete distribution in the plane for (T,U) is considered, where T is time of
onset of the disease and U is time of death due to the disease. Note that our description is a bit different from
the discussion on p. 43 and 44 of [19] and closer to their discussion on p. 45 on the actual implementation.

There are three situations to consider.

(i) T > Y and U > Y . In this case mass has to be distributed over points (tk, uk) such that tk > Y and
uk > Y .

(ii) T ≤ Y and U > Y . In this case we should have mass points for T ≤ Y and for U strictly to the right
of Y . So mass should be distributed over points (tk, uk) with tk ≤ Y and uk > Y .

(iii) Our observation is a time of death U . In this case mass should be distributed over points (tk, uk) such
that uk = U .

Our goal is again to have a distribution of mass on these points so that the likelihood maximized.
We consider the log likelihood

`(F1, F2, f2) =

m∑
i=1

{fi1 log (1− F1(yi)) + fi2 log (F1(yi)− F2(yi))

+fi3 log{F2(yi)− F2(yi−)}} ,

where m is the number of strictly different observation times, and where fi1 to fi3 are the frequencies of the
three possibilities, mentioned above, in that order. According to (i) above, we have:

1− F1(y) =
∑

k: tk>y, uk>y

pk, (5.10)

Similarly,

F1(y)− F2(y) =
∑

k: tk≤y, uk>y

pk. (5.11)

and

F2(y)− F2(y−) =
∑

k:uk=y

pk. (5.12)

Since (with added outside points!) we have the side restriction that
∑
k pk = 1, we add a Lagrange term to

the log likelihood, by which the criterion to maximize becomes:

`λ(F1, F2)

=

m∑
i=1

{fi1 log {1− F1(yi)}+ fi2 log {F1(yi)− F2(yi))

+fi3 log{F2(yi)− F2(yi−)}} − λ
∑
k

pk.

Standard arguments show that λ = N , where N is the total number of observations (sum of the frequen-
cies). Differentiation w.r.t. pk then yields the so-called self-consistency equations. The maximizing density
at the point (tk, uk) is therefore given by

pk = pk
1

n

m∑
i=1

{
{tk > yi, uk > yi}fi1

1− F1(yi)
+
{tk ≤ yi, uk > yi}fi2
F1(yi)− F2(yi)

+
{uk = yi}fi3

F2(yi)− F2(yi−)

}
, (5.13)
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with the convention 0/0 = 0, and the EM iteration will be:

pnewk = poldk
1

n

m∑
i=1

{
{tk > yi, uk > yi}fi1

1− F old1 (yi)
+
{tk ≤ yi, uk > yi}fi2
F old1 (yi)− F old2 (yi)

+
{uk = yi}fi3

{F old2 (yi)− F old2 (yi−)}

}
.

After having computed the values pnew(tk, uk) we can update F1, F2 and f2 via (5.10) to (5.12). This is
done in the order:

1.

Fnew1 (y) = 1−
∑

k: tk>y, uk>y

pk,

2.

Fnew2 (y) = Fnew1 (y)−
∑

k: tk≤y, uk>y

pk

After this the iteration is repeated until some convergence criterion is reached.
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Fig 3: Joint MLE estimates of F1 and F2, computed by the EM algorithm

We ran the EM algorithm for the data set presented in Table 1, taken from [19], until the Fenchel duality
criteria (i) and (ii) of Theorem 3.1 were satisfied at accuracy 10−10, after having sorted the observations in
strict order of magnitude, correcting for ties. This took 3139 iterations. After the correction for ties, there
are 102 strictly different observation times (the same correction for ties was applied for the primal-dual
algorithm) on a total of 109 observations. The Lagrange multipliers of Theorem 3.1, divided by sample size,
were given by λ1 = 0.055214 and λ2 = 0.220856. As in the case of the primal-dual interior point algorithm,
the implementation is given in [10].

imsart-ejs ver. 2014/10/16 file: survsacrifice_rev.tex date: October 30, 2019



A.E. Gomes, P. Groeneboom and J.A. Wellner/Survival-sacrifice model 21

5.3. Simulation results and computing times for the primal-dual interior point algorithm
and the EM algorithm

We consider simulation of the example in Section 6.1 below:

T1 ∼ exp(0.5), T2 − T1 ∼ exp(1), C ∼ exp(0.4),

i.e.,

F1(t) = 1− e−t/2, F2(t) = 1− 2e−t/2 + e−t, G(t) = 1− e−2t/5, t ≥ 0 (5.14)

This is the primary example considered by [20].
We use the implementation of the algorithms in [10]. Because of the speed of the primal-dual interior

point algorithm, we can easily run simulations up to sample size n = 10, 000. First we present the boxplots
of the results of the primal-dual interior point algorithm for sample sizes n = 100, 1000 and 10, 000.
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Fig 4: Boxplots for 1000 replications of the two means for sample sizes 100, 1000 and 10, 000 in model (5.14).

Noting that the means for F1 and F2 are 2 and 3, respectively, it is seen that the estimates are still
rather biased for sample size 100 (in particular for F2), but become less biased for bigger sample sizes. The
estimates of the means were defined as in (7.1) below.

●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●

●●

●

●●

●●●

●

●

●

●●

●

●●

●

●●●●●●

●

●

●

●●

●

●

●●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●

●

●●●

●

●

●

●●

●●

●

●

●●

●

●

●

●●●●

●●

●

●●

●●●●

●●

●●

●

●●●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●●

●●

●

●●●●

●

●●

●

●●

●

●

0.000

0.002

0.004

0.006

0.008

Run Times

(a) n=100

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●

●

●

0.015

0.020

0.025

0.030

Run Times

(b) n=1000

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●

0.25

0.30

0.35

0.40

0.45

0.50

Run Times

(c) n=10,000

Fig 5: Boxplots for 1000 replications of the computing times of the MLE for sample sizes 100, 1000 and
10, 000 in model (5.14).

