Most of my publications are available on arXiv, and I try hard to keep the arXiv version fo each one up-to-date. Check out my arXiv page. I am also on Google scholar.

Preprints and other recent works

  1. C. Bachoc, B. Bekker, P. Moustrou, and F.M. de Oliveira Filho, Obtuse almost-equiangular sets, arXiv:2504.11086, 2025, 29pp. [arXiv]

  2. B. Bekker and F.M. de Oliveira Filho, On the convergence of the $k$-point bound for topological packing graphs, arXiv:2306.02725, 2023, 10pp. [arXiv]

  3. B. Bekker, O. Kuryatnikova, F.M. de Oliveira Filho, and J.C. Vera, Optimization hierarchies for distance-avoiding sets in compact spaces, to appear in Transactions of the AMS, arXiv:2304.05429, 2023, 34pp. [arXiv | data repo]

Journals and proceedings

  1. D. Castro-Silva, L. Slot, F.M. de Oliveira Filho, and F. Vallentin, A recursive theta body for hypergraphs, Combinatorica 43 (2023) 909-938. [arXiv]

  2. D. Castro-Silva, L. Slot, F.M. de Oliveira Filho, and F. Vallentin, A recursive Lovász theta number for simplex-avoiding sets, to appear in Proceedings of the AMS 150 (2022) 3307-3322. [arXiv]

  3. M. Dostert, A. Kolpakov, and F.M. de Oliveira Filho, Semidefinite programming bounds for the average kissing number, Israel Journal of Mathematics 247 (2022) 635-659. [arXiv]

  4. E. DeCorte, F.M. de Oliveira Filho, and F. Vallentin, Complete positivity and distance-avoiding sets, Mathematical Programming A 191 (2022) 487-558. [arXiv]

  5. D. de Laat, F.C. Machado, F.M. de Oliveira Filho, and F. Vallentin, $k$-point semidefinite programming bounds for equiangular lines, Mathematical Programming A 194 (2022) 533-567. [arXiv]

  6. F.M. de Oliveira Filho and F. Vallentin, On the integrality gap of the maximum-cut semidefinite programming relaxation in fixed dimension, Discrete Analysis 10 (2020), arXiv:1808.02346, 17pp. [arXiv]

  7. F.M. de Oliveira Filho and F. Vallentin, A counterexample to a conjecture of Larman and Rogers on sets avoiding distance 1, Mathematika 65 (2019) 785-785. [arXiv]

  8. F.M. de Oliveira Filho and F. Vallentin, Computing upper bounds for the packing density of congruent copies of a convex body, in: New Trends in Intuitive Geometry (G. Ambrus, I. Bárány, K.J. Böröczky, G. Fejes Tóth, and J. Pach, eds.), Bolyai Society Mathematical Studies 27, Springer-Verlag, Berlin, 2019. [arXiv]

  9. F.C. Machado and F.M. de Oliveira Filho, Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry, Experimental Mathematics 27 (2018) 362-369. [arXiv]

  10. M. Dostert, C. Guzmán, F.M. de Oliveira Filho, and F. Vallentin, New upper bounds for the density of translative packings of three-dimensional convex bodies with tetrahedral symmetry, Discrete & Computational Geometry 58 (2017) 449-481. [arXiv]

  11. M.K. de Carli Silva, F.M. de Oliveira Filho, and C.M. Sato, Flag algebras: A first glance, Nieuw Archief voor Wiskunde 5/17 (2016) 193-199. [arXiv]

  12. T. Keleti, M. Matolcsi, F.M. de Oliveira Filho, and I.Z. Ruzsa, Better bounds for planar sets avoiding unit distances, Discrete & Computational Geometry 55 (2016) 642-661. [arXiv]

  13. F.M. de Oliveira Filho and F. Vallentin, Mathematical optimization for packing problems, SIAG/OPT Views and News 23(2) (2015) 5-14. [arXiv]

  14. D. de Laat, F.M. de Oliveira Filho, and F. Vallentin, Upper bounds for packings of spheres of several radii, Forum of Mathematics, Sigma 2 (2014) e23, 31pp. [arXiv]

  15. J. Briët, F.M. de Oliveira Filho, and F. Vallentin, Grothendieck inequalities for semidefinite programs with rank constraint, Theory of Computing 10 (2014) 77-105. [arXiv]

  16. C. Bachoc, P.E.B. DeCorte, F.M. de Oliveira Filho, and F. Vallentin, Spectral bounds for the independence ratio and the chromatic number of an operator, Israel Journal of Mathematics 202 (2014) 227-254. [arXiv]

  17. F.M. de Oliveira Filho and F. Vallentin, A quantitative version of Steinhaus’ theorem for compact, connected, rank-one symmetric spaces, Geometriae Dedicata 167 (2013) 295-307. [arXiv]

  18. J. Briët, F.M. de Oliveira Filho, and F. Vallentin, The positive semidefinite Grothendieck problem with rank constraint, in: Proceedings of the 37th International Colloquium on Automata, Languages, and Programming, ICALP 2010 (S. Abramsky et al. eds.), Lecture Notes in Computer Science 6198, 2010, pp. 31-42. [arXiv]

  19. F.M. de Oliveira Filho and F. Vallentin, Fourier analysis, linear programming, and densities of distance avoiding sets in $\mathbb{R}^n$, Journal of the European Mathematical Society 12 (2010) 1417-1428. [arXiv]

  20. C. Bachoc, G. Nebe, F.M. de Oliveira Filho, and F. Vallentin, Lower bounds for measurable chromatic numbers, Geometric and Functional Analysis 19 (2009) 645-661. [arXiv]

  21. C.E. Ferreira and F.M. de Oliveira Filho, New Reduction Techniques for the Group Steiner Tree Problem, SIAM Journal on Optimization 17 (2007) 1176-1188.

  22. C.E. Ferreira and F.M. de Oliveira Filho, Some Formulations for the Group Steiner tree Problem, Discrete Applied Mathematics 154 (2006) 1877-1884.

Book chapters

  1. E. de Klerk, F.M. de Oliveira Filho, and D.V. Pasechnik, Relaxations of Combinatorial Problems Via Association Schemes, in: Handbook on Semidefinite, Conic, and Polynomial Optimization (M.F. Anjos and J.B. Lasserre, eds.), Springer, 2010.

Theses

  1. F.M. de Oliveira Filho, New Bounds for Geometric Packing and Coloring via Harmonic Analysis and Optimization, Doctoral Thesis, University of Amsterdam, viii + 114pp, 2009. [pdf]

  2. F.M. de Oliveira Filho, O problema de Steiner com grupos, Master’s Thesis, University of São Paulo, Institute of Mathematics and Statistics, 79pp, 2005. (in Portuguese; English title: The group Steiner tree problem).