The boxplots of the results for the corresponding computing times of the primal-dual interior point
algorithm for sample sizes n = 100, 1000 and 10, 000 are given in Figure 5. The simulations were run on a
MacBook Pro and time was measured in seconds.
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We compare the estimates and run times in seconds for the primal-dual interior point method and the
EM algorithm below for 1000 replications of sample size n = 100. The interior point method is for this
sample size more than 1000 times faster than the EM algorithm and the discrepancy in computing time even
grows for increasing sample size. We gave the EM algorithm an upper bound of 10, 000 iterations, but the
(Fenchel duality) convergence criterion was then often still not reached, in contrast with the situation for
the interior point method, which was run until the convergence criterion was reached. The estimates seem
roughly similar, though, as can be seen from Figure 6, although the EM algorithm gives even more biased
estimates of the means for F2 (probably due to non complete convergence of the EM algorithm in computing
the MLE).
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Fig 6: Boxplots for 1000 replications of means and computing time in seconds of the MLE, computed by the
primal-dual interior point algorithm and the EM algorithm, respectively, for sample size 100 in model (5.14).

All examples in this subsection can be checked by running the R scripts in [10].

6. Smooth functionals

It is somewhat surprising that results for smooth functionals of the distribution functions F1 and F2 can be
derived without first proving simple facts for its local behavior like consistency. This is a consequence of the
fact that local properties of the MLE are “washed away” in the global behavior of functionals of the MLE.
We consider in particular moments as examples of smooth functionals. The theory for the computations,
given in the Appendix, Section 9, is based on [3] and more recently Chapter 10 of [11]. We mainly give the
computations for completeness and introduction of the notation, used in the examples.

6.1. Examples

Example 1. In the particular case studied by [20], we have

F1(x) = 1− e−x/2, F2(x) = 1 + e−x − 2e−x/2, g(x) =
2

5
e−2x/5.

Note that F2 is the distribution of the sum of a standard exponential random variable U and an exponential
random variable V with scale parameter 2, where U and V are independent.

Let R be the integral operator,

Rh(t) = h(t)−
∫∞
t
h(u) dG(u)

1−G(t)
.
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(see(9.14)). In this case we would get, if Ψ(x) = x (the functional, corresponding to the first moment of F1),[
R

(
1− F1

g

)]
(t) =

1

2
e−t/10,

1−G(t)

1− F2(t)

[
R

(
1− F1

g

)]
(t) = − 1

4− 2e−t/2
,

and
d

dt

{
1−G(t)

1− F2(t)

[
R

(
1− F1

g

)]
(t)

}
= − e−t/2

4
(
2− e−t/2

)2 .
Hence, for b2, defined by (9.5), we get:

b′2(t) =
e−t/10

4
(
2− e−t/2

)2 ,
and b2 is given by:

b2(t) = −5

2
+

∫ t

0

e−x/10

4
(
2− e−x/2

)2 dx, t ≥ 0.

Note that b2 ∈ L2(G).
Furthermore, b(t, 1, 1) satisfies the relation

b(t, 1, 1) = −
2 +

∫ t
0
b2(u) dG(u)

1−G(t)
, t ≥ 0.

(see (9.7)). We have:∫ t

0

b2(u) dG(u) = b2(0)− {1−G(t)}b2(t) +

∫ t

0

{1−G(u)}b′2(u) du

= b2(0)− {1−G(t)}b2(t) +

∫ t

0

e−u/2

4
(
2− e−u/2

)2 du
= −2− {1−G(t)}b2(t)− 1

2
(
2− e−t/2

) ,
and hence

b(t, 1, 1) = b2(t) +
e2t/5

2
(
2− e−t/2

) = −5

2
+

e2t/5

2{2− e−t/2}
+

∫ t

0

e−u/10

4{2− e−u/2}2
du

= −2 +
1

5

∫ t

0

e2u/5

2− e−u/2
du.

Note that b(·, 1, 1) /∈ L2(G), but that∫
b(t, 1, 1)2{1−G(t)} dF2(t) <∞,

and hence b ∈ L2(PF,G).
The efficient asymptotic variance is given by:

‖b‖2PF,G
=

∫ ∞
0

1− F1(t)

g(t)
dt+ 2

∫ ∞
0

{1− F1(t)}b2(t) dt

+

∫
b2(t)2{1− F2(t)} dG(t) +

∫
b(t, 1, 1)2{1−G(t)} dF2(t),
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and numerical evaluation of this expression yields in the present case:

I−1
κ = ‖b‖2PF,G

≈ 27.19....

If Ψ(x) = x2 (corresponding to the second moment of F1), we have to solve the equation

b′2(t) = −{1−G(t)}−1 d

dt

{
1−G(t)

1− F2(t)

[
R

(
ψ{1− F1}

g

)]
(t)

}
,

where ψ(t) = 2t, under the side condition b2(0) = 0, see (9.18) and (9.19). We get:[
R

(
ψ

1− F1

g

)]
(t) = e−t/10{t− 8},

and hence

b′2(t) = − 4e2t/5 + (6− t)e−t/10

2{2− e−t/2}2
,

implying

b2(t) = −2

5

∫ t

0

(8− u)e2u/5

2− e−u/2
du+

(8− t)e2t/5

2− e−t/2
− 8. (6.1)

Moreover,

b(t, 1, 1) = −2

5

∫ t

0

(8− u)e2u/5

2− e−u/2
du− 8. (6.2)

This can perhaps be most easily seen from the fact that b(·, 1, 1) has to satisfy the differential equation

5

2
y′(t)− y(t) = −b2(t),

under the side condition b(0, 1, 1) = −8, which follows from (9.7), and by using (6.1). Using these expressions
for b2 and b(·, 1, 1), we obtain as estimate of the efficient asymptotic variance for the estimation of the second
moment of F1:

I−1
κ = ‖b‖2PF,G

≈ 19705.

The largest contribution is coming from the first term in the information lower bound, that is, the integral∫
b(·, 0, 0)2{1− F1}dG =

∫ {
ψ2

g2
+ b22

}
{1− F1}dG.

Note that ∫
ψ2

g2
{1− F1}dG = 10

∫ ∞
0

x2e−x/10 dx = 2 · 104,

showing that the largest contribution is in fact coming from this part of the first term. Also note that, for

example 10
∫ 10

0
x2e−x/10 dx ≈ 1606.03. This indicates that the finite sample variances differ considerably

from the values predicted by asymptotic theory, and this is confirmed by our experimental results in Section
5.2; see Table 5 and compare with the truncated integrals shown in Table 2 in the case of EF2

Ψ(Y ).

Example 2. If we take

F1(x) = 1− e−x, F2(x) = 1 + e−x − 2e−x/2, g(x) =
2

5
e−2x/5,

so only changing the distribution of X to a standard exponential and leaving the other distributions the
same, we get:

b2(t) = −5

2
+

∫ t

0

6e9x/10{
4ex/2 − 2

}2 dx,

imsart-ejs ver. 2014/10/16 file: survsacrifice_rev.tex date: October 30, 2019



A.E. Gomes, P. Groeneboom and J.A. Wellner/Survival-sacrifice model 25

and ∫
b2dG = −1 = −EF1

(X),

since now limt→∞ b(t, 1, 1){1−G(t)} = 0 and b(·, 1, 1) ∈ L2(G), in contrast with the preceding example.
In this case we calculate ∫ ∞

0

1− F1(y))

g(y)
dy = 25/6 ,∫ ∞

0

b2(y)(1− F1(y))dy = −1.63852... ,∫ ∞
0

b22(y)g(y)(1− F2(y))dy = 1.55032... ,

∫ ∞
0

{∫ ∞
y

b2dG

}2
1

1−G(y)
dF2(y) = 0.0904487... ,

Thus I−1
κ = 2.5304....

For κ(F2) = EF2
(T2) we find from (9.25) that I−1

κ = 35.38... . On the other hand, it is interesting to
note that if we let τn ≡ H−1

2 (n−1
n ) where H2(x) = 1 − (1 − F2(x))(1 − G(x)) is the distribution function

corresponding to the minimum of T2 ∼ F2 and C ∼ G, then the contribution to the integral in (9.25) from
the interval [0, τn] can be considerably smaller than I−1

κ . The following table gives the values of

I−1
κ,n ≡

∫ τn

0

[RF2(Ψ)]2

G
2 F2GdλF =

∫ τn

0

[RF2(Ψ)]2

G
dF2 . (6.3)

Table 2
Truncated Information Bound Integrals

n 100 200 300 400 500
τn 5.86 6.64 7.09 7.41 7.66

I−1
κ1,n 13.22 14.85 15.74 16.36 16.83

I−1
κ2,n 1543.9 1989.6 2270.2 2482.48 2651.3

n 1000 2000 3000 4000 5000 ∞
τn 8.44 9.21 9.66 9.98 10.23 ∞
I−1
κ1,n 18.20 19.27 20.17 20.65 21.01 35.38 ...

I−1
κ2,n 3205.8 3801.1 4167.7 4435.5 4645.7 38819.6

These estimates seem to nicely fit the simulation results of the MLE estimates for corresponding sample
sizes.

7. Quantiles of F1 and F2

In order to have a proper view of the behavior of the MLE of F1 and the Weighted Least Squares estimator
proposed by [20] to solve the problem of estimating F1, two examples of distributions for T1, T2 and C were
considered. Example 1 was exactly as described in section 6.1: T1 ∼ exp(0.5), T2 − T1 ∼ exp(1), C ∼
exp(0.4), i.e. F1(t) = 1 − e−t/2, t ≥ 0, F2(t) = 1 − 2e−t/2 + e−t, t ≥ 0, e G(t) = 1 − e−2t/5, t ≥ 0. It
will make a comparison of our results with theirs possible. Here is our further example:

Example 3. In this example we have

(T1, T2) ∼ U(A1) with probability 1/3, where A1 = {(t1, t2) : 0 ≤ t1 ≤ t2 ≤ 1} ,

(T1, T2) ∼ U(A2) with probability 1/3, where A2 = {(t1, t2) : 1 ≤ t1 = t2 ≤ 2} ,

(T1, T2) ∼ U(A3) with probability 1/3, where A3 = {(t1, t2) : 2 ≤ t1 ≤ t2 ≤ 3} .
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C ∼ U(0, 3).
In this case, the (marginal) distribution functions are

F1(t) =

 (1− (1− t)2)/3 if 0 ≤ t ≤ 1
t/3 if 1 < t ≤ 2 ,
1− (3− t)2/3 if 2 < t ≤ 3

F2(t) =

 t2/3 if 0 ≤ t ≤ 1
t/3 if 1 < t ≤ 2 .
(2 + (t− 2)2)/3 if 2 < t ≤ 3

In each case studied, we generated r = 625 samples of sizes 100 and 400. Those are the number of samples
and sample sizes used by [20] in their paper.

The summary statistics include the Mean Squared Error at 9 quantiles (F−1
1 (j/10) and F−1

2 (j/10) for
j = 1, . . . , 9) estimated by

M̂SE(tj) =
1

r

r∑
i=1

(
F̂1,i(tj)−

(
j

10

))2

=
1

r

(
r∑
i=1

[
F̂1,i(tj)

]2
− j

5

r∑
i=1

F̂1,i(tj)

)
+

(
j

10

)2

and similarly for F̂2.
In tables 7, 8 and 9, the bias and variance of the estimators at each quantile are presented as well as the

standard error of the Mean Squared Error, estimated by the square root of

V̂ ar(M̂SE(tj))

=
1

r

1

r

r∑
i=1

[
F̂1,i(tj)

]4
− 1

r

(
r∑
i=1

[
F̂1,i(tj)

]2)2

+

(
j

5

)2
 r∑
i=1

[
F̂1,i(tj)

]2
−

(
1

r

r∑
i=1

F̂1,i(tj)

)2


−2j

5

[
1

r

r∑
i=1

[
F̂1,i(tj)

]3
−

(
1

r

r∑
i=1

[
F̂1,i(tj)

]2)(1

r

r∑
i=1

F̂1,i(tj)

)]}
.

In order to assess the variability of the ratio of the averages of the MSE of the Weighted Least Squares and
NPML estimators of F1 (and the Kaplan-Meier and NPML estimators of F2), confidence intervals (±2s.e.)
for that ratio were calculated for each quantile. The delta method gives us an expression for the asymptotic
variance of the ratio of two averages:

√
r

(
Xr

Y r
− mX

mY

)
=
√
r

(
Xr −mX

Y r

)
+
√
rmX

(
1

Y r
− 1

mY

)
√
r

(
Xr −mX

Y r

)
D−→ σXZ1

mY
, where Z1 ∼ N(0, 1)

√
rmX

(
1

Y r
− 1

mY

)
D−→ −mX

1

m2
Y

σY Z2,where Z2 ∼ N(0, 1)

Var

(
σXZ1

mY
− mXσY

m2
Y

Z2

)
=

σ2
X

m2
X

+
m2
Xσ

2
Y

m4
Y

− 2σXmXσY
m3
Y

ρ
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Consequently we can estimate the variance of Xr/Y r by

σ̂2
X/r

X
2

r

+
Y

2

rσ̂
2
Y /r

X
4

r

− 2
ρ̂(σ̂X/

√
r)Xr(σ̂Y /

√
r)

Y
3

r

where ρ is the correlation between Z1 and Z2, (i.e., the correlation between estimators being compared).
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Fig 7: Ratio between average MSE’s of WLSE and MLE of F1 and between the Kaplan-Meier and MLE of
F2 (example 1).

Figures 7 to 8 show the relative efficiency (ratio between the average MSE’s) with confidence bands
between the Weighted Least Squares and NPML estimators of F1 and between the Kaplan-Meier and the
NPML estimators of F2 for each quantile (x-axis).
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Fig 8: Ratio between average MSE’s of WLSE and MLE of F1 and between Kaplan-Meier and MLE of F2

(example 3).

Figure 7 shows that our results for example 1, obtained using the Primal-Dual Interior Point algorithm,
do not support the conclusions in [20] since the MLE seems to estimate F1 better in the right-hand tail for
both sample sizes (efficiency > 1), while in their results they claim to have observed a relative efficiency of
0.92 for both sample sizes in the last quantile considered. The difference in the results is caused by the way
they calculated the MLE of F1, which may not yield the correct estimate. Looking at columns (2), (3) and
(4) for both estimators in table 7 we see that the lower variance of the MLE of F1 at the last quantile is the
reason for its superior performance there, and the variance seems to explain also the better performance of
the WLS estimator at the other quantiles since the variance is the biggest component of the MSE for both
estimators.
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Fig 9: log-log plot of variance of the estimators versus sample size.

For Example 3, the WLS estimator is beaten by the MLE in the central quantiles for all sample sizes.
These results indicate that the good performance of their estimator claimed by [20] tends to happen when
F1 and F2 are far apart since it was generally beaten by the MLE in the tails for Example 1 or in the central
quantiles in Example 3, where F1 = F2.

Figure 9 shows the plots of the logarithm of the variance of each estimator against the logarithm of the
sample size. The slopes of the curves give us information about the rate of convergence of the estimators
since

Var(θ̂n)
.
= cn−r implies log(Var(θ̂n))

.
= log c− r log n.

In each plot, the solid line refers to the second quantile, the dotted line refers to the fifth quantile, and the
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Table 3
Slopes of the log-log plots at each quantile.

quantile WLS MLE of F1 Kaplan-Meier MLE of F2
2nd -0.673 -0.597 -0.984 -0.987
5th -1.048 -0.970 -0.980 -0.970
8th -0.786 -0.671 -1.062 -1.037

dashed line refers to the eighth quantile. In the second and eighth quantiles, F1 and F2 are far apart, while
in the fifth one (in the central part of the range of T1 and T2) we have F1 = F2. We can see in the plots and
in table 3 that the slopes of the curves for the estimators of F1 are around −2/3 in the second and eighth
quantiles ( where F1 > F2) and around −1 in the fifth one (where F1 = F2), suggesting that when F1 = F2

we probably have n−1/2 as the rate of convergence of the estimators of F1, a property that the estimators of
F2 have for the whole real line, as we can see in the plots for the Kaplan-Meier and NPML estimators of F2

in Figure 9 and table 3, where all the lines have slopes close to −1. This happens because F1(t) = F2(t) for
t ∈ (a, b) means that the disease kills instantly in the interval (a, b) and thus the time of death is also the
time of disease onset, which is then actually observed in that situation.

It should be noticed that when ‖ F1 − F2 ‖∞= 1 the MLE, the pseudo MLE and the Weighted Least
Squares estimator of F1 proposed by [20] coincide. The same is true for the MLE, the pseudo MLE and
the Kaplan-Meier estimator for F2. That happens because ‖ F1 − F2 ‖∞= supt∈R | F1 − F2 |= 1 implies
that the ordered observed death times Ui = Ci ∧ T2,i are such that there are two blocks of observations,

the first one with ∆2,i = 0, and the second one with ∆2,i = 1. That makes F̂2,KM (U(i)) = F̂2,n(U(i)) = 0

where F̂2,KM is the Kaplan-Meier estimator and F̂2,n is the NPML estimator of F2 for the observations in
the first block. Also, in that block the weights wi become equal to 1 and the cumulative sum diagram that
will be used to calculate the WLS estimator is similar to the one used to calculate the MLE of F ≡ F1 in the
Interval Censoring, case 1 (see Groeneboom and Wellner (1992)), implying that the MLE of F1, the pseudo
MLE of F1 and the weighted least squares estimators will coincide. On the other hand, in the second block of
observations we have ∆1,(i) = 1. A look at the expression of the log-likelihood shows that it will be maximized

making F̂1,n = 1 for all the observations in the second block, and hence the log-likelihood coincides with
the log-likelihood for the right censoring problem, which is maximized in F2 by the Kaplan-Meier estimator.
Also, the cumulative sum diagram for the calculation of the weighted least squares estimator has Gi = 0
for those observations, making F̂1,WLS(U(i)) = 1, where F̂1,n is the MLE of F1 and F̂1,WLS is the estimator
proposed by [20]. Putting all these facts together we see that in the case where ‖ F1 − F2 ‖∞= 1, all the
estimators of F1 and F2 considered here coincide.

7.1. Estimation of moment functionals

In the computations for the following tables, the estimators of the first and second moments were of the
form ∫ Y(n)

0

(1− F̂n(x)) dx or

∫ Y(n)

0

2x(1− F̂n(x)) dx (7.1)

respectively where F̂n represents any one of the possible estimators of F1 or F2. This amounts to using the
estimators ∫ Y(n)

0

x dF̂n(x) or

∫ Y(n)

0

x2 dF̂n(x), (7.2)

but putting F̂n equal to 1 at Y(n). It is also possible to allow defective distribution functions F̂n in (7.2), but
then these estimators will have a large downward bias and a much bigger variance and for this reason we
prefer to use the estimators (7.1).
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Table 4
Monte-Carlo Results for estimation of moments, Example 1, Means

Meth, d.f. MLE, 1 JLP, 1 MLE, 2 KM, 2 MLE, 1 JLP, 1 MLE, 2 KM, 2
Moment 1 1 1 1 2 2 2 2

n
100 1.9301 1.8948 2.7907 2.8969 6.4141 6.3781 11.3654 12.2310
200 1.9368 1.9153 2.8374 2.9306 6.6686 6.6963 11.8521 12.6867
300 1.9443 1.9303 2.8455 2.9278 6.8093 6.8653 11.9804 12.7501
400 1.9647 1.9539 2.8814 2.9578 7.0611 7.1224 12.2997 13.0534
500 1.9592 1.9513 2.8856 2.9540 7.0773 7.1386 12.3897 13.0735

1000 1.9734 1.9715 2.9178 2.9707 7.3012 7.3727 12.7669 13.3431
2000 1.9790 1.9794 2.9403 2.9803 7.4848 7.5575 13.0730 13.5484
3000 1.9825 1.9834 2.9487 2.9820 7.5519 7.6156 13.1678 13.5800
4000 1.9840 1.9863 2.9563 2.9860 7.5939 7.6594 13.2748 13.6555
5000 1.9874 1.9886 2.9591 2.9861 7.6418 7.7001 13.3079 13.6598

Theory 2 2 3 3 8 8 14 14

Table 5
Monte-Carlo Results for estimation of moments, Example 1, Variances

Meth, d.f. MLE, 1 JLP, 1 MLE, 2 KM, 2 MLE, 1 JLP, 1 MLE, 2 KM, 2
Moment 1 1 1 1 2 2 2 2

n
100 8.57 9.53 12.07 14.29 649.2 749.7 1337.3 1703.8
200 8.69 9.57 13.45 15.87 708.4 825.8 1720.4 2215.4
300 9.54 10.42 13.11 15.37 866.2 1036.2 1645.3 2141.1
400 9.56 10.27 13.57 16.05 915.4 1064.4 1743.9 2313.6
500 10.34 11.04 14.23 16.48 1049.9 1224.0 2059.2 2602.4

1000 10.94 15.70 11.62 17.86 1304.2 1499.2 2555.7 3191.5
2000 11.91 13.01 17.12 19.29 1599.8 1878.1 3017.3 3775.4
3000 10.80 11.74 17.16 19.25 1583.8 1831.3 3259.8 4032.7
4000 11.62 12.46 17.51 19.77 1658.8 1887.0 3410.2 4252.3
5000 12.70 13.43 19.26 21.30 1819.3 2003.9 3659.4 4428.0

Theory 27.19 35.38 35.38 19705 38819.6 38819.6

Table 6
Monte-Carlo Results for estimation of moments, Example 1, Ratios of Variances

Variance ratio
V ar(MLE1)

V ar(JLP )

V ar(MLE2)

V ar(KM)

V ar(MLE1)

V ar(JLP )

V ar(MLE2)

V ar(KM)
Moment 1 1 2 2

n
100 0.90 0.84 0.87 0.78
200 0.91 0.85 0.86 0.78
300 0.92 0.85 0.84 0.77
400 0.93 0.85 0.86 0.75
500 0.86 0.86 0.86 0.80
1000 0.94 0.88 0.87 0.80
2000 0.92 0.89 0.85 0.80
3000 0.92 0.89 0.86 0.81
4000 0.93 0.89 0.88 0.81
5000 0.95 0.90 0.91 0.83
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Table 7
Summary results of the simulations for the WLS and MLE estimators of F1 (Example 1, n=100, 400).

(1) MSE of each estimator at the quantile
(2) Bias of each estimator at the quantile
(3) Variance of each estimator at the quantile
(4) Standard error of the MSE of each estimator at the quantile
n WLS MLE

100 (1) (2) (3) (4) (1) (2) (3) (4)
1 0.0075 -0.0468 0.0053 0.000236 0.0073 -0.0526 0.0045 0.000212
2 0.0110 -0.0357 0.0097 0.000454 0.0115 -0.0507 0.0090 0.000445
3 0.0125 -0.0207 0.0120 0.000626 0.0142 -0.0388 0.0127 0.000669
4 0.0118 -0.0058 0.0118 0.000656 0.0136 -0.0234 0.0130 0.000702
5 0.0112 -0.0063 0.0116 0.000604 0.0135 -0.0218 0.0130 0.000671
6 0.0107 0.0005 0.0107 0.000621 0.0118 -0.0155 0.0116 0.000629
7 0.0106 0.0026 0.0106 0.000559 0.0109 -0.0116 0.0108 0.000554
8 0.0091 0.0121 0.0090 0.000476 0.0092 0.0007 0.0092 0.000447
9 0.0066 0.0247 0.0060 0.000261 0.0055 0.0081 0.0054 0.000251

400 (1) (2) (3) (4) (1) (2) (3) (4)
1 0.0035 -0.0208 0.0031 0.000148 0.0036 -0.0248 0.0030 0.000145
2 0.0043 -0.0114 0.0041 0.000237 0.0046 -0.0179 0.0043 0.000251
3 0.0044 -0.0027 0.0044 0.000238 0.0047 -0.0085 0.0046 0.000249
4 0.0042 -0.0022 0.0042 0.000224 0.0045 -0.0081 0.0045 0.000249
5 0.0041 -0.0014 0.0041 0.000227 0.0046 -0.0057 0.0045 0.000250
6 0.0040 -0.0039 0.0039 0.000214 0.0043 -0.0082 0.0043 0.000239
7 0.0033 -0.0031 0.0033 0.000184 0.0037 -0.0057 0.0036 0.000201
8 0.0030 -0.0005 0.0030 0.000159 0.0033 -0.0041 0.0033 0.000176
9 0.0022 0.0037 0.0021 0.000121 0.0021 -0.0016 0.0020 0.000117

Table 8
Summary results of the simulations for the WLS and MLE estimators of F1 (Example 3, n=100, 400).

(1) MSE of each estimator at the quantile
(2) Bias of each estimator at the quantile
(3) Variance of each estimator at the quantile
(4) Standard error of the MSE of each estimator at the quantile
n WLS MLE

100 (1) (2) (3) (4) (1) (2) (3) (4)
1 0.0086 -0.0458 0.0065 0.000289 0.0079 -0.0535 0.0051 0.000237
2 0.0118 -0.0313 0.0108 0.000478 0.0124 -0.0547 0.0094 0.000456
3 0.0074 -0.0016 0.0074 0.000370 0.0077 -0.0318 0.0067 0.000358
4 0.0038 0.0183 0.0035 0.000233 0.0034 0.0122 0.0032 0.000192
5 0.0046 0.0085 0.0045 0.000262 0.0037 0.0067 0.0037 0.000204
6 0.0060 0.0070 0.0059 0.000462 0.0043 0.0025 0.0043 0.000235
7 0.0080 -0.0188 0.0076 0.000505 0.0056 -0.0260 0.0050 0.000339
8 0.0143 -0.0370 0.0129 0.000662 0.0131 -0.0485 0.0107 0.000619
9 0.0097 -0.0011 0.0097 0.000479 0.0101 -0.0254 0.0094 0.000496

400 (1) (2) (3) (4) (1) (2) (3) (4)
1 0.0041 -0.0238 0.0035 0.000158 0.0040 -0.0287 0.0032 0.000150
2 0.0043 -0.0158 0.0041 0.000221 0.0049 -0.0271 0.0041 0.000238
3 0.0026 0.0003 0.0026 0.000130 0.0030 -0.0185 0.0026 0.000147
4 0.0008 0.0019 0.0008 0.000046 0.0008 0.0058 0.0008 0.000047
5 0.0010 0.0023 0.0010 0.000057 0.0010 0.0056 0.0010 0.000053
6 0.0012 0.0016 0.0012 0.000067 0.0011 0.0033 0.0011 0.000064
7 0.0023 -0.0237 0.0018 0.000123 0.0021 -0.0216 0.0016 0.000109
8 0.0044 -0.0136 0.0043 0.000250 0.0047 -0.0174 0.0044 0.000251
9 0.0028 0.0010 0.0028 0.000153 0.0031 -0.0025 0.0031 0.000161
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Table 9
Summary results of the simulations for the WLS and MLE estimators of F1 (Example 3, n=700).

(1) MSE of each estimator at the quantile
(2) Bias of each estimator at the quantile
(3) Variance of each estimator at the quantile
(4) Standard error of the MSE of each estimator at the quantile
n WLS MLE

700 (1) (2) (3) (4) (1) (2) (3) (4)
1 0.0028 -0.0194 0.0024 0.000132 0.0030 -0.0237 0.0024 0.000130
2 0.0031 -0.0091 0.0030 0.000161 0.0034 -0.0170 0.0030 0.000171
3 0.0017 -0.0005 0.0017 0.000092 0.0020 -0.0151 0.0017 0.000116
4 0.0005 0.0009 0.0005 0.000026 0.0005 0.0047 0.0005 0.000025
5 0.0005 0.0011 0.0005 0.000029 0.0005 0.0042 0.0005 0.000028
6 0.0007 0.0015 0.0007 0.000037 0.0006 0.0027 0.0006 0.000034
7 0.0018 -0.0214 0.0014 0.000090 0.0016 -0.0195 0.0012 0.000084
8 0.0029 -0.0069 0.0028 0.000162 0.0030 -0.0091 0.0029 0.000162
9 0.0017 0.0027 0.0017 0.000086 0.0018 0.0019 0.0018 0.000091

8. Concluding remarks

Theoretical properties of the real maximum likelihood estimator for the survival-sacrifice problem such as
consistency were unknown and for this reason several pseudo maximum likelihood estimators have been
proposed for this model in the past. The Weighted Least Squares of F1, proposed in [20] (LJP (1997)) tends
to be more efficient than the MLE of F1 for the survival-sacrifice model when F1 and F2 are far apart. When
F1 and F2 are close, however, the opposite seems to happen. This was observed after the calculation of the
joint MLE of F1 and F2 by the Primal-Dual Interior Point algorithm, since the algorithm LJP (1997) applied
for that purpose does not yield the true MLE estimator of F1 and F2, which invalidates their results about
the relative efficiency of their estimator and the MLE of F1. The magnitude of the variance of each estimator
at the quantiles seems to explain the differences between the MLE and the Weighted Least Squares estimator
of F1, since the bias of both estimators are similar.

The better performance of the MLE estimators in the estimation of the first and second moments is
probably due to the fact that the MLE’s do a better job in estimating the tails of the distributions than the
weighted least squares estimator proposed in [20], combined with the Kaplan-Meier estimator. This, in turn,
is probably due to the better performance of the MLE’s in regions where the constraints become active.

We gave a characterization of the real MLE as an element of a cone in Section 3, and used this to derive a
self-consistency equation, which in turn was used to prove consistency of the MLE in Section 4, turning the
self-consistency equation into a Volterra integral equation. Further properties of the MLE are still unknown,
but we believe that (under some natural conditions) the present approach will also lead to further distribution
results, in particular rate n1/2 results for the estimate of F2 (the “Kaplan-Meier part”) and rate n1/3 results
F1 (the “current status part”). Proving this still remains a challenge at this point.

We introduced a primal-dual interior point method for computing the MLE, which was shown to be very
much faster than the EM algorithm, introduced for this model in [19]. The results of both algorithms can
be checked by running the R scripts in [10], where the implementation of both methods is given. The duality
criteria of Theorem 3.1 give a natural stopping criterion for the EM algorithm, for which a stopping criterion,
based on distances between successive iterations, is not appropriate because of the slow convergence of the
algorithm.
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9. Appendix

If we want to estimate a functional of the bivariate distribution H of (T1, T2), like the first moment of F1,
the score operator is given by:

[Aa](y, δ1, δ2) = E[a(T1, T2) |T2 ∧ C = y,∆1 = δ1,∆2 = δ2]

=
(1− δ1)(1− δ2)

∫∫
y<t1≤t2 a(t1, t2) dH(t1, t2)

1− F1(y)

+
δ1(1− δ2)

∫∫
t1≤y<t2 a(t1, t2) dH(t1, t2)

F1(y)− F2(y)

+
δ1δ2

∫
t1<y

a(t1, y) dH(t1, y)

f2(y)
a.e. [PH,G]. (9.1)

where G is the distribution of the censoring time C. This operator may be defined on L2(H), with range in
L2(PH,G). Its range is contained in L0

2(PH,G). The adjoint of A on L0
2(PH,G) can be written as [A∗b](t1, t2) =

E[b(Y,∆1,∆2)
∣∣ (T1, T2) = (t1, t2)] and we get

[A∗b](t1, t2) = E
[
b(Y,∆1,∆2)

∣∣ (T1, T2) = (t1, t2)
]

=

∫ t1

0

b(u, 0, 0) dG(u) +

∫ t2

t1

b(u, 1, 0) dG(u) + b(t2, 1, 1) {1−G(t2)} a.e. [H]. (9.2)

We have pathwise differentiability of a functional κ of Fi, i = 1, 2, with canonical gradient κ̃ = κ̃Fi
if and

only if
κ̃ ∈ R(A∗)

and if this holds, then the canonical gradient in the observation space is the unique element l̃κ in R(A) ⊂
L0

2(PH,G) satisfying

A∗ l̃κ = κ̃. (9.3)

See [21], and [3], Theorem 5.4.1, page 202.
We now investigate under what conditions the expectation of a function Ψ(T1) of the time of onset T1 ∼ F1

is a smooth functional and can be therefore estimated at rate
√
n. We assume smoothness of the distribution

functions and the function Ψ, allowing us to differentiate in the relations we get below. We also assume
Ψ(0) = 0, as is true for the moment functionals, considered in the examples. We have:

κ̃F1
(t1) = Ψ(t1)− EF1

Ψ(T1),

and we have to solve the equation

Ψ(t1)− EF1Ψ(X)

=

∫ t1

0

b(u, 0, 0) g(u) du+

∫ t2

t1

b(u, 1, 0) dG(u) + b(t2, 1, 1) {1−G(t2)} . (9.4)

Differentiating with respect to t1 we obtain

b(t1, 0, 0)g(t1)− b(t1, 1, 0)g(t1) = ψ(t1).

where ψ = Ψ′. So, defining
b2(t1) = b(t1, 1, 0), t1 ≥ 0, (9.5)

we obtain

b(t1, 0, 0) =
ψ(t1) + b2(t1) g(t1)

g(t1)
, t1 ≥ 0. (9.6)
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By letting t1 ↓ 0 in (9.4), we obtain

b(t2, 1, 1) = −
∫ t2

0
b2(u) dG(u) + EF1

Ψ(X)

1−G(t2)
, y ≥ 0. (9.7)

We note here, that, if
lim
t→∞

b(t, 1, 1){1−G(t)} = 0, (9.8)

we get ∫ ∞
0

b2(u) dG(u) = −EF1
Ψ(X) . (9.9)

But we will see an example below of a smooth functional for which (9.8) is not satisfied and therefore also
(9.9) does not hold.

We now determine the null space of A∗. Suppose A∗φ = 0. Then we get:

[A∗φ](t1, t2) = E
[
φ(Y,∆1,∆2)

∣∣ (T1, T2) = (t1, t2)
]

=

∫ t1

0

φ(u, 0, 0) g(u) du+

∫ t2

t1

φ(u, 1, 0) g(u) du+ φ(t2, 1, 1) {1−G(t2)} = 0, a.e. [H].

By taking the derivative with respect to t1 we obtain:

φ(t1, 0, 0) = φ(t1, 1, 0), a.e. [F1]. (9.10)

Letting t1 ↓ 0 yields:

φ(t2, 1, 1) =
−
∫ t2

0
φ(u, 1, 0) dG(u)

1−G(t2)
, a.e. [F2]. (9.11)

Note that if φ has compact support, we have:

lim
t2→∞

φ(t2, 1, 1){1−G(t2)} = 0, (9.12)

and hence, in that case,

φ(t2, 1, 1) =
−
∫ t2

0
φ(u, 1, 0) dG(u)

1−G(t2)
=

∫∞
t2
φ(u, 1, 0) dG(u)

1−G(t2)
, a.e. [F2]. (9.13)

We have the following lemma.

Lemma 9.1. N (A∗) = {φ ∈ L2(PH,G) : (9.10), and (9.11) hold}.

Proof. It is clear that φ ∈ N (A∗) implies (9.10) and (9.11). Conversely, if (9.10) and (9.11) hold, then

[A∗φ] (t1, t2) =

∫ t1

0

φ(u, 1, 0)dG(u) + (1−G(t2))φ(t2, 1, 1) = 0, a.e. [H],

and hence φ ∈ N (A∗).

Remark. If φ ∈ L2(PH,G) satisfies (9.10), and (9.11), then also φ ∈ L0
2(PH,G), since∫

φ(y, 0, 0){1− F1(y)} dG(y) +

∫
φ(y, 1, 0){F1(y)− F2(y)} dG(y)

+

∫
φ(y, 1, 1){1−G(y)} dF2(y)

=

∫
φ(y, 1, 0){1− F2(y)} dG(y)−

∫ ∫ y

0

φ(u, 1, 0) dG(u) dF2(y)

=

∫
φ(y, 1, 0){1− F2(y)} dG(y)−

∫
φ(y, 1, 0){1− F2(y)} dG(y) = 0,
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where we use Fubini’s theorem on the last line of the preceding relations.

We now have:

El̃κ(Y,∆1,∆2)φ(Y,∆1,∆2)

= Eb(C, 0, 0)φ(C, 0, 0)1{C<T1} + Eb(C, 1, 0)φ(C, 1, 0)1{T1≤C<T2}

+ Eb(T2, 1, 1)φ(T2, 1, 0)1{T2<C}

=

∫ ∞
0

b(y, 0, 0)φ(y, 0, 0) g(t){1− F1(y)} dy

+

∫ ∞
0

b(y, 1, 0)φ(y, 1, 0) g(y){F1(y)− F2(y)} dy

+

∫ ∞
0

b(y, 1, 1)φ(y, 1, 1){1−G(y)} dF2(y).

By (9.10), this can be written

El̃κ(Y,∆1,∆2)φ(Y,∆1,∆2)

=

∫ ∞
0

{b(y, 0, 0)− b(y, 1, 0)}φ(y, 0, 0) {1− F1(y)} dG(y)

+

∫ ∞
0

b(y, 1, 0)φ(y, 0, 0) {1− F2(y)} dG(y)

+

∫ ∞
0

b(y, 1, 1)φ(y, 1, 1){1−G(y)} dF2(y)

Inserting the values of the function b yields:

El̃κ(Y,∆1,∆2)φ(Y,∆1,∆2)

=

∫ ∞
0

ψ(y)φ(y, 0, 0) {1− F1(y)} dG(y)

+

∫ ∞
0

b2(y)φ(y, 0, 0) g(y){1− F2(y)} dG(y)

−
∫ ∞

0

{
EF1Ψ(X) +

∫ y

0

b2(u) dF2(u)

}
φ(y, 1, 1) dF2(y)

= 0.

Now define the R-operator, corresponding to the distribution G, by

Rh(y) = h(y)−
∫∞
y
h(u) dG(u)

1−G(y)
. (9.14)

for h ∈ L2(G). Moreover, define

α(y) = φ(y, 0, 0) = φ(y, 1, 0), y ≥ 0. (9.15)

Then, if φ has compact support, we can write the preceding relation in the following form∫ ∞
0

α(y)ψ(y) {1− F1(y)} dy +

∫ ∞
0

b2(y)α(y) g(y){1− F2(y)} dy

+

∫ ∞
0

EF1Ψ(X) +
∫ y

0
b2dG

1−G(y)

∫ y

0

α(u) dG(u) dF2(y)

=

∫ ∞
0

α(y)ψ(y) {1− F1(y)} dy

+

∫ ∞
0

{
b2(y) +

EF1
Ψ(X) +

∫ y
0
b2(x) dG(x)

1−G(y)

}
[Rα](y) {1− F2(y)} dG(y)

= 0,
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where we use (9.13). So we obtain the relation∫ ∞
0

α(y)

{
ψ(y){1− F1(y)}

g(y)

+R∗

[
{1− F2(y)}

{
b2(y) +

EF1
Ψ(X) +

∫ y
0
b2(x) dG(x)

1−G(y)

}]
(y)

}
dG(y)

= 0,

for all α = φ(·, 0, 0), where φ ∈ N (A∗) and has compact support, and R∗ is the adjoint of R in L2(G). Since
the functions φ with compact support are dense in L2(G), we get the equation

{1− F2(y)}

{
b2(y) +

EF1
Ψ(X) +

∫ y
0
b2(x) dG(x)

1−G(y)

}
= −

[
R

(
ψ{1− F1}

g

)]
(y) , (9.16)

since R ◦R∗ = I; see, e.g., Proposition 8, Part B, p. 421, in [3].
So b2 can be determined from (9.16). In fact, dividing by 1− F2(y) yields:

b2(y) +
EF1

Ψ(X) +
∫ y

0
b2(x) dG(x)

1−G(y)
= −{1− F2(y)}−1

[
R

(
ψ{1− F1}

g

)]
(y),

and next, by multiplying by 1−G(y), we get the following integral equation:

{1−G(y)}b2(y) +

∫ y

0

b2(x) dG(y) + EF1Ψ(X)

= − 1−G(y)

1− F2(y)

[
R

(
ψ{1− F1}

g

)]
(y), (9.17)

which becomes, if one can differentiate g, F1 and F2,

b′2(y) = −{1−G(y)}−1 d

dy

{
1−G(y)

1− F2(y)

[
R

(
ψ{1− F1}

g

)]
(y)

}
, (9.18)

and

b2(0) = −ψ(0)

g(0)
− EF1

Ψ(X) +

∫ ∞
0

ψ(y){1− F1(y)} dy . (9.19)

Note that when Ψ(0) = 0, (9.19) reduces to

b2(0) = −ψ(0)

g(0)
. (9.20)

The complete solution b can now be found by first getting b2 = b(·, 1, 0) from (9.17) (or (9.18) and (9.19)),
and next getting b(·, 0, 0) and b(·, 1, 1) from relations (9.6) and (9.7).

A summary of the above calculations is as follows: the efficient influence for estimation of EF1Ψ(X) is
l̃κ(t,∆1,∆2) given by

l̃κ(t,∆1,∆2) =



(ψ(t) + b2(t)g(t))/g(t) , if (∆1,∆2) = (0, 0),

b2(t) , if (∆1,∆2) = (1, 0),

−
EF1

Ψ(X) +
∫ t

0
b2(x) dG(x)

1−G(t)
, if (∆1,∆2) = (1, 1),

(9.21)
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where b2 is determined by (9.17) (or (9.18) and (9.19)). The information bound is just

I−1
κ = E(l̃κ(Y,∆1,∆2)2)

=

∫ ∞
0

(
ψ(y) + b2(y)g(y)

g(y)

)2

g(y)(1− F1(y))dy

+

∫ ∞
0

b22(y)g(y)(F1(y)− F2(y))dy

+

∫ ∞
0

{
EF1

Ψ(X) +
∫ y

0
b2dG

}2

(1−G(y))2
(1−G(y))dF2(y). (9.22)

Remark: Note that when the d.f. F2 is concentrated at +∞ and Ψ(x) = x, then (9.17) is solved by
b2(t) = −(1− F1(t))/g(t), so that (with probability one)

l̃κ(y,∆1,∆2) = − ∆1 − F1(y)

g(y)
,

which agrees with the influence function of the mean for interval censored case 1 (current status) data; see
e.g. [3], page 209; [9], page 115, and [13], page 157.

Now consider the estimation of the expectation EF2
Ψ(Y ) for a function Ψ(Y ) of the time of death Y ∼ F2,

satisfying Ψ(0) = 0. Note that the moments EF2
(Y k) of the time of death distribution are of this type. We

have:
κ̃F (y) = Ψ(y)− EF2(Ψ(Y )),

and to determine whether κ(F ) = EF2
Ψ(Y ) is a differentiable functional, we have to solve the equation

Ψ(y)− EF2
Ψ(Y ) =

∫ t1

0

b(u, 0, 0) g(u) du+

∫ t2

t1

b(u, 1, 0) g(u) du

+ b(t2, 1, 1) {1−G(t2)} . (9.23)

By differentiating with respect to t1 we get:

b(t1, 0, 0) = b(t1, 1, 0), a.e. [G] . (9.24)

But this implies that the calculation collapses to the same calculation as for random right censoring problem
(of T2 ∼ F2 by C ∼ G) since the marginal distribution P2 ≡ P2,F,G of (Y,∆2) is exactly that of random
right-censored data. For these calculations, see e.g. [3], pages 272 - 280, and especially page 276. Hence the
efficient influence function l̃κ for functionals of this type is given by

l̃κ(y,∆1,∆2)

=


0−

∫ y

0

RF2
(Ψ)(s)

1−G(s)

dF2(s)

1− F2(s)
, if (∆1,∆2) = (0, 0) or (∆1,∆2) = (1, 0)

RF2
(Ψ)(y)

1−G(y)
, if (∆1,∆2) = (1, 1) .

=

∫ ∞
0

RF2
(Ψ)

1−G
dMuc

where

Muc(t) ≡ 1[T≤t,∆2=1] −
∫ t

0

1[T≥s]dλF2
(s) .

Then the information bound for estimation of κ(F2) = EF2
Ψ(Y ) is

I−1
κ =

∫ ∞
0

[RF2
(Ψ)]2

G
2 F2GdλF =

∫ ∞
0

[RF2
(Ψ)]2

G
dF2 . (9.25)

This is in agreement with the results of [5], [18], and [1].
